Dynamical coupling of hydrodynamics and transport for heavy ion collisions

Dmytro Oliinychenko

Frankfurt Institute of Advanced Studies
 oliiny@fias.uni-frankfurt.de
in collaboration with Hannah Petersen

June 7, 2016

Heavy ion collision in the view of hybrid models

- Hydrodynamics: local thermal equilibrium, $\partial_{\mu}T^{\mu\nu} = 0, \ \partial_{\mu}j^{\mu} = 0$, EoS, boundary conditions Applicability: $\lambda \simeq (n\sigma)^{-1} \ll L \implies$ high density
- Transport: Monte-Carlo simulation of particle collisions Applicability: negligible multi-particle collisions \implies low density
- Hybrid: hydro at high density + transport at low density

イロト 不得下 イヨト イヨト

Conventional hybrid models

- Solve hydro equations in the light cone
- Find freeze-out hypersurface aposteriori
- Particlization (Cooper-Frye formula)
- Particles are *decoupled* from hydro, but can scatter with each other

Conventional approximation breaks (many particles return to hydro)

- at low collision energies
- in event-by-event simulations

```
DO, HP [PRC 91, 2, 024906 (2015)]
```

Particlization and negative contributions

- $d\sigma_{\mu}$ normal 4-vector $u_{\mu} = (\gamma, \gamma \overrightarrow{v})$ 4-velocity
- T temperature
- μ chemical potential

Particlization

- know ϵ , p, u_{μ} on the surface
- \blacktriangleright from EoS T, μ
- want particles
- "Cooper-Frye formula"

$$d^3N(p) = f(p)rac{d^3p}{(2\pi\hbar)^3}rac{p^\mu}{p^0}d\sigma_\mu$$

 $rac{p^\mu}{p^0}\cdot d\sigma_\mu$ - analog of $n\cdot V$

e.g. ideal hydro $f(p) = \left(e^{\frac{p^{\mu}u_{\mu}-\mu}{T}} \pm 1\right)^{-1}$

伺下 イヨト イヨト

- Negative contribution
 - ▶ p^µdσ_µ > 0: positive contribution, particles fly out
 - *p^μdσ_μ* < 0: negative contribution, particles fly in</p>

Negative contributions using coarse-grained UrQMD (I)

Hypersurface of constant Landau rest frame energy density: mimic hybrid model transition surface

- Generate many UrQMD events
- On a (t,x,y,z) grid calculate $T^{\mu\nu} = \left\langle \frac{1}{V_{cell}} \sum_{i \in cell} \frac{p_i^{\mu} p_i^{\nu}}{p_i^0} \right\rangle_{\text{event average}}$
- In each cell go to Landau frame: $T_L^{0
 u} = (\epsilon_L, 0, 0, 0)$
- Construct surface $\epsilon_L(t, x, y, z) = \epsilon_0$

Example: E = 160 AGeV, Au+Au central collision, $\epsilon_0 = 0.3$ GeV/fm³

Negative contributions using coarse-grained UrQMD (II)

Au+Au central collisions, $\epsilon = 0.3 \text{ GeV/fm}^3$ hypersurface projected to t-z.

D. Oliinychenko (FIAS)

Definitions for negative contributions

- Hypersurface of constant Landau rest frame energy density
 - A) T and μ from Hadron Gas EoS, Cooper-Frye formula
 - B) Many UrQMD events, count particles crossing hypersurface
- Will coincide if particle distribution from UrQMD is exactly equilibrated

Negative contributions: particle mass dependence

E = 40 AGeV, b = 0, $\epsilon_0 = 0.3 \text{ GeV/fm}^3$, dN/dy distributions

Smaller mass - larger negative contribution = , (= , , = , , o)

D. Oliinychenko (FIAS)

Bubbles in transpor

Negative contributions: energy dependence

Lower collision energy - slower expansion - larger negative contributions Non-equilibrium calculation gives much smaller values

D. Oliinychenko (FIAS)

Bubbles in transport

Negative contributions: surface lumpiness E = 160 AGeV, b = 0Smooth surface Lumpy surface by particles by particle [vb/"Nb]/[db/"Nb vb/*Nb]/[vb/*Nb Cooper-Frye Cooper Fry π E = 160 AGeV. b=0 fm E = 160 AGeV b=0 fm π -2 2 -2 -1 -3 2 v Lumpier surface - larger negative contributions

D. Oliinychenko (FIAS)

Bubbles in transport

June 2015 9

-∢≣⇒

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hybrid model in a perfect world

- Coupled hydrodynamics and kinetic equations
- Transition surface found dynamically (so-called dynamical decomposition)
- Some works in this direction K. Bugaev, Phys Rev Lett. 2003; L. Czernai, Acta Phys. Hung., 2005

Example from non-relativistic hydrodynamics [Tiwari, J. Comp. Phys. 144, 710726 (1998)] 2D flow of gas around solid ellipse

White domains - Boltzmann equation, grey domains - Euler equation

Summary of introduction

- Hybrid approaches adopt approximations:
 - aposteriori determination of particlization surface
 - particles decouple from hydrodynamics once and cannot get back into it
- These approximations become inadequate for
 - Iow collision energies
 - large fluctuations (event-by-event/fluctuating hydrodynamics)
- In non-relativistic hydrodynamics there are dynamic decomposition approaches, which go beyond these approximations

Alternative way: hydro bubbles in transport

- Pure transport
- Force instant local thermalization, where density is high
- Effectively accounts for multiparticle collisions
- Conceptually similar to hybrid model, where
 - "Hydro" region defined dynamically
 - "Hydro" and transport are coupled

SMASH transport model

- hadronic cascade, $2 \leftrightarrow 2$ and $2 \leftrightarrow 1$ reactions
 - Mesons: π, ρ, η, ω, φ, σ, f₂, K, K^{*}(892), K^{*}(1410)
 - ► Baryons: up to $m \simeq 2$ GeV N, N^* , Δ , Δ^* , Λ , Λ^* , Σ , Σ^* ; Ξ , Ω
- simulates AA collision as a sequence of elementary reactions
- timesteps: $\cdots \rightarrow \text{collide}/\text{decay} \rightarrow \text{propagate} \rightarrow \dots$
- testparticles ansatz: $N \rightarrow N \cdot N_{test}$, $\sigma \rightarrow \sigma/N_{test}$
- model in active development, no strings yet
 - currently only reliable at low energies

central Au+Au collision, $E_{\rm kin} = 2$ GeV, $N_{test} = 100$ color coding: neutrons, protons, Δ , π

(日) (同) (三) (三)

Hydrodynamic bubble using SMASH

- take a cartesian grid, cells $(0.5 \,\mathrm{fm})^3$
- ullet in each cell compute local Landau rest frame energy density ϵ
- $\epsilon > \epsilon_{ft} = 0.3 \ {\rm GeV}/{\rm fm^3} \implies$ forced thermalization in cell
- A) forced isotropization
 - reshuffles momenta microcanonically no need for external EoS
 - conserves total energy and momentum locally
 - does not change hadronic content
- B) forced grand-canonical thermalization
 - forced chemical equilibration
 - allows to set Equation of State (EoS)

central Au+Au collision, $E_{kin} = 2$ GeV, $N_{test} = 100$, purple region - hydrodynamic bubble, $\epsilon_{ft} = 0.3$ GeV/fm³:

(日) (同) (日) (日) (日)

Effects of forced isotropization: pressure

Forced isotropization at t > 3 fm/c, where $\epsilon > 0.3$ GeV/fm³.

Effects of forced isotropization: m_T spectra

Forced isotropization at t > 1 fm/c, where $\epsilon > 0.3$ GeV/fm³. Au+Au, CM frame, $E_{Kin} = 2$ A GeV, b = 0, $N_{test} = 100$ forced therm normal 10 _ р _ к+ 10^{3} $dN/m_T^2 dm_T$ 10 10^{-1} 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $m_T - m_0 [GeV]$

Particles move from low p_T to high p_T : "transverse push"

Effecs of forced isotropization: y spectra

Forced isotropization at t > 1 fm/c, where $\epsilon > 0.3$ GeV/fm³. Au+Au, CM frame, $E_{Kin} = 2$ A GeV, b = 0, $N_{test} = 100$ 10^{4} normal forced therm 10^{3} - ^p K⁺ ____ p dN/dy 10^{0} 10^{-1} -22

Nucleons move to midrapidity, less pions, more kaons

Forced grand-canonical thermalization

Every time interval Δt_{ft} :

- Span a lattice and compute $T^{\mu\nu}$, j^{μ}_{B} , j^{μ}_{S} on it
- 2 Find rest frame ϵ , n_b , n_s , T, μ from EoS in every cell
 - Assuming ideal hydro form of $T^{\mu\nu}$, j^{μ}
- 3 Remove particles from $\epsilon > \epsilon_c$ region
- Sample new particles in $\epsilon > \epsilon_c$ region
 - Thermal distribution function
 - Isochronous Cooper-Frye formula \rightarrow no negative contributions
 - Conserving charges, energy and momentum globally "modes sampling" P. Huovinen, HP, Eur.Phys.J. A48 (2012) 171
- Let particles propagate, collide and decay within transport model until next thermalization

Ways to interpret the procedure:

- changing local distribution function to the thermal one
- effective treatment of multi-particle collisions
- "Zero-time hydro" = fluidization + immediate particlization

イロト 不得下 イヨト イヨト

SMASH ideal hadron gas EoS

 $\begin{array}{l} {\sf Pasi} \equiv {\sf Hadron \ Gas \ EoS \ from \ P. \ Huovinen, \ P. \ Petreczky, \ Nucl. Phys. \ A837 \ (2010) \ 26-53 \\ {\sf UrQMD} \equiv {\sf Hadron \ Gas \ EoS \ from \ UrQMD \ tables \ by \ J. \ Steinheimer \end{array}$

Bubbles in transport

Effects of forced thermalization

$\langle T angle$ and $\langle \mu_B angle$ in the thermalization region

• Wiggles at every thermalization time

- Equilibration by reactions and forced thermalization not identical
 - Some particles cannot be produces by reactions, e.g. \bar{p}
 - Resonances sampled at pole mass

D. Oliinychenko (FIAS)

Effects of forced thermalization: multiplicities

June 2015 22

Effects of forced thermalization: multiplicities

Thermalization period and lattice spacing are not important for multiplicities

Summary

- Hybrid approaches adopt approximations:
 - aposteriori determination of particlization surface
 - particles decouple from hydrodynamics once and cannot get back into it
- These approximations become inadequate for
 - Iow collision energies
 - large fluctuations (event-by-event/fluctuating hydrodynamics)
- Suggestion: pure transport, forced thermalization in regions with high energy density
 - one can plug in arbitrary EoS
 - backflow is automatically taken into account
 - transition hypersurface is determined dynamically
- Tested on SMASH, observed
 - Ionger lifetime of high-density region
 - more energy transferred to midrapidity
 - strangeness enhancement

Outlook: further testing, plug in EoS with 1st order phase transition

(日) (同) (日) (日)

Smearing kernel DO, HP, Phys.Rev. C93 (2016) no.3, 034905

The energy-momentum tensor $T^{\mu\nu}$ is constructed as

$$T^{\mu\nu}(\vec{r}) = \frac{1}{N_{ev}} \sum_{events} \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\mu}}{p_{i}^{0}} K(\vec{r} - \vec{r_{i}}, p_{i})$$
(1)

Smearing kernel K(r) should be such that $K(r)d^3r$ is Lorentz-scalar

$$\Delta x^i = \Lambda^i_j \Delta x'^j \tag{2}$$

$$\Lambda_j^i = \delta_j^i + (u^i u_j)/(1+\gamma) \tag{3}$$

$$(\Delta x^i)^2 = \Lambda^i_j \Delta x'^j \Lambda^i_k \Delta x'^k \tag{4}$$

$$\Lambda_j^i \Lambda_k^i = \delta_{jk} + u_j u_k \tag{5}$$

$$(\Delta \vec{x})^2 = (\Delta \vec{x'})^2 + (\Delta \vec{x'} \cdot \vec{u})^2$$
(6)

$$\mathcal{K}(\vec{r}) = \gamma (2\pi\sigma^2)^{-3/2} \exp\left(-\frac{\vec{r}^2 + (\vec{r} \cdot \vec{u})^2}{2\sigma^2}\right)$$
(7)

Normalization using $\int (\prod_{i=1}^n dx_i) e^{-x_i A^{ij} x_j} = \pi^{n/2} (det A)^{-1/2}$