Statistical Hadronization	Charm Fugacity in the QGP	Results	Summary
0000000	0000000	000	

Partonic J/ψ production in the Statistical Hadronization Model

Philipp B. Bahavar

Institute for Theoretical Physics Johann Wolfgang Goethe-Universität

Transport Meeting, May 8, 2014

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
---------------------------	---------------------------	----------------	---------

Statistical Hadronization

2 Charm Fugacity in the QGP

Charm Fugacity in the QGP	Results
00000000	000

Summary

Outline

Statistical Hadronization

- Basic Formulation
- Corrections
- Model Results

3 Results

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Basic Formulation	l		

- Perfect thermal and chemical equilibrium
- Hadron production governed by parameters T, μ_B
- Production is instantaneous, same for all species

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Basic Formulation			

Expressions

Partition Function

$$\ln Z_i^{\rm GC} = \pm \frac{Vg_i}{2\pi^2} \int_0^\infty {\rm d}p \, p^2 \ln \left(1 \pm \exp\left(-\frac{E_i - \mu_i}{T}\right)\right)$$

Multiplicity

$$N_i^{ ext{th}} = rac{Vg_i}{2\pi^2} \int_0^\infty \mathrm{d}p \, rac{p^2}{\exp\left(rac{E_i - \mu_i}{T}
ight) \pm 1}$$

Statistical Hadronization	Charm Fugacity in the QGP	Results	Summary
Basic Formulation			

Expressions

Partition Function

$$\ln Z_i^{\rm GC} = \frac{VTg_i}{2\pi^2} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n+1}}{n^2} \lambda_i^n m_i^2 K_2\left(\frac{nm_i}{T}\right)$$

Multiplicity

$$N_i^{\text{th}} = \frac{VTg_i}{2\pi^2} \sum_{n=1}^{\infty} \frac{(\pm 1)^{n+1}}{n} \lambda_i^n m_i^2 K_2\left(\frac{nm_i}{T}\right)$$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Corrections			

Include finite hadron volumes

•
$$V^{\text{excl}} = 4\frac{4}{3}\pi R^3$$
, $R = 0.3 \,\text{fm}$

• Includes \sim 500 particle species

Iteration

Excluded Volume

$$\hat{\boldsymbol{\rho}}(\boldsymbol{T},\boldsymbol{\mu}) = \boldsymbol{\rho}^{\mathrm{id}}(\boldsymbol{T},\hat{\boldsymbol{\mu}}_1,\ldots,\hat{\boldsymbol{\mu}}_k)$$
$$\hat{\boldsymbol{\mu}}_i = \boldsymbol{\mu}_i - \boldsymbol{v}_i \cdot \hat{\boldsymbol{\rho}}(\boldsymbol{T},\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k)$$

Volume

$$V^{ ext{SHM}} = rac{N_{ ext{ch}}}{n_{ ext{ch}}^{ ext{th}}(T,\hat{\mu}_{B})}$$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Corrections			

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Corrections			

• $m_c \gg T$

• Charm far away from chemical equilibrium

Balance Equation

$$\mathcal{N}_{car{c}}^{ ext{dir}} = rac{1}{2} g_c \mathcal{N}_{ ext{oc}}^{ ext{th}} rac{I_1 \left(g_c \mathcal{N}_{ ext{oc}}^{ ext{th}}
ight)}{I_0 \left(g_c \mathcal{N}_{ ext{oc}}^{ ext{th}}
ight)} + g_c^2 \mathcal{N}_{car{c}}^{ ext{th}}$$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Model Results			

Ratio Fit

- 200 GeV, Au+Au
- T = 162 MeV, $\mu_b = 24 \text{ MeV}$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Model Results J/ψ yield			

 200 GeV, Au+Au

•
$$\mu_b = 24 \,\mathrm{MeV}$$

• *N*_{ch} = 730

•
$$N_{c\bar{c}}^{\rm dir} = 1.92$$

Statistical	Hadronization
0000000	0

Charm Fugacity in the QGP

Results

Summary

Outline

Charm Fugacity in the QGP
 Motivation

Formulation

Statistical Hadronization	Charm Fugacity in the QGP	Results	Summary
$\underset{J/\psi}{\text{Motivation}}$			

- Lattice results: J/ψ dissociate at 1.5-1.9 T_c
- Production in the QGP describable in SHM?
- Sensitive quantities of description?

Statistical Hadronization	Charm Fugacity in the QGP	Results	Summary
Motivation Progression of J/J/ Formation	n		

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Formulation Assumptions			

- Exact charm conservation
- J/ψ are in constrained equilibrium
- No J/ψ formed or destroyed during hadronization
- Equal entropy in QGP and hadronic fireball at hadronization

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Formulation Analogous Quantities			

- $V^{\rm SHM}
 ightarrow V^{
 m QGP}$ by entropy conservation
- $g_c
 ightarrow \lambda_c$ by exact charm conservation

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Formulation			

Fireball Entropy

QGP Volume V^{QGP}

$$S_{i}^{\text{SHM}} = \frac{g_{i}V^{\text{SHM}}}{2\pi^{2}}m_{i}^{2}\sum_{n=1}^{\infty}(\pm 1)^{n+1}\frac{\lambda_{i}^{n}}{n^{2}}(2T-\mu n)K_{2}\left(\frac{nm_{i}}{T}\right)$$
$$+\frac{nm_{i}}{2}\left[K_{1}\left(\frac{nm_{i}}{T}\right)+K_{3}\left(\frac{nm_{i}}{T}\right)\right]$$

QGP Entropy Density

$$s^{
m QGP} = 4\left(16 + rac{21}{2}N_f
ight)rac{\pi^2}{90} T^3$$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Formulation QGP Volume V ^{QGP}			

Volume Calculation

$$S^{\text{SHM}} \stackrel{!}{=} S^{\text{QGP}}$$
:
 $V^{\text{QGP}} = \frac{S^{\text{SHM}}}{s^{\text{QGP}}}$

Statistical Hadronization	Charm Fugacity in the QGP ○○○○○○●○	Results 000	Summary
Formulation			

QGP Volume VQGP

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Formulation			

Hadronic Charm Balance

Charm Fugacity λ_c

$$\mathcal{N}_{car{c}}^{ ext{dir}} = rac{1}{2} g_c \mathcal{N}_{ ext{oc}}^{ ext{th}} rac{I_1\left(g_c \mathcal{N}_{ ext{oc}}^{ ext{th}}
ight)}{I_0\left(g_c \mathcal{N}_{ ext{oc}}^{ ext{th}}
ight)} + g_c^2 \mathcal{N}_{car{c}}^{ ext{th}}$$

Partonic Charm Balance

$$N_{c\bar{c}}^{\rm dir} = \lambda_c \frac{2V^{\rm QGP}}{2\pi^2} (m_c T)^{\frac{3}{2}} e^{-\frac{m_c}{T}}$$

 $\Rightarrow \lambda_c$ strongly depends on $m_c!$

Outline

2) Charm Fugacity in the QGP

3 Results

- Effect of m_c on $N_{J/\psi}^{\text{QGP}}$
- In-medium Charm Quark Mass

Statistical Hadronization	Charm Fugacity in the QGP	Results ●○○	Summary
J/ψ Multiplicity Hadronic vs. Partonic Formu	lation		

Hadronic Picture

$$\mathcal{N}_{J/\psi}^{\mathrm{SHM}} = rac{3\,\mathcal{V}^{\mathrm{SHM}}}{2\pi^2}\,g_c^2\int_0^\infty \mathrm{d}p rac{p^2}{\exp\left(rac{E_{J/\psi}-\mu_{J/\psi}}{T}
ight)-1}$$

Partonic Picture

$$N_{J/\psi}^{
m QGP} = rac{3 \, V^{
m QGP}}{2 \pi^2} \, \lambda_c^2 \int_0^\infty {
m d} p rac{p^2}{\exp\left(rac{E_{J/\psi} - \mu_{J/\psi}}{T}
ight) - 1}$$

Statistical Hadronization	Charm Fugacity in the QGP	Results ○●○	Summary
J/ψ Multiplicity			

•
$$\mu_b = 24 \,\mathrm{MeV}$$

•
$$N_{\rm ch} = 730$$

Statistical Hadronization	Charm Fugacity in the QGP	Results ○○●	Summary
J/ψ Multiplicity			

No J/ψ formed or destroyed during crossover \Rightarrow $N_{J/\psi}^{SHM} = N_{J/\psi}^{QGP}$

- Intersections for (T, m_c) pairs
- $T \simeq 160 \,\mathrm{MeV}$ $\Rightarrow m_c \simeq 1550 \,\mathrm{MeV}$

Statistical Hadronization	Charm Fugacity in the QGP	Results 000	Summary
Summary			

- In-medium J/ψ treated
- Compatible with established model and experiment
- Charm mass constrained, $m_c \simeq 1550 \,\mathrm{MeV}$