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Introduction

Why Dileptons...?

@ Dileptons represent a a clean and penetrating probe of hot
and dense nuclear matter

@ Once produced they do not interact with the surrounding
matter

@ Aim of studies
= In-medium modification of vector meson properties
= Chiral symmetry restoration
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Dileps in UrQMD

Dilepton sources in UrQMD
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Dileps in UrQMD

Resonances and Branching Ratios in UrQMD

Resonance  Mass Width Nm Nn Now No

N 1440 350 0.65
@ Two processes Nl 1515 120 060 0.15

. . Nioss 1550 140 060 030

possible in UrQMD Mg 1645 160 060 006 0.06

Collisions N 1675 140 040
Mg 1680 140 0.60 0.10
Nt 1730 150 005 020
(e.g. T = p) Ny 1710 500 016 015 0.05
N 1720 550 0.10 073
Resonance decays Nioo 1850 350 030 014 039 015

* * 2
eo N* = N Ny 1950 500 012 043
(eg +0) Mo 2000 550 042 004 005 012
: N 2150 470 029 024
o At SIS energle_s, t.he Ny 2220 550 029 005 022
resonance excitation Niw 2250 470 018 025

. A 1232 115 100

and decay is Ao 1700 350 0.0
domi Alo 1675 160 015 0.05
ominant Ao 1750 350 020 025
B hi . Ao 1840 260 025 025
@ Branching ratios are Alys 1880 350 0.8 0.80
. . Aloro 1900 250 030 0.10

in accordance with Al 1920 200 027
PDG Algo 1970 350 015 022
Algso 1990 350 038 0.08




Dileps in UrQMD

Dalitz Decays

@ Dalitz decays can be decomposed into the corresponding
decays into a virtual photon and the subsequent decay of the
photon via electromagnetic conversion

dr 1

W = rPH’y’y*,VHP’y* W M r'y*%ee

@ Internal conversion probability of the photon

Q. 4m, 2m?2
Mrry*—>ee = §M 1- M2 (1 + M2 )
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Dileps in UrQMD
Dalitz Decays

@ The widths I'p_,,~ and 'y _,p,+ can be related to
corresponding radiative widths

M2\ ? 2
rp_>,w* = 2rp_>27 (]. - F) {FPWV*(M2)’

p
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Dileps in UrQMD
Form Factors & Direct Decays

@ Form factors for the Dalitz decays are obtained from the
vector-meson dominance model (VMD). We use the
parametrizations by Landsberg and Li/Ko/Brown/Sorge

@ The width for the direct decay of a vector meson V to a
dilepton pair varies with the dilepton mass like M—3

rV—>ee(rT]V) mil/ 4m, 2mg
rV%ee(l\/l) = m—VW 1-— M?2 (1 M?2 )



Dileps in UrQMD

Time Integration Method (Shining)

@ Shining in UrQMD applied for A, p, w, ¢ and 71/

@ Assumption: Resonance can continuously emit dileptons over
its whole lifetime

@ Integration of the dilepton emission rate over time

@ Collisional broadening of each individual parent resonance is
taken into account

=1

N, tJ
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p+p@1.25GeV
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§ p+p @ 1.25 GeV
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p+p @22 GeV

5 E p+p @ 2.2 GeV
:3 10’ HADES Acceptance
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energy sufficient to 4
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n+p®1.25GeV

@ Deuteron beam with 1.25AGeV has been used by HADES
besides p+p

@ Trigger on forward-going protons in order to select the
(quasi-free) np collisions

@ Fermi motion of the bound nucleons in the deuteron leads to
a smearing of the NN collision energy — reaching above
n-production threshold

= One can not easily compare data with pure n+p simulations
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n+p®1.25GeV

< 10 < 10
g n+p @ 1.25 GeV ] d+p @ 1.25 GeV
E] HADES Acceptance El HADES Acceptance
H =Ty, H =T,
3 3
g =n s =N
3 oA 3 A
Po Po
Wgal Wya
Wyir Wygir
=all =all
.
H il
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@ 7 and more p are produced in d+p, compared to n+p
@ However, even for d+p the Yield is underestimated by a factor
of about 5 to 10
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Study of A+A collisions

@ In nucleus-nucleus collisions, additional effects compared to
pp are expected

e Fermi Momentum
e Not only p+p, but also p+n and n+n collisions
e Secondary interactions, depending on system size and energy

@ Vector meson spectral functions may be changed in the
medium

o Shift of the pole mass (of the p)
e Resonance melting in the medium

@ In UrQMD, no such in-medium effects are implemented
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C+ C0O1AGeV

=
=
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Results
[elelelolote] }

Ar 4+ KCI @ 1.76 AGeV & C + C @ 2 AGeV

< 107 1
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@ As in elementary reactions, we get too many dileptons via the

p° resonance, especially in the high-mass tail

@ How are the p mesons produced?
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Results

p° Contribution

> L .
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Results

p° Contribution

> .
§ | "sume-ee Contribution of p’ to e*e™-Production
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Results
ocoeo

Comparison with / without Resonance Contribution
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@ Even a complete switch-off of all processes A / N* — p gives
too many dileptons in the high mass tail
@ Question: Why do we get so much p contribution 77?7
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Results
oooe

Why too many dileptons from p ?

@ All HADES energies are close to thresholds

e Cross-sections change rapidly with small energy differences
o Are the cross-sections in order?

@ Do in-medium effects not included in UrQMD play a role ?
@ Possible ¥ channel for a part of what we treat as a p?

@ Why do we see the large overestimation for invarinat masses
above 700 GeV (pole mass)?
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Results

Cross-sections N+N — p%+X

=
£
©

@ Good description of
UrQMD Data inclusive cross-section

+p+p - pgX B pep - X
p+p - p +p+p ApHp -~ pHp

e For energies near
threshold, o might be
too high, but no data
are available for this
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101 ot @ However, can't
i ! explain the

overestimation at
masses higher than
the p pole mass

107

| L
10 10?

\'s

10

[

21/29



Results

Cross-sections m+N — p+X

@ pt production - oata
overestimated below ° b orpmeemx ompese
TRION ARRIGE
Vs = 3 GeV (but not o TP
relevant for dileptons) c o~
o p° from UrQMD fits £ ‘_aué';g s
quite well to data, r S NES
except for threshold ol . L
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@ Does experiment just oL
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Results

Cross-sections N+N — w+X

= 10 E
E
o [
10
=
B .
101
102
10° |
10
\'s

23 /29



Results

Cross-sections m+N — w+X
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Results

Cross-sections

@ Other cross-sections might as well play a role, especially R+N
or R+R

@ Not relevant for elementary, but significant for A+A collision

o Little data is available for these cases — Inclusion in UrQMD
is is on a vague basis

= Has to be checked next...
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Further Plans
@00

Going to ultra-relativistic Energies...

@ Going to systems with a hot and dense fireball, does a pure
transport approach still work to describe dilepton spectra?

@ However, even at RHIC or LHC energies, low mass dileptons
from the hadronic phase should dominate clearly over a
possible QGP radiation

@ In-medium effects are expected to become more dominant
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Further Plans

oeo

Comparison with NA60 Data

Dimuons from In+In @ 158AGeV
@ UrQMD results for

Dimuons at SPS
energies show good
agreement with
experimental data

(1N, )AN/IM [1/GeV]
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@ Only for higher
masses the yield is
too low, ¢ production
is underestimated

10000—
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Further Plans
ooe

Comparison with STAR Data
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@ Same problem as at low energies: Too many eTe™ via p decay
@ However, completely different processes responsible here
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Further Plans
°

Next Steps

@ Reduce the overestimation dilepton production in UrQMD,
especially via the p° (A and 7 could be optimezed as well)
@ Coarse graining to be done for HADES energies

* Take local temperature and and baryon chemical potential as
functions of space and time

* Accumulate an ensemble of events and determine local
variables via coarse graining

@ Dilepton calculation with hybrid model (transport + hydro)

* Previous work (Dimuons from NA60) by Elvira Santini
* Proceed with this work and calculate yields for RHIC and LHC
ebergies
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