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  Motivation

Comparison of hydrodynamic calculations with experimental data 
→  extraction of η/s, EoS ...

From  η/s we learn about the inner dynamics in the medium



  

Can we apply standard, one-component hydrodynamics 
to describe dissipative effects in a mixture?

  Motivation

Two distinct 
mean-free path scales
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QGP or Hadron Gas are mixtures



  

  Dissipative hydro
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Israel-Stewart hydrodynamics:

Relaxation time =22
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EoS

Ideal hydrodynamics:

Tμν is isotropic locally ↔ Momentum distribution is isotropic  

πμν describes anisotropy of the momentum space distribution



  

  Dissipative hydro in a mixture
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total energy is conserved 

total particle number is conserved

Same as the standard Israel-Stewart for each mixture component?
Then, what is the viscosity of mixture components?



  

  Dissipative hydro in a mixture
For our derivation we assume:

  >> particle numbers are conserved (no radiative processes)

  >> T
1
=T

2
=T (rather strong assumption, but we really need this one)

  >> the global frame u μ is not very different from the frames u μ
i
 of the 

components

Need to check these two in transport calculations



  

  Dissipative hydro in a mixture
For our derivation we assume:

  >> particle numbers N
i
 are conserved (no radiative processes)

  >> T
1
=T

2
=T (rather strong assumption, but we really need this one)

  >> the global frame u μ is not very different from the frames u μ
i
 of the 

components

 >> we take isotropic scatterings, dσ/dΩ independent of Ω

can translate cross section to viscosity =
6
5

T




  

̇1=−1⋅59 n111
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  Dissipative hydro in a mixture
For two components with a given n
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̇2=−2⋅59 n222
7
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2
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n212gradient terms

Two relaxation times per equation
Compare with the Israel-Stewart Eq.: 

̇=−⋅
5
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ngradient terms
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  Dynamics in a mixture

̇2=−2⋅59 n222
7
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n1121⋅
2
9

n212gradient terms

Let’s check the relaxation part of the equations

Let’s check the relaxation part of the equations



  

  Dynamics in a mixture
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Let’s check the relaxation part of the equations
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Grad ’s Formalism

BAMPS BOX



  

  Mixture in BAMPS
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Symbols: BAMPS
      Lines: hydro



  

  Mixture in BAMPS
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  Relaxation in BAMPS
In the standard one-component Israel-Stewart hydrodynamics:

=0 ⋅e−/

σ= 3.4 mb 
T= 0.4 GeV



  

  Green-Kubo

C =
1
3

〈xy
0xy

〉〈
xz
0xz

〉〈
yz
0 yz

〉 

Auto-correlation function

=
V
T
∫0

∞

C d 

 τ = correlation time 

Application of Green-Kubo formula in BAMPS: C.Wesp et al,  arXiv:1106.4306



  

  Green-Kubo

=
V
T
∫0

∞

C d 

Application of Green-Kubo formula in BAMPS: C.Wesp et al,  arXiv:1106.4306

C =C1⋅e−/1C 2⋅e−/2

1≈0.2 fm /c
2≈0.4 fm /c

Mixture in BAMPS

  η = 0.062 GeV3 



  

  Mixture in BAMPS

n
1 
/ n

2 
= 5

initial π
1 
/ π

2
 = n

1 
/n

2

σ
11 

= 4 mb 

σ
12 

= 2 mb
 
, 

σ
22 

= 1 mb

T= 0.4 GeV

Green-Kubo viscosity  
η = 0.062 GeV3 
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  Dynamics in a mixture
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  Mixture in BAMPS
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Existence of a characteristic 
stationary value 
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  Dynamics in mixtures

mixture with mean free 
path scales λ

1
~0.2 fm 

and λ
2
~0.4 fm



  

  Dynamics in mixtures
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From the results so far we can conclude

>> Existence of a characteristic time-dependence of the viscosity 
in a mixture

>> Applicability of one-component hydrodynamics to a mixture 
depends on the chosen initial conditions



  

  Initializing hydrodynamic calculations
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In one-component hydrodynamic calculations the standard choices are
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...but there is no clear prescription what’s the right choice.
For a mixture this would mean
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Which also means, that the characteristic time-dependence 
of shear viscosity must be taken into account



  

  Conclusions and Outlook

>> standard one-component hydrodynamics in general cannot be 
applied to describe dissipative effects in mixtures

>> It is only in case the initial conditions are chosen properly that one-
component description can be applied 

>> Green-Kubo formalism is not reliable for mixtures – additional time-
modulation must be taken into account

η/s=η/s(T)  → η/s=η/s(T) * f(t)
 



  

  Conclusions and Outlook

>> Most reliable way to check these conclusions:
Kinetic transport calculations → BAMPS

See how evolution of an expanding “QGP” with σ
gg

, σ
gq

,  σ
qq

 ~1/T2 

can be reproduced by one-component calculations.

How the cross section (i.e. η/s) must be chosen in one-component case?
Can any hint of the time-depence of η be seen?

Mixture in BAMPS → (isochronous) freeze-out → flow observables
vs

One-component fluid in BAMPS → (isochronous) freeze-out → flow 
observables

  Work in progress Work in progress 
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