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The Lindblad master equation is a frequently used Markovian approach to describe open quantum
systems in terms of the temporal evolution of a reduced density matrix. Here, the thermal environ-
ment is traced out to obtain an expression to describe the evolution of what is called a system: one
particle or a chain of interacting particles, which is/are surrounded by a thermal heat bath.

In this work, we investigate the formation of non-relativistic bound states, involving the Pöschl-
Teller potential, in order to discuss the formation time and the thermal equilibrium, applying scales
from nuclear physics. This problem is borrowed from the field of heavy-ion collisions, where the
deuteron is a probe which is measured at temperature regimes around the chemical freeze out
temperature, while the deuteron itself has a binding energy which is much lower. This is known and
often described as a “snowball in hell”.

We use a reformulated Lindblad equation, in terms of a diffusion-advection equation with sources
and therefore provide a hydrodynamical formulation of a dissipative quantum master equation.
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formation time, thermalization, decoherence

I. INTRODUCTION

One rather niche area in the large field of open quan-
tum systems is the application of Lindblad dynamics on
probes measured in heavy ion collisions. However, it is
not far-fetched to use open quantum systems in this field,
because this approach allows to describe a system particle
separately from a thermal bath, which is not of further
relevance for certain investigations. One typical probe,
which appears in heavy-ion collisions is the deuteron, a
bound state of a proton and a neutron, with a bind-
ing energy of approximately 2.3 MeV. Since, on the one
hand, quarkonia, i.e. bound states of quark-antiquark
pairs, are rather successfully described by Lindblad dy-
namics, cf. Refs. [1–7], a proper theoretical description
of the deuteron is under-represented in the literature,
which is applying Lindblad dynamics. Therefore, let us
motivate our main concern: in heavy-ion collisions, en-
ergies around the chemical freeze out temperature, given
at 60 − 150 MeV (depending on the collision energies
probed in large systems like Au+Au or Pb+Pb) [8–10],
are reached. To measure this matter, colliders as the
LHC at CERN or the RHIC at BNL, with collision en-
ergies of

√
s = 2.4− 13000 GeV are used. While cooling

of the fireball, even at high energies bound states such
as heavy quarkonia (J/ψ, Υ and excited states) but also
the (anti-)deuteron are probes [11, 12]. Typical deuteron
yields at collision energies of

√
sNN = 2.76 TeV of Pb-

Pb collision with 0-10% centrality are dN/dy ≈ 10−1

[12, 13]. This appears to be remarkable, because the
typical binding energy of the deuteron is ∼ 2.3 MeV,
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which is orders of magnitude below the hadronic freeze-
out temperature.
For the last decades, several attempts have been

made to describe this phenomenon applying various ap-
proaches: either by coalescence or by some interference
in the interacting matter [14–16].
In this work, we investigate the evolution towards the

equilibrium of the bound state and the full system. We
are especially interested, if a Gibbs state is reached in
the stationary case, respectively if the density matrix is
Boltzmann distributed, and if the time scales, which are
typically of the same order of the reciprocal value of the
damping are the ones, which are typically observed in
heavy-ion collisions. Furthermore, we also compare to
the equilibration time of the full system, considering the
entropy1, to the equilibration time of certain states.
We introduce the equations, which we are using to eval-

uate the Lindblad evolution numerically, and which are
known from hydrodynamics.
It turns out, that thermalization is achieved in terms of

Boltzmann distributions and that the typical formation
time of an arbitrary state2 is described by a different time
scale, than the full thermalization of the system3.
We conclude, that Lindblad evolutions are a useful ap-

plication to describe bound states.
We work on nuclear scales and set the mass to m =

mred,d = 470 MeV, the reduced mass of a deuteron, and
ℏ = kB = 1. The size of the computational domain of
the matrix is L × L = 40 fm × 40 fm, which is divided

1Here S(t) is taken to be the standard von-Neumann entropy

S(t) = Tr[ρ(t) ln ρ(t)] . (1)

2the minimal value, where ∂tρnn(t) = 0
3the minimal value, where ∂tS(t) = 0
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into 300×300 cells to discretize the system for numerical
evaluations.

II. LINDBLAD EQUATION IN A
HYDRODYNAMICAL FORMULATION

The general form of the Lindblad-Gorini-Kossakowski-
Sudarshan equation,

L [ρS ] = (2)

= −i
[
H̃, ρS

]
+
∑
i,j=1

(
LiρSLj −

1

2

{
L†
iLj , ρS

})
,

contains i < N Lindblad operators Li, where N can be
in general the number of possible quantum transitions
between states in the system [17]. We have implemented
a numerical method, which, for the best of our knowledge
has not been used to describe Lindblad dynamics before,
but turns out to be a highly efficient tool. This method
has been successfully tested and is discussed in detail in
Ref. [18].

In Ref. [18] we presented a new formulation of the Lind-
blad equation, Eq. (2), as an advection-diffusion equa-
tion in conservative form. Here, the conserved quan-
tity, which has to be satisfied due to the construction
of the Lindblad equation is the norm of the density
matrix, Tr ρ̂ =

∫
dx ρ(x, x, t) = 1. We split the den-

sity matrix into real and imaginary part, u⃗ = u⃗(x⃗, t) =
(ρI(x, y, t), ρR(x, y, t))

T , and rearrange the terms of the
Lindblad equation in coordinate space representation,
which we integrate by parts, cf. Ref. [18], to obtain

∂tu⃗+ ∂xf⃗
x[x⃗, u⃗ ] + ∂y f⃗

y[x⃗, u⃗ ] = (3)

= ∂xQ⃗
x[∂xu⃗, ∂yu⃗ ] + ∂yQ⃗

y[∂xu⃗, ∂yu⃗ ] + S⃗[t, x⃗, u⃗ ] .

Here, f⃗x,y, Q⃗x,y and S⃗ are given by

f⃗x[x⃗, u⃗] =

(
−2Dpx (x− y) ρR + γ (x− y) ρI
+2Dpx (x− y) ρI + γ (x− y) ρR

)
(4)

f⃗y[x⃗, u⃗] =

(
−2Dpx (x− y) ρR − γ (x− y) ρI
+2Dpx (x− y) ρI − γ (x− y) ρR

)
(5)

Q⃗x[∂xu⃗, ∂yu⃗] = (6)

=

(
∂
∂x

[
1

2m ρR +Dxx ρI
]
+Dxx

∂
∂y ρI

∂
∂x

[
− 1

2m ρI +Dxx ρR
]
+Dxx

∂
∂y ρR

)
Q⃗y[∂xu⃗, ∂yu⃗] = (7)

=

(
∂
∂y

[
− 1

2m ρR +Dxx ρI
]
+Dxx

∂
∂x ρI

∂
∂y

[
1

2m ρI +Dxx ρR
]
+Dxx

∂
∂x ρR

)
S⃗[t, x⃗, u⃗] = (8)

=

(
(V (y)− V (x)) ρR +

[
2γ −Dpp (x− y)2

]
ρI

(V (x)− V (y)) ρI +
[
2γ −Dpp (x− y)2

]
ρR

)
,

where m is the mass of the system particle, V (x) the sys-
tems potential, γ the damping coefficient, satisfying the
dissipation-fluctuation theorem, and therefore is related
to the friction η [19], and Dpp, Dpx and Dxx the diffu-
sion coefficients, which are detailed in Refs. [20–23] and
generally depend on the heat bath temperature T , and
Ω, the cutoff frequency of the Ohmic bath spectrum, as
well as m and γ. To numerically solve Eq. (3), we use
a finite-volume scheme, the Kurganov-Tadmor scheme,
which is introduced and explicitly discussed in Ref. [24].
For further details, we refer to Ref. [18].

III. BOUND STATE FORMATION AND
FORMATION TIME

In this chapter we discuss the bound-state problem in
order to provide a description of the formation of non-
relativistic particles in heavy-ion collisions as it has been
motivated in Ref. [25]. We are using the potential

V (x) =

{
−V0 1

cosh2(αx)
, if |x| ≤ 20fm

∞ if |x| > 20fm ,
(9)

which is introduced in Ref. [26]. Here, α = 1/rd, where rd
is the deuteron radius. We use the energy eigenfunctions,
which are calculated via a shooting method numerically,
to define the initial conditions by

ρ(x, y, 0) =

N∑
m,n=0

cmn ⟨x|ψm⟩ ⟨ψn|y⟩ , (10)

whereN is the highest considered state, and therefore the
state, where the Hilbert space of the system particle is
truncated (here N = 50, such that the energy spectrum
is E ∈ [−2.3 MeV, 640 MeV]). In Ref. [26] we provide
an extensive analysis of the dependency of the system on
the parameters T , γ, Ω, Dpx and the initial condition.
In Fig. 1 we illustratively show the temporal evolution of
the real part of the reduced density matrix, where, as a
initial condition, the 16th state (which has an energy of
approximately 60 MeV) is populated.
We use

ρnm(t) =

∫
dx

∫
dy ρ(x, y, t) ⟨ψn|x⟩ ⟨y|ψm⟩ (11)

to calculate ρmn(t), which allows to investigate the tem-
poral behavior of each state, the decoherence of the sys-
tem, and the final distribution, which is compared to

ρanalyt.,nn = exp

[
− 1

T
(E − µ)

]
. (12)

A. Thermalization of the bound state problem

For late times of the simulation, where the equilibra-
tion is expected, we can calculate ρnn(t) to compare the
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FIG. 1. The temporal evolution of ρ(x, y, t), with initially populated 16th state towards thermal equilibrium at times t = 0
fm/c, t = 0.25 fm/c, t = 1 fm/c, t = 2 fm/c, t = 4 fm/c and t = 8 fm/c of the real part of the reduced density matrix. The
bath temperature is T = 250 MeV, Ω = 4T , γ = 0.1 MeV and Dpx = −γT/Ω, which V (x), the potential given in Eq. (9).
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FIG. 2. Logarithm of the final distribution of ρnn(t) at
time teq = t = 100 fm/c for different heat bath temperatures
T = 100, 150, 200, 250, 300 MeV. Here, γ = 0.1 c/fm, Ω = 4T ,
Dpx = 0 and the initial condition is n = 8. The dashed line
illustrate the fit curves obtained by applying Eq. (12).

result to Eq. (12), which is used as a fit function with fit
parameters Tfit, which is expected to coincide with the
heat bath temperature, and µfit, the chemical potential.
In Ref. [26] we compare various results for different val-
ues of γ, T,Ω, and different values of Dpx, which we also
compare to the pure Caldeira-Leggett master equation,
where Dpx = 0. For mathematical reasons, cf. Ref. [18],
we set Dxx = 0. One result for the equilibrium distribu-
tions of ρnn(t = teq) for various heat bath temperatures
is depicted in Fig. 2.

One can see a nice agreement between the heat bath
temperature T , and the fitted temperature Tfit which
shows, taking into account, that also the distribution of

ρ(x,−x, t) ∼ e−2mTx2

, cf. [26] is fulfilled, and that the
system equilibrates with the heat bath, as expected.
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FIG. 3. Entropy S(t) for different bath temperatures T for
the pure Caldeira-Leggett master equation, where Dpx = 0
and Ω = 4T . The different line colours correspond to differ-
ent damping γ, while the different line-styles correspond to
different initial conditions n = 0, 8, 16.
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FIG. 4. ρ0 0(t), ρ8 8(t) and ρ16 16(t) depending on different
initial conditions, ρnn = 1 with n = 0, 8 and 16 for bath tem-
peratures T = 100 MeV for the pure Caldeira-Leggett master
equation, where Dpx = 0 and Ω = 4T and damping γ = 0.1
c/fm. The dashed line illustrates the equilibrium result, which
corresponds to the fit of the Boltzmann distribution, Eq. (12),
as indicated in Fig. 2.

B. Entropy

Diagonalizing the density matrix allows us to calculate
the entropy, Eq. (1), and to study the dynamics towards
equilibrium of the full system. This is depicted in Fig. 3
for various initial conditions, heat bath temperatures and
dampings. In Fig. 4 we show the dynamics of some ex-
plicitly taken states, which we also use to set up the
initial conditions. One can see, that contra-intuitively
the states do not decay strictly exponentially but several
time scales are involved during the evolution. Further-
more, one can see, that the thermalization takes place
faster for higher states, and the bound state, especially,
if it is initially fully populated, takes longest to relax.
Therefore, the time scales of each state are different and
dependent on the initial condition. Also the full equili-
bration of the system, which can be seen in Fig. 3, shows
a different time scale.

The dashed line in Fig. 4 provides a comparison to the
expected equilibrium distribution, calculated using the
fits from Eq. (12).

IV. SUMMARY

In this work, we summarized the most important find-
ings of Refs. [18, 26], where we have discussed the forma-
tion or destruction time of a bound state with parame-
ters mimicking a deuteron; incorporating nuclear scales
and energies. To this end, we used Lindblad dynamics
and rewrote the Lindblad equation into a conservative
advection-diffusion equation to solve the temporal evolu-
tion numerically. We found, that equilibration with the
heat bath is reached. Therefore, the equilibration time is
dependent on the heat bath temperature, the damping,
as well as the cutoff frequency of the Ohmic bath spec-
trum. Futhermore, we found, that the pure Caldeira-
Leggett master equation leads to a thermal state as well
as the Lindblad-type structures, that are used frequently,
and the results in the most cases do not differ signifi-
cantly, cf. [26].
Even though the damping dictates the thermalization

time, it is also sensitive to the initial condition. The
thermalization time of the full system and therefore the
minimal time, where an entropy maximum is reached is
smaller, if an energetically higher state is originally pop-
ulated, because the gap between the energy of the sys-
tem and the environment is smaller. Furthermore, the
thermalization time of an arbitrarily considered state is
higher, if the energy gap between this state and the initial
condition is small.
To conclude – it is possible to stably form a bound state

due to environmental effects, with a probability, which is
sensitive to the heat bath temperature, the damping and
the initial energy in the system. Therefore, Lindblad
dynamics provide a quantum mechanical explanation of
the “deuteron paradox”.
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