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In this paper, we extend the method of Kadanoff-Baym equations for open quantum systems to
arbitrary kinds of systems and heat baths, either fermionic or bosonic. This includes three spacial
dimensions and different potentials for the system-bath interaction or external traps. We study the
quantum-mechanical formation of bound states in one and also in three dimensions with the full
Kadanoff-Baym equations and compare them to more simplified approaches with and without mem-
ory effects. An in-depth examination of the thermodynamics of open systems is performed, showing
perfect equilibration of the system’s degrees of freedom along with a comprehensive investigation
of the influence of the heat bath on the system’s wave functions. The formation time, decay time
and regeneration of bound states and their dependence on the temperature and coupling strength
is explored

We evaluate the non-equilibrium Kadanoff-Baym equations for the system particles, assuming
that interactions are elastic two-particle collisions with the heat-bath particles. Finally, we describe
in detail the method used to numerically solve the corresponding spatially heterogeneous integro-
differential equations for the set of one-particle Green’s functions.

I. INTRODUCTION

Open quantum systems, i.e. quantum systems that
interact with external environments, represent a funda-
mental and very often encountered class of physical sys-
tems. Unlike their idealized closed counterparts, real
quantum systems are never perfectly isolated; they are al-
ways coupled to reservoirs, fluctuating fields, or measure-
ment devices. This coupling leads to phenomena such as
decoherence, dissipation, and entanglement with the en-
vironment, all of which are crucial in modern quantum
technologies including quantum information processing,
quantum thermodynamics, and mesoscopic transport,
but of course also for fundamental aspects of particle
physics.

In recent years, the Keldysh/Kadanoff–Baym frame-
work has been increasingly applied to open quantum sys-
tems [1, 2], offering a unified treatment of equilibrium and
non-equilibrium dynamics, as well as the ability to incor-
porate structured environments, time-dependent driving,
and thermalization processes. Nevertheless, solving the
Kadanoff–Baym equations is computationally demand-
ing, and approximations, such as conserving self energies,
must often be employed to make the problem tractable.

Our aim is to demonstrate how the Kadanoff–Baym
equation framework can serve as a versatile and system-
atically improvable tool for modeling open quantum sys-
tems across a wide range of physical settings.

In a previous letter [3], we studied a one-dimensional
fermionic system in a bosonic bath, wherein we had ex-
plicitly verified the fundamental conditions of decoher-
ence and thermalization of the occupied quantum states.
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In addition, the spectral characteristics of the system
have been shown.
This approach represents a novel contribution to the

field of open quantum systems, offering a more expansive
range of potential applications than established Marko-
vian master equations, such as Lindblad master equa-
tions [4–7] specifically for the Caldeira-Leggett model [8–
10]. One should note that such approaches are applicable
only in the high-temperature limit with weak coupling,
because otherwise it cannot be guaranteed that the time
evolution will always result in the system reaching ther-
mal equilibrium with the bath [11, 12].
The underlying Hamiltonian can be decomposed into

a pure system component S, a pure bath component B,
and the interaction between the system and the bath SB,

Ĥ = ĤS + ĤB + ĤSB . (1)

The subsequent discussion employs natural units (c =
kB = ℏ = 1). The common master equation setup is
stated, where the evolution of the density matrix ρ̂S is
governed by a Lindblad equation [4–6],

∂ρ̂S
∂t

= i
[
ρ̂S , ĤS

]
+ L̂(ρ̂S , L̂λ), (2)

but with system-bath interactions included too. In the
given context, the Lindblad superoperator, represented
by the symbol L̂, comprises the Lindblad operators, de-
noted here by L̂λ. The determination of these opera-
tors is a crucial aspect of the analysis, as they represent
the fundamental components necessary to comprehend
the physical dynamics of the system under investigation.
The identification of these operators often involves intu-
itive considerations, as discussed e.g. in [13]. This con-
trasts the strict formalism of the applied Kadanoff-Baym
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approach, where the system-bath interaction is incorpo-
rated through self energies, that are based on resummed
perturbation theory, which enables the development of
expansions in the coupling constants.

The approach of considering non-equilibrium Green’s
functions to describe systems out of equilibrium was ini-
tially developed by Schwinger [14] and further specified
by Kadanoff, Baym and Keldysh [15–18].

It is evident that the Kadanoff-Baym equations are
constructed in such a manner as to ensure the preser-
vation of local conservation laws, as well as the norm
and complete positivity of the occupation numbers. In
the context of an open quantum system, it is guaranteed
that thermalization is attained for the dressed quantum
degrees of freedom. Furthermore, it has been demon-
strated that quantum correlations decohere as a conse-
quence of interactions between the system and the bath
degrees of freedom [3, 12, 19].

In this study, we consider the following class of par-
ticles: fermionic or bosonic particles residing in a finite
volume in one or three dimensions. These particles are
confined through a potential, e.g. a harmonic potential
or a double square-well potential to mimic a confining
box. These conditions are necessary for the numerical
method because they yield a discrete spectrum of the
corresponding single-particle Hamiltonian. In particu-
lar, we focus on bound-state formation in one dimension
[20] and three dimensions. It is important to elucidate
the impact of memory effects and decoherence on the
thermalization process. To this aim, an extensive anal-
ysis of the Kadanoff-Baym equations is needed. This
analysis should encompass a range of approximations,
including the homogeneous [21–23] or diagonal approxi-
mation, which preserves the non-Markovian nature but
entirely neglects the phenomenon of decoherence. An-
other approximation to consider is the quantum kinetic
master equation, which, akin to the Lindblad or Boltz-
mann equation, exhibits a Markovian character.

In accordance with the approach outlined in [3], sys-
tem particles are linked to a heat bath of free, ther-
malized particles through the process of elastic scatter-
ing in a conventional many-body quantum framework
[14, 15, 18, 24]. This configuration represents an open
quantum system, wherein the energy exchange between
the system and the bath degrees of freedom drives the
system towards the thermal equilibrium state, dictated
by the temperature of the bath, Tbath, chemical potential,
µbath, and the interaction strength between system and
bath. The underlying philosophy of the Kadanoff-Baym
equations [25] is analogous to the Influence Functional
of Feynman and Vernon [26] in the well-known Caldeira-
Leggett framework [8].

In the next sections II and III, the framework for the
resulting Kadanoff-Baym equations in an open quan-
tum system for arbitrary particle species in the sys-
tem/bath is established. Subsequently, the approach to
obtain numerical solutions is explained and the fully de-
composed matrix-valued equations for the Green’s func-

tions are shown. Furthermore, we shortly summarize
the advantages and possible further investigations ob-
tained by using the Kadanoff-Baym approach. In sub-
chapters, we will elaborate on the direct relation between
Green’s functions and density matrices and determine
some interesting thermodynamic properties, such as en-
tropy and energy functionals [27] and explain the deriva-
tion and short-comings of two common approximations
of the Kadanoff-Baym equations, the diagonal Kadanoff-
Baym equations and the quantum kinetic master equa-
tion, in more detail.
In section IV, we then present extensive numerical re-

sults, and also put a focus on the quantum mechanical
formation of bound states, e.g. deuteron [28–33] or J/Ψ
[34–36], which are currently of high interest in the heavy
ion physics community [3, 12, 20]. We demonstrate the
thermalization of the system within a hot medium and
contrast it to classical transport approaches or quantum
master equations. We showcase the effects of different ap-
proximations of the Kadanoff-Baym equations and their
impact on the evolution of the system particles and ther-
malization times. Furthermore, we will demonstrate the
possibility to capture potential changes in wave functions
and energy eigenvalues by HSB. In the following subsec-
tion, we provide an insight to the 3-dimensional exten-
sion of the present study and point out differences to the
one-dimensional case in the early-time dynamics and in
the spectral functions. Finally, the application to an in-
teracting Bose gas in one dimension will be illustrated,
where we point out differences in the spectral functions
compared to fermionic systems and show how the ground
state will be populated during the evolution of the sys-
tem.

II. SETUP FOR THE MODEL

The non-equilibrium Green’s function S(1, 1′) is de-
fined by (we follow the conventions of [14, 15, 18, 24])

S(1, 1′) = −i
〈
Tc
[
ψ̂(r, t)ψ̂(r′, t′)†

]〉
= Θc(t, t

′)S>(1, 1′)±Θc(t
′, t)S<(1, 1′), (3)

where the ± is connected to (upper) bosons and (lower
sign) fermions, which takes the permutation into account.
In this notation 1 = (r, t). Tc is the contour-time ordering
operator along the “Schwinger-Keldysh” contour fig. 1,

Tc
[
ψ̂(r, t)ψ̂(r′, t′)†

]
..=

{
ψ̂(r, t)ψ̂(r′, t′)† if t > t′,

±ψ̂(r′, t′)†ψ̂(r, t) if t ≤ t′.

(4)

Furthermore, it is possible to substitute the contour
time ordering operator by a contour Heaviside function,
which is defined as [37]
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FIG. 1. The closed-time path C with the times ordered as it
is the case for S<.

Θc(t, t
′) ..=

{
1, if t is later on the contour than t′,

0, else.

(5)

Here t < t′ means, t is earlier on the “Schwinger-
Keldysh” contour than t′. We assume a spin-saturated
system, such that there are no spin-dependent inter-
actions, which could make the Green’s function non-
diagonal in spin-space.

The system particles are described within an external,
attractive, static, and spatially extended potential cou-
pled to an environment (heat bath) by the many-body
Hamiltonian

Ĥ(t) =

∫
dr ψ̂(r, t)†

(
− ∆

2µS
+ VS(r)︸ ︷︷ ︸

..=h0

)
ψ̂(r, t)

︸ ︷︷ ︸
..=ĤS(t)

+

∫
dr

∫
dr′ ψ̂(r, t)†ψ̂(r, t)Vint(|r − r′|)ϕ̂(r′, t)†ϕ̂(r′, t)︸ ︷︷ ︸

..=ĤSB(t)

(6)

with (reduced) mass µS . The degrees of freedom of
the bath are subject to an uncoupled standard Hamil-
tonian, although they may also be influenced by an ex-
ternal potential. The external potential VS(r) is se-
lected to emulate, for instance, a gas of bosons con-
fined within a harmonic potential or a gas of nucleons
influenced by other nucleons, thereby facilitating the for-

mation of bound states. ψ̂(r, t) represents the system-

operator and ϕ̂(r, t) the bath-operator. ĤSB represents
the interaction between system and heat-bath particles,
which can be arbitrarily chosen up to now. In many
cases one can think of a screened Coulomb potential, a
smeared gaussian potential or a local s-wave interaction
as a choice of Vint(|r − r′|). The explicit consideration
of self-interactions of the system particles or the bath
particles is omitted in this study.

The heat-bath particles are assumed to be at constant
temperature, Tbath, in a state of thermal equilibrium.
The number of bath particles is controlled by a separate
chemical potential.

This set-up allows for a sufficiently comprehensive
analysis of the open quantum system. The next step
is now to derive the Green’s functions relevant for the

Kadanoff-Baym formalism. These are obtained from the
Hamiltonian described in eq. (6) and the field operators
contained therein. The final step in this process is to cal-
culate the self-energies composed of these Green’s func-
tions.
The field operators can be expanded into any complete

basis without restriction of generality. According to the
formalism of the second quantization, the expansion co-
efficients occurring there are the corresponding creation
or annihilation operators,

ψ̂(r, t) ..=

S∑
n=0

ĉn(t)ϕn(r). (7)

Tt is customary to adapt the basis in accordance with
the specific problem at hand, mostly to include symme-
tries of the system.
In the example of an open quantum system presented

here, the one-particle eigenstates of h0 in eq. (6) [18, 38–
40], naturally lend themselves as the preferred basis,

h0 ϕn(r) = En ϕn(r),∫
dr ϕm(r)∗ ϕn(r) = δm,n. (8)

For the one-dimensional bound-state problem, the
eigenfunctions can be found in [20] for a special choice
of VS(r), which was already elaborated in [3]. For the
numerical solution we truncate the Hilbert space of the
modes at a cutoff mode S. Inserting (7) in (3) leads
to the energy-basis representation of the inhomogenous
Green’s function as

S>(1, 1′) = −i
S∑

n,m=0

⟨ĉn(t)ĉm(t′)†⟩ϕn(r)ϕ∗m(r′),

S<(1, 1′) = ∓i
S∑

n,m=0

⟨ĉm(t′)†ĉn(t)⟩ϕn(r)ϕ∗m(r′). (9)

The temporal evolution of these Green’s functions is
governed by the Kadanoff-Baym equations [15, 24]

(
i
∂

∂t
+

∆1

2µS
− Veff(1)

)
S≷(1, 1′) = I

≷
coll1

(t, t′), (10)

(
−i ∂
∂t′

+
∆1′

2µS
− Veff(1

′)
)
S≷(1, 1′) = I

≷
coll2

(t, t′), (11)

where we introduced an effective potential as the sum
of the external potential and the Hartree self-energy (∼
λ)

Veff(1) = VS(1) + ΣH(1). (12)
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The collision terms on the right-hand side are

I
≷
coll1

(t, t′) =

∫ t

t0

d1̄

[
Σ>(1, 1̄)− Σ<(1, 1̄)

]
S≷(1̄, 1′)

−
∫ t′

t0

d1̄Σ≷(1, 1̄)

[
S>(1̄, 1′)− S<(1̄, 1′)

]
,

I
≷
coll2

(t, t′) =

∫ t

t0

d1̄

[
S>(1, 1̄)− S<(1, 1̄)

]
Σ≷(1̄, 1′)

−
∫ t′

t0

d1̄S≷(1, 1̄)

[
Σ>(1̄, 1′)− Σ<(1̄, 1′)

]
.

(13)

A second-order (direct Born) sunset self energy is
incorporated, which itself contains the system Green’s
function S. This is known as “resummation”, in fact
the Kadanoff-Baym equations are resumming the Green’s
function as they are just a rewritten Dyson equation,

S(1, 1′) = S0(1, 1
′) +

∫
c

d2

∫
c

d3S0(1, 2)Σ(2, 3)S(3, 1
′).

(14)

However, the Kadanoff-Baym equations eqs. (10)
and (11) are obtained from eq. (14) by multiplying with
the free inverse Green’s function S−1

0 , which is just the
Schrödinger operator on the left hand side of eqs. (10)
and (11) in front of the Green’s function.

To make the system open, it is first necessary to es-
tablish the thermal equilibrium Green’s function for the
bath particle prior to the explicit definition of the self
energies,

D>
0 (1, 1

′) = −i
B∑
n

∫
dω

2π
ãn(ω)e

−iω(t−t′)

(1± nB/F (ω))ϕ̃n(r)ϕ̃
∗
n(r

′),

D<
0 (1, 1

′) = ∓i
B∑
n

∫
dω

2π
ãn(ω)e

−iω(t−t′)

nB/F (ω)ϕ̃n(r)ϕ̃
∗
n(r

′), (15)

where nB/F (ϵn) = 1
exp((ϵn−µbath)/T )∓1 , with µbath the

chemical potential of the bath and ϕ̃n(r) are the eigen
functions of the bath, which in general can be also af-
fected by an external potential. The chemical potential
of the bath fixes the number of particles in the bath and
B is a cutoff mode similar to the system case. A gen-
eral, dissipative spectral function ãn(ω) can be straight-
forwardly incorporated to mimic the effect of scattering
on the bath degrees of freedom. For simplicity we use
here the on-shell approximation ãn(ω) = δ(ω − ϵn) with
ϵn the energy of the n-th eigen state of the bath Hamil-
tonian. These details are, however, not relevant for our
later discussions.

S\B Boson Fermion
Boson - +
Fermion - +

TABLE I. The sign in eq. (16) as a function of the system-
and bath-particle species.

The self energies that are guided by an expansion in
the interacting potential, denoted by Vint, are given by

ΣH(1) = ±︸︷︷︸
bath−type

i

∫
dr′ Vint(|r − r′|)D<

0 (r
′, t, r′, t+),

Σ≷(1, 1′) = sign(table I)

∫
dr2

∫
dr2′ S

≷(1, 1′)

Vint(|r − r2|)Vint(|r2′ − r′|)D≷
0 (r2, t, r2′ , t

′)

D
≶
0 (r2′ , t

′, r2, t).
(16)

The two diagrams under consideration correspond to the
non-dissipative (Hartree) tadpole and dissipative (direct
Born) sunset diagram. The derivation of these is pos-
sible through second quantization, with the one-particle
irreducible (1PI) diagrams being identified from the two-
part Green’s function [15, 24]. Alternatively, this can
be achieved through the more elegant process of deriving
the functional derivative of the Φ functional appearing
in the path integral formalism of the two-particle irre-
ducible (2PI) effective action [22, 41, 42]. In this case,
the self energies can be obtained by functional derivation
of the Φ functional. For the important contributions up
to second order in the (local) system-bath interaction,
the (Hartree) tadpole and the sunset diagram fig. 2, the
corresponding parts in the Φ functional are presented in
fig. 3. The sunset diagram is of greater significance as

FIG. 2. Self energy diagrams for the scattering process in the
open quantum system. The dotted lines are bath propagators,
fixed to the free thermal real-time propgators, and full lines
depict self-consistently evaluated system-particle propagators
[43].

it results in a dissipative energy exchange in the (two-
body) elastic scatterings between the bath particles and
the system particles. In the absence of a sunset contri-
bution, thermal equilibrium can not be achieved as only
true scattering processes can guarantee thermalization.
The sign of the Hartree term is determined by the type
of bath, however, for the sunset diagram, it is also influ-
enced by the type of system particles.
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FIG. 3. The basketball-diagram (right) and the diagram, that
creates the tadpole (left), as a part of the Φ-functional of the
2-PI effective action. The dotted lines denote bath propaga-
tors, affixed to the free thermal real-time propagators. The
full lines depict system-particle propagators, which have been
self-consistently evaluated [43].

III. NUMERICAL SOLUTION OF THE
KADANOFF-BAYM EQUATIONS

In order to numerically solve the Kadanoff-Baym equa-
tions, it is necessary to substitute the expansions for the
Green’s functions, as specified in eq. (9) and eq. (15),
into eqs. (10) and (11). It can be shown that, with
the help of eq. (7), the set of partial integro-differential
equations eqs. (10) and (11) can be reduced to a set
of ordinary integro-differential equations for the matrix-
valued expectation values c>n,m(t, t′) = ⟨ĉn(t)ĉm(t′)†⟩ and
c<n,m(t, t′) = ⟨ĉm(t′)†ĉn(t)⟩ in the two-time plane. The
self energies can be expanded in the same basis as the
Green’s functions

Σ>(1, 1′) = −i
S∑
b,a

Σ>
b,a(t, t

′)ϕb(r)ϕ
∗
a(r

′),

Σ<(1, 1′) = ∓i
S∑
b,a

Σ<
b,a(t, t

′)ϕb(r)ϕ
∗
a(r

′),

Σ>
b,a(t, t

′) =

S∑
n,m

[
B∑
j,k

e−i(ϵj−ϵk)(t−t′) (1± nB/F (ϵj))

nB/F (ϵk)Vb,n,j,k Vm,a,k,j

]
c>n,m(t, t′),

Σ<
b,a(t, t

′) =

S∑
n,m

[
B∑
j,k

ei(ϵj−ϵk)(t−t′) (1± nB/F (ϵj))

nB/F (ϵk)Vb,n,j,k Vm,a,k,j

]
c<n,m(t, t′),

ΣHb,a
=

B∑
j

e−iϵj0
+

nB(ϵj)Vb,a,j,j ,

(17)

with the transition amplitudes defined as

Vb,n,j,k =

∫
dr

∫
dr′ϕ∗b(r)ϕn(r)Vint(|r − r′|)ϕ̃j(r′)ϕ̃∗k(r′).

(18)

The coefficients c
≷
n,m are thus propagated in the dis-

cretized two-time plane using eqs. (10) and (11). How-
ever, it should be noted that not all four equations
are required, given that the Green’s functions are skew-
hermitian,

S≷(1, 1′) = −S≷(1′, 1)† → c≷n,m(t, t′) = c≷∗
m,n(t

′, t). (19)

Therefore, it is sufficient to compute c
≷
n,m within the

corresponding lower/upper triangle of the two-time plane
[21, 22, 37–40, 44–46]. As a consequence, solely eq. (10)
is employed to derive c>n,m for t-direction, and eq. (11) is
utilised to derive c<n,m for t′-direction. Along the time-
diagonal, instead, only c<n,m(t, t) is evolved through a
combination of both eqs. (10) and (11), with c>n,m(t, t) be-
ing fixed by the equal-time (anti-)commutation relation
for fermions and bosons, c>n,m(t, t) ∓ c<n,m(t, t) = δn,m.
The resulting equations are

∂

∂t
c>n,m(t, t′) + i

S∑
i

Veffn,i(t)c
>
i,m(t, t′) = I>n,m1(t, t

′),

∓ ∂

∂t′
c<n,m(t, t′)± i

S∑
i

c<n,i(t, t
′)Veffi,m(t′) = I<n,m2(t, t

′),

± ∂

∂t
c<n,m(t, t)∓ i[c<, Veff ]n,m(t) = I<n,m1(t, t)− I<n,m2(t, t)

(20)

with

Veffn,m(t) = Enδn,m +ΣHn,m,

[c<, Veff ]n,m(t) =

S∑
i

c<n,i(t, t)Veffi,m(t)− Veffn,i(t)c
<
i,m(t, t),

(21)

and
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I>n,m1(t, t
′) = −

∫ t

t0

dt̄

S∑
i

[
Σ>

n,i(t, t̄)∓ Σ<
n,i(t, t̄)

]
c>i,m(t̄, t′)

+

∫ t′

t0

dt̄

S∑
i

Σ>
n,i(t, t̄)

[
c>i,m(t̄, t′)∓ c<i,m(t̄, t′)

]
,

I<n,m1(t, t
′) = ∓

∫ t

t0

dt̄

S∑
i

[
Σ>

n,i(t, t̄)∓ Σ<
n,i(t, t̄)

]
c<i,m(t̄, t′)

±
∫ t′

t0

dt̄

S∑
i

Σ<
n,i(t, t̄)

[
c>i,m(t̄, t′)∓ c<i,m(t̄, t′)

]
,

I<n,m2(t, t
′) = ∓

∫ t

t0

dt̄

S∑
i

[
c>n,i(t, t̄)∓ c<n,i(t, t̄)

]
Σ<

i,m(t̄, t′)

±
∫ t′

t0

dt̄

S∑
i

c<n,i(t, t̄)

[
Σ>

i,m(t̄, t′)∓ Σ<
i,m(t̄, t′)

]
.

(22)

The solution to this highly coupled systems of ordinary
integro-differential equations is obtained through numer-
ical means. The predictor-corrector method known as
the “Heun method” is used, a technique that has al-
ready been used successfully in similar studies [21, 22, 37–
40, 44, 46]. For a comprehensive overview of the numer-
ical treatment, readers are directed to section A.

A. Features of the Kadanoff-Baym equations

Spectral properties. It is well known, that the Green’s
function provides spectral information of the particular
quantum states of the system during the full time evolu-
tion and not only in equilibrium. The spectral coefficients
are defined as an,m(t, t′) ..= c>n,m(t, t′)∓ c<n,m(t, t′) and a

central time, t̄ = t+t′

2 , and a relative time, ∆t = t − t′

[15, 22, 24] are introduced. A Wigner transform of the
spectral coefficients in the relative time yields then

ãn,m(ω, t̄) =

∫
d∆t eiω∆tan,m

(
t̄+

∆t

2
, t̄− ∆t

2

)
. (23)

The diagonal elements ãn,n(ω, t̄) are the corresponding
spectral densities of the quantum state n. The interac-
tion with the heat bath results in the emergence of finite
self energies, which give rise to a shift of the peak (re-
lated to the real part of the retarded self energy) and a
broadening of the spectral function (due to the imaginary
part of the retarded self energy). The width, Γn,n(t̄, ω),
reflects the inverse of the n-th state’s lifetime [15, 22, 24]:

Γn,m(t̄, ω) = −2 Im(Σret
n,m(t̄, ω)) =

∫
d∆t eiω∆t

[
Σ>

n,m

(
t̄+

∆t

2
, t̄− ∆t

2

)
∓ Σ<

n,m

(
t̄+

∆t

2
, t̄− ∆t

2

)]
,

(24)

Re(Σret
n,m(t̄, ω)) = ΣHb,a

− i

2

∫
d∆t eiω∆t

[
sign(∆t)(

Σ>
n,m

(
t̄+

∆t

2
, t̄− ∆t

2

)
∓ Σ<

n,m

(
t̄+

∆t

2
, t̄− ∆t

2

))]
.

(25)

It is important to mention, that Γ can become negative
for bosonic particles, when Σ<

n,m > Σ>
n,m. This leads to

exponential increase in the occupation number of the cor-
responding quantum state and is known as “laser effect”
[24].

Equilibration and Thermalization. We may now pro-
ceed to examine the process of equilibration and ther-
malization of the system under examination. In the limit
of long times, the system will approach a fixed point of
thermal equilibrium defined by the temperature of the
surrounding environment, Tbath. Thereby the occupa-
tion numbers of the states, c<n,n(t, t), should approach
the Bose-Einstein or Fermi-Dirac distribution

lim
t→∞

c<n,n(t, t) =

∫
dω

2π
nB/F(Tsyst, µsyst, ω) ãn,n(ω, t̄).

(26)

It is crucial to utilize the complete spectral functions of
the energy states, because an incomplete approach will
inevitably fail to align with the actual bath temperature.
The temperature, Tsyst = Tbath, should be achieved in a
manner that is independent of the interaction strength or
initial values. However, it is important to note that the
chemical potential in thermal equilibrium is contingent
upon the total number of bosons or fermions. This is due
to the fact, that the presented Kadanoff-Baym equations
are conserving particle number (and energy/momentum
for closed systems), if and only if the self energies are
Φ-derivable [17].

Decoherence. The results of numerical simulations con-
sistently demonstrated [3] that off-diagonal elements, if
initially nonzero, approach zero over extended time pe-
riods. Consequently, it should be stressed that the phe-
nomenon of quantum decoherence is inherently embed-
ded within the aforementioned equations.

In our recent studies, it is observed that the off-
diagonal elements initially exhibited a decaying trend,
followed by the system’s eventual attainment of ther-
mal equilibrium. The equilibration timescales for all
occupation numbers were found to be longer than in
the case of initially non-zero coherences, occurring on a
timescale that was determined by the coupling, temper-
ature, and density. Decoherence provides the theoretical
basis for the utilization of approximations such as as-
suming of homogeneous/purely diagonal Kadanoff-Baym
equations [21–23, 42] and quantum-kinetic Master equa-
tions [22, 47, 48] that are less complex. section III C will
provide a more detailed examination of these approxima-
tions.
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B. Eigenstates and eigenvalues of the density
matrix at large times, Entropy and Heat

Having a direct access to the density matrix, defined as
ρ(r, r′, t) = ±i S<(r, t, r′, t) [24, 49], over the entire time
evolution range, one can examine specific thermodynamic
properties. It may further be of interest to observe the
potential change in the wave functions when the inter-
action is introduced. To do so, one must consider the
eigenstates and eigenvalues of the density matrix,∫

dr′ ρ(r, r′, t)ψn(r
′, t) = ξn(t)ψn(r, t). (27)

It is important to note that due to the conservation of
particle number, the trace of ρ is constant over time. This
leads to the conclusion that the sum of all eigenvalues at
any given point in time is equal to the constant particle
number,

∑
n ξn(t) = Nsystem. Note, that the eigenstates

of the single-particle Hamiltonian, h0, and the initial den-
sity matrix, ρ(t = 0), do not have to be identical,

ϕn ̸= ψn(t = 0), (28)

but depend on the initial condition. This also directly
follows from eq. (9). It is useful to write ρ in its eigenba-
sis, where it is diagonal,

ρ(r, r′, t) =

S∑
n

ξn(t)ψ
∗
n(r, t)ψn(r

′, t). (29)

From a numerical point of view, it is obvious that the
integral eigenvalue equation (27) does not require a solu-
tion within the boundaries of the position space. Instead,
the already existing basis of the one-particle Hamiltonian
h0 is used to formulate the eigenvalue problem for the
discrete matrix-valued c<n,m(t, t) according to

S∑
m

c<n,m(t, t) νa,m(t) = ξa(t) νa,n(t). (30)

In light of the spectral theorem, the existence of a unitary
matrix Un,a(t) = νa,n(t) that diagonalizes c<n,m is thus
postulated.

c<n,m(t, t) =

S∑
a

Un,a(t) ξa(t)U
†
a,m(t). (31)

Inserting (31) in (9) yields then

ρ(r, r′, t) =

S∑
n,m,a

Un,a(t) ξa(t)U
†
a,m(t)ϕn(r)ϕ

∗
m(r′)

=

S∑
a

ξa(t)

S∑
n

Un,a(t)ϕn(r)

S∑
m

U†
a,m(t)ϕ∗m(r′).

(32)

This allows to ascertain the transformation of the initial
free energy eigenbasis into the final (interacting) eigen-
basis, when one compares eq. (29) with eq. (32),

S∑
n

Un,a(t)ϕn(r) = ψa(r, t). (33)

It is also essential to consider the transformation of the
associated spectral functions, as well as the widths and
self energies, in order to maintain consistency with the
new basis. The spectral functions in the interacting basis
are obtained via

ãintn,m(ω, t̄) =

S∑
a,b

U†
n,a(t̄) ãa,b(ω, t̄)Ub,m(t̄). (34)

It is interesting to consider the thermalization process
in this context. In eq. (26), we have seen the relation
that is obtained for the equilibrium occupation numbers
in the (computational) eigenbasis of the Hamiltonian h0.
To connect them to the interacting basis, we can use
eqs. (31) and (34) resulting in

lim
t→∞

ξn(t) =

∫
dω

2π
nB/F(Tsyst, µsyst, ω) ã

int
n,n(ω, t̄). (35)

With this at hand, we can proceed by calculating the von
Neumann entropy during the evolution of the system,

S(t) ..= −
∫
dr

∫
dr′ ρ(r, r′, t) ln

(
ρ(r′, r, t)

)
. (36)

To efficiently calculate the trace, we use that the matrix
logarithm of a diagonalizable matrix is given by ln(ρ) =
Udiag

(
ln(ξn)

)
U−1, where U is the matrix of eigenvectors

of the matrix ρ. It can be shown that the entropy can be
calculated by using only the eigenvalues of ρ,

S(t) = −
∫
dr

∫
dr′

S∑
n

ξn(t)ψ
∗
n(r, t)ψn(r

′, t)

S∑
m

ln
(
ξm(t)

)
ψ∗
m(r′, t)ψm(r, t)

= −
S∑
n

ξn(t) ln
(
ξn(t)

)
. (37)

In order to calculate the internal energy and the heat, it
is preferable to use the eigenbasis of h0 once more,

U(t) ..=

∫
dr′

∫
dr ρ(r, r′, t)h0(r, r

′)

=

∫
dr′

∫
dr

S∑
n,m,i

c<n,m(t, t)ϕn(r)ϕ
∗
m(r′)Ei ϕi(r

′)ϕ∗i (r)

=

S∑
i

c<i,i(t, t)Ei,

(38)
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where we used the spectral representation of h0. Simi-
larly for the heat transferred to the system, we get

d

dt
U(t) =

∫
dr′

∫
dr
∂ρ(r, r′, t)

∂t
h0(r, r

′)

=

S∑
n

∂c<n,n(t, t)

∂t
En

=

S∑
n

En

[
i[c<, Veff ]n,n(t)± (I<n,n1(t, t)− I<n,n2(t, t))

]
.

(39)

As one can see nicely, the transferred heat is depending
on the collision integrals, which are of course the way to
exchange energy/heat in this approach.

The Kadanoff-Baym approach allows for a more com-
prehensive understanding of the kinetic and thermody-
namic properties of open quantum systems. It enables
the definition of a total energy for the system, which en-
compasses both the interacting component and the cor-
relations in accordance with the Galitskii-Migdal func-
tional [27]. For closed systems such investigations have
been done in [21, 22, 44], where the conservation of total
energy was demonstrated explicitly through the appli-
cation of the Kadanoff-Baym equations. The Galitskii-
Migdal functional [27] reads

E(t)
[
S
]
= ±i

∫
dr

[∫
dr′ h0(r, r

′)S<(r′, r, t, t+)

+
1

2
ΣH(r, r′)S<(r′, r, t, t+)

]
+ I<coll1(r, r, t, t

+)

=

S∑
i

[
Ei · c<i,i(t, t+) +

( S∑
j

1

2
ΣHi,j · c<j,i(t, t+)

)

± i
1

2
I<i,i1(t, t

+)

]
.

(40)

Again, because we have not varied the volume, e.g. the
size of the box, or changed any parameter of the inter-
acting Hamiltonian, e.g. the coupling “constant” λ, with
time, the complete energy exchange between the system
and the bath through scattering can be interpreted as
heat flow.

C. Approximations to the Kadanoff-Baym
equations

In order to gain a deeper understanding of the impact
of decoherence on processes such as equilibration and
thermalization, we will undertake a comparative analy-
sis of the complete Kadanoff-Baym solution with various
approximations.

One approximation is to eliminate all possible correla-
tions from the start, by forcing the matrix-valued coef-
ficients c≷ to be diagonal in energy space and therefore
decoherence is completely neglected,

c≷n,m(t, t′) → δn,m c≷n,m(t, t′) = c≷n (t, t
′). (41)

This approach gives rise to equations that bear a striking
resemblance to the homogeneous Kadanoff-Baym equa-
tions in momentum space [21, 22]. In accordance with
this significant limitation, the self energies are also trans-
formed into vector-like entities. Nevertheless, the two-
time structure of the equations remains intact. The
eqs. (19), (20) and (22) can be easily reduced by the
use of eq. (41) resulting in

∂

∂t
c>n (t, t

′) + iVeffn(t)c
>
n (t, t

′) = I>n1(t, t
′),

∓ ∂

∂t′
c<n (t, t

′)± ic<n (t, t
′)Veffn(t

′) = I<n2(t, t
′),

± ∂

∂t
c<n (t, t) = I<n1(t, t)− I<n2(t, t), (42)

with

Veffb = Eb +ΣHb,

ΣHb
=

B∑
j

e−iϵj0
+

nB(ϵj)Vb,b,j,j ,

Σ<
b (t, t

′) =

S∑
n

[
B∑
j,k

ei(ϵj−ϵk)(t−t′) (1± nB/F (ϵj))nB/F (ϵk)

|Vb,n,j,k|2 c≷n (t, t′)

]
,

Σ>
b (t, t

′) =

S∑
n

[
B∑
j,k

e−i(ϵj−ϵk)(t−t′) (1± nB/F (ϵj))nB/F (ϵk)

|Vb,n,j,k|2 c≷n (t, t′)

]
,

(43)

and

I>n1(t, t
′) = −

∫ t

t0

dt̄

[
Σ>

n (t, t̄)∓ Σ<
n (t, t̄)

]
c>n (t̄, t

′)

+

∫ t′

t0

dt̄Σ>
n (t, t̄)

[
c>n (t̄, t

′)∓ c<n (t̄, t
′)

]
,

I<n1(t, t
′) = ∓

∫ t

t0

dt̄

[
Σ>

n (t, t̄)∓ Σ<
n (t, t̄)

]
c<n (t̄, t

′)

±
∫ t′

t0

dt̄Σ<
n (t, t̄)

[
c>n (t̄, t

′)∓ c<n (t̄, t
′)

]
,

I<n2(t, t
′) = ∓

∫ t

t0

dt̄

[
c>n (t, t̄)∓ c<n (t, t̄)

]
Σ<

n (t̄, t
′)

±
∫ t′

t0

dt̄c<n (t, t̄)

[
Σ>

n (t̄, t
′)∓ Σ<

n (t̄, t
′)

]
. (44)
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The most significant benefit of this approximation is
the reduction in computational effort while maintaining
the intrinsic non-Markovianity and two-time evolution,
which enables the calculation of spectral functions.

The second, more substantial approximation is the uti-
lization of a quantum-kinetic master equation. This also
removes the two-time evolution and is entirely Marko-
vian, akin to the Lindblad equation or the Boltzmann
equation, as outlined in [22]. A derivation similar to ear-
lier ones [22, 47, 48] is given in section B. We will only
use the result,

∂

∂t
c<b (t) =

S∑
n

B∑
j,k

(
(1± nB/F (ϵj))nB/F (ϵk) c

>
b (t) c

<
n (t)−

(1± nB/F (ϵk))nB/F (ϵj)c
>
n (t) c

<
b (t)

)
|Vb,n,k,j |2

2

(ϵj − En − ϵk + Eb)
sin

(
(t̃− t0)(ϵj − En − ϵk + Eb)

)
,

(45)

where

t̃ ..=

{
tmax if t > tmax,

t if t ≤ tmax
(46)

needs to be defined by hand because otherwise the sinc
function would diverge for t→ ∞, if ϵj−En−ϵk+Eb = 0!
The optimal choice for tmax is one that yields a final width
in the order of the temperature, as evidenced by the find-
ings in [47, 48, 50, 51]. Additionally, the necessity arises
to ascertain that the sinc function possesses adequate
width, thereby enabling sufficient scattering processes.
This is imperative to ensure that the system can attain
thermal equilibrium.

The following section will present a comparative analy-
sis of the aforementioned approaches, elucidating the dis-
tinctions in transition dynamics towards a steady state
or thermal equilibrium and the influence of decoherence.
Additionally, a comparison will be made between the
spectral functions derived from the diagonally forced so-
lution and those obtained from the full Kadanoff-Baym
solution.

IV. RESULTS

Our primary focus is to formulate a correct quantum-
mechanical description of the formation of bound states
[3, 12, 20]. The present study investigates in detail the
dynamics of bound states in an open quantum system
coupled to a heat bath.

In many phenomenological transport approaches one
aims to describe the yields of light nuclei in heavy-ion
collisions, clustering methods [52, 53] and the coalescence
model [54] are applied, which allow, e.g. nucleons which
are close in momentum (and position space) to form a

light nucleus, e.g. a deuteron. This has been used in a
wide range of experimental studies to extract so called
“coalescence factors” [55] from the data or to employ
coarse graining in transport approaches [32, 56]. A mi-
croscopic formation of bound states like light nuclei and
the strict energy conservation are not touched in these
approaches. In principle two free nucleons can never form
a bound state like a deuteron. Microscopic deuteron for-
mation can only be achieved by three-body reactions as
elaborated a long time ago in [57]. In our picture, the
particle undergoes continuous collisions, resulting in the
perpetual creation and destruction of bound states.
In recent years, more elaborated transport codes have

made significant strides in this area, as evidenced by the
propagation of light nuclei as explicit degrees of freedom
during the hadronic phase, rather than merely coalescing
with the remaining nucleons in the final state after kinetic
freeze-out [28–32, 58].
The argument that weakly bound nuclei could not ex-

ist in such a hot environment [59] is replaced by the fact
that they are, of course, constantly destroyed by colli-
sions with other particles, but are also regenerated again
[33, 60]. In transport theory, this is referred to as single-
particle collisional broadening [15, 24], which is named
due to the fact that the occurrence of collisions results in
a broadening of the spectral function. For the spectral
function in eq. (23), it follows from the Dyson equation
for the retarded Green’s function [15, 24] and by using
ãn,n(t̄, ω)) = −2 Im(Sretn,n(t̄, ω)), and eqs. (24) and (25),

ãn,n(ω, t̄) =
Γn,n(ω, t̄)[

ω − En − Re(Σret
n,n(ω, t̄))

]2
+
[
Γn,n(ω,t̄)

2

]2 .
(47)

In order to see how fast a bound state may be created or
destroyed in a hot medium and how long the bound state
will live in the medium, one has to extract this informa-
tion from the Green’s functions using spectral functions.

A. Formation of bound states in the
Kadanoff-Baym approach

For the first simulation, we consider fermions (more
precisely nucleons) with the mass µS = mN = 938 MeV
in a potential VS(r),

VS(r) =


−V0 if |r| ≤ a

2 ,

0 if |r| > a
2 ,

∞ if |r| > L
2 ,

(48)

where V0 = 12.8 MeV and a = 1.2 fm. The particles exist
in a system of L = 20 fm and the first 25 eigenstates are
considered as the basis in the following, c.f S = 25. The
central potential allows for one bound state (n = 0) with
a binding energy of Ebinding = −2.23 MeV (“deuteron”
binding energy). The other 24 eigenstates are unbound
with the energy cut-off at E24 = 319.23 MeV.
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For the bath particles we assume bosons of the mass of
mB = 138 MeV (pion mass), which are situated in a box
of size Lbath = 50 fm. This bath of bosons contains in its
center the full system box. The bosons move freely in the
box and we allow up to the first 30 quantum states, B =
30. The bath is at a temperature of Tbath = 100 MeV and
chemical potential of µbath = 4 MeV. These parameters
are typical for the kinetic freez-out in high energy heavy
ion collisions.

The interaction, c.f eq. (6), between the system and
the bath particles is assumed to be

Vint(|r − r′|) = λ δ(r − r′). (49)

with λ = 0.42.
With this at hand, we solve now the set of equations

in eq. (20) up to a tolerance of ϵabs = 10−5, defined in
section A4.

To set the stage, we assume a mixed state as the initial
state, where the bound state and in addition two higher
states, namely the 8th and 16th states,

c<0,0(0, 0) = 1.0, c<8,8(0, 0) = 0.7, c<16,16(0, 0) = 0.3, (50)

are initially populated. As another choice, we initialize,
in contrast to the mixed state before, a pure state

|ϕ⟩pure = |ϕ0⟩+
√
0.7 |ϕ8⟩+

√
0.3 |ϕ16⟩

→ c<(0, 0) = |ϕ⟩pure ⟨ϕ|pure . (51)

A comparison of the time evolution of these two initial
conditions are depicted in the upper part of fig. 4. First
we notice that both relax to the same equilibrium state in
the long-time limit as it should be for the same temper-
ature, particle number, and coupling constant. However,
the time scales are also quite similar. For the pure state,
we nicely see the evolving decoherence into a mixed state
[10, 19], before it fully thermalizes, as expected for open
quantum system. We can see in addition that for the
mixed state coherences build up first, as shown in the
lower part of fig. 4, which then of course also needs to
vanish resulting in these nearly equal time scales. In the
next step, we want to compare the initial mixed state
to different approximations of the Kadanoff-Baym equa-
tions, to see e.g., which impact the off-diagonal elements
and the memory have on the thermalisation time or the
life time of the states. Therefore, we look at the spectral
functions of the full Kadanoff-Baym equations compared
to the diagonal approximation in fig. 5. The important
takeaway is, that the width’s Γn,n and therefore the life
times and the peak shifts of the states are quite similar al-
though the Hartree self energy enters in a different man-
ner. In the full Kadanoff-Baym equations, the Hartree
self energy is matrix-valued, cf. eq. (17), and therefore
more terms are summed up and can contribute to the
equation of motion than just the single diagonal term
in the diagonal approximation in eq. (43). Nevertheless,
they do not seem to contribute much, indicating that the

0 20 40 60 80 100
t [fm/c]

0.0
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0.4
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0.8

1.0

|c
n(

t)
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(t)
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| c0(t) c0(t) |
| c0(t) c0(t) |
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FIG. 4. The time evolution of the pure initial state eq. (51)
(full line) vs mixed state eq. (50) (dashed line) plotted for the
relevant matrix elements. In the top for the diagonal entries
and in the bottom for the off-diagonal ones.

off-diagonal elements are close to zero. But in both cases
the bound state has partially melted, in leading order due
to the Hartree term dependent on the values of λ, Tbath
and µbath, because there is now a nearly 70% probability
to find the ground state at a “positive” energy, ω > 0.
In fig. 6, the relaxation of the full Kadanoff-Baym equa-
tion, the diagonal approximation and the simple mas-
ter equation are shown. It can be seen, that the full
Kadanoff-Baym equation is by far the slowest for both
initial conditions eq. (50) and when choosing

c<3,3(0, 0) = 1.0, c<8,8(0, 0) = 0.7, c<16,16(0, 0) = 0.3, (52)

with no initial bound state occupied. This is due to the
decoherence that is neglected in both approximations. In
the quantum-kinetic master equation and in the diagonal
Kadanoff-Baym equation one observes a faster exponen-
tial decay. The missing of the decoherence in the diag-
onal Kadanoff-Baym equation and the loss of memory
in the master equation accelerates the thermalization.
The omission of the Hartree shift in the quantum-kinetic
master equation yields a very small variation in the final
occupation numbers, which can be seen from the red line
in fig. 6 that is slightly below the others. This issue can
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FIG. 5. The spectral functions of the states 0 (top), 12
(middle), and 24 (bottom) at t̄ = 63 fm of the full KB (full
line) vs the diagonal approximation (dashed line) plotted for
different states. The blue vertical line marks the bare on-shell
energies of h0, cf. eq. (8), and the black vertical line denotes
the shifted peak energy for the diagonal/full Kadanoff-Baym
equations.

be addressed by using the shifted energy peaks of the
spectral function in the master equation instead of the
bare on-shell energies.

According to eqs. (24) and (25), we want to show ex-
emplarily, without including the Hartree self energy here,
how the collisions affect Γn,n(ω). In fig. 7 the width
of the bound state is depicted for a fixed t̄ = 52 fm.
The Γ has a maximum of 250 MeV, which is approxi-
mately half the width of the spectral function in fig. 8.
The position of the maximum of the spectral function
and Γ coincide, which is given by the minimum of the
denominator of eq. (47), more precisely the zero of the
first term ω − En − Re(Σret

n,n(t̄, ω). This is visualized in
fig. 9, where the real part of the retarded self energy
is plotted together with the linear part ω − E0. The
point where both functions intersect locates this maxi-
mum. The fig. 8 can also be seen as a consistency test,
where eq. (23) is compared to eq. (47), showing up to
some numerical uncertainties perfect agreement. In ac-
cordance with section III B, we will now investigate the
thermodynamic properties such as entropy and energy of
the (sub)system. An illustrative example of the evolu-
tion of entropy is given in fig. 10. The entropy function
exhibits an increasing trend over time, and becomes con-
stant when the system reaches equilibrium. The entropy
is non-zero at the beginning, because the initial state is
not a pure one, but given by eq. (37) for the mixed ini-

0 20 40 60 80 100 120
t [fm/c]

0.0

0.2

0.4

0.6

0.8

1.0

Re
(c

n(
t)

c n
(t)

)

0. state full Kadanoff-Baym
0. state full Kadanoff-Baym ground state not occupied
0. state diagonal Kadanoff-Baym
0. state master equation

FIG. 6. The time evolution of the bound state for all pa-
rameters identical for the full Kadanoff-Baym equation, the
diagonal approximation and the plain master equation. For
the full Kadanoff-Baym equation two different initial conti-
tions were considered, namely eq. (50) for the initially occu-
pied state equivalent to the two approximations and eq. (52),
were the ground state is not occupied initially.
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FIG. 7. The width Γ0,0(ω, t̄ = 52 fm) as the imaginary part
of the retarded self energy of the bound state.
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FIG. 9. The real part of the retarded self energy Re(Σret
0,0(t̄ =

52 fm, ω) (red) of the bound state and ω − E0 (green).

tial condition eq. (50). Then the entropy rises rapidly
but non-monotonously, with a peak at around 30 fm. It
should be noted that this does not violate the second law
of thermodynamics, as the analysis is conducted on an
open (sub-)system and neglects the evolution of the bath
itself. Finally, we want to emphasize another fact, that
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FIG. 10. The entropy evolution for the case of the initial
mixed state in fig. 4.

the system has indeed reached (perfect) thermal equilib-
rium, additionally to eq. (26), which has already been
shown in [3]. The new approach uses the Kubo-Martin-
Schwinger (KMS) boundary condition [15, 61, 62], which
is a fundamental restriction on any Green’s function in
(perfect) thermal equilibrium on the imaginary time axis,
leading to the condition,

c<n,n(ω, t̄)

c>n,n(ω, t̄)
= e−βsyst(ω−µsyst), (53)

which can be analyzed numerically. A short derivation of
eq. (53) is given in section C. The chemical potential and
the temperature of the system appearing on the right-

hand side can be fitted properly in a range of ω ∈ {ω :
c>n,n(ω, t̄) ̸= 0}.
We show this for the simulation done in fig. 4 exem-

plarily in fig. 11, where we find a temperature of the
system, that is the same as the temperature of the bath.
The difference from [3] is, that the chemical potential is
now increased because there are now two particles in the
system, not only one. A great advantage, when using
eq. (53) instead of eq. (26), is that no integrals of the
spectral function with the Bose/Fermi distribution need
to be calculated for the fit of Tsyst and µsyst. Also the
number of points in the fit is restricted to the number
of basis states S in eq. (26), which is usually much less
than the points in the interval ω ∈ {ω : c>n,n(ω, t̄) ̸= 0}
therefore, the accuracy of the fit is drastically improved
through the usage of the KMS condition.
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FIG. 11. The KMS condition of the initial pure state in fig. 4
used to extract the temperature Tsyst ≈ 99.993 MeV (Tbath =
100 MeV) and chemical potential µsyst ≈ −106.659 MeV at
t̄ = 63 fm.

B. Deuteron configuration

In this subchapter, we will direct our attention to
a more detailed examination of the system configura-
tion tuned for deuterons. Our objective is to analyze
the dependence of formation time and life time on tem-
perature and coupling strength. Therefore, we have to
set more realistic parameters, starting with the mass

µS =
m2

N

mN+mN
= mN

2 = 469 MeV. Furthermore, we in-
crease the temperature moderately to Tbath = 120 MeV
and expand the system to L = 27.5 fm. To achieve the
deuteron binding energy of the ground state, the depths
of the potential has to be changed to V0 = 17.8 MeV.
The other parameters for the bath particle are kept as
in section IVA. As initial conditions, we will compare
the occupied and unoccupied ground state with only one
particle in the system,

c<0,0(0, 0) = 1.0, (54)
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and

c<8,8(0, 0) = 0.7, c<16,16(0, 0) = 0.3, (55)

were everything else was set to zero.
To better understand the dependence of the formation

time on the coupling constant λ, we simulated for three
different values, λ = 0.42, λ = 0.21, and λ = 0.105. In
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FIG. 12. The time evolution of the ground state for differ-
ent coupling strengths and two different initial conditions,
eqs. (54) and (55).

fig. 12 the time evolution of the ground state is analyzed
in dependence of the coupling strength. In addition,
the clear trend of larger coupling leads to a qualitatively
faster equilibration. The time scale for this to happen is
not related to the coupling strength via a simple power
law, e.g. ∝ λ2, as the coupling enters the dispersive
self energy. Interesting to observe is that for the initial
condition eq. (52), with the unoccupied ground state, a
fast rise to a near the final equilibrium value takes place
within the first 5− 10 fm (not for the very low coupling
constant) followed by a quite longer time to fully reach
the equilibrium value.

As a second step, we will look at the change in the
spectral functions when the coupling is modified. In
fig. 13, the spectral functions are depicted for the dif-
ferent coupling constants. One can clearly see how the
quasi-particle peak melts when increasing the coupling

strength and how the pole is shifted to higher values in
ω. The broadening effect is here, of course, due to the
dependence Γ ∝ Σret ∝ Σ> ∓ Σ> ∝ λ2, cf. eq. (24). But
since Γ is actually Γ(ω), the full width at half maximum
(FWHM) is no longer constant and, therefore, the ap-
proximation by setting the FWHM to Γ no longer holds.
Because in all cases the spectrum is shifted to higher
values of ω, the ground state is only bound by a finite
probability significantly less than 50%, we want to inves-
tigate how this effects the wave functions of the system.
In coalescence approaches [54], the wave function of the
bound state is needed to somehow project out parts of
the wave functions of the constituent particles, to obtain
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FIG. 13. The spectral functions of the corresponding states
for different coupling strengths at t̄ = 63 fm. The vertical
blue line again denotes the bare on-shell energy of the mode.

particle yields at the end. To check the validity of us-
ing the bare wave function of the bound state instead of
the wave function that includes the interaction with the
bath, we will compare them in the following.

In fig. 14 the absolute square of the wave function is
shown for the initial (non-interacting eigenfunctions of
h0) and final (interacting eigenfunctions of ρ(t)) wave
functions. In the case of a finite set of eigenstates there
seems to be only minor changes in the higher modes, but
the ground state in particular does not change its shape
although its energy distribution according to the spectral
function is clearly shifted to positive values in ω.

At the end of this subsection, we want to apply the

procedure of section III B, cf. eq. (35), to show that
indeed the deuteron-like system has fully thermalized.
Therefore, the occupation numbers of the quantum states
are shown in fig. 15 at different times. At the final time,
the eigenvalues ξn are plotted in comparison, which shows
in this case no significant deviation.
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FIG. 14. The wave functions, Ψinitial = ϕ and Ψfinal = ψ(t̄) (c.f eq. (8)), of the ground state and two higher exited states at
t̄ = 124 fm and λ = 0.42.
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FIG. 15. The occupation number of the various quantum
states at different times for the initial condition eq. (54).

C. Bound states in 3 dimensions

The ansatz of expanding the field operator in an energy
eigenbasis can in principle be applied straightforwardly
in higher dimensions. In addition, the same numerical al-
gorithm can be applied up to some small changes. This is
possible due to the mapping of quantum numbers onto a
single “super” index independent of the underlying sym-
metry, e.g. spherical or Cartesian. For a detailed expla-
nation, see section A3. The numerical difficulties arise
because of the appearance of degeneracies that naturally
scale with the dimensionality. This means that lower en-

ergies are achieved with the same basis size as in the
one-dimensional case, which makes effects of higher ex-
citations unattainable and restricts us to lower energetic
modes. In table II an exemplary mapping of the states for

nsuper n l m En,l,m in [ MeV]
0 1 0 0 -2.23
1 2 0 0 7.85
2 2 1 -1 8.37
3 2 1 0 8.37
4 2 1 1 8.37
5 3 0 0 25.27
6 3 1 -1 24.7
7 3 1 0 24.7
8 3 1 1 24.7
9 3 2 -2 13.78
10 3 2 -1 13.78
11 3 2 0 13.78
12 3 2 1 13.78
13 3 2 2 13.78
14 4 0 0 51.46

TABLE II. The mapping of the spherical 3 dimensional sym-
metric system up to the s - state ψ4,0,0. The energies of the
states are related to the potential eq. (60) and its choosen
values.

a spherically symmetric 3-dimensional system is shown.
Usually the energy is degenerate and depends only on the
quantum numbers n and l or in special cases only on n,
cf. hydrogen atom.
One of these changes from 1 to 3 dimensions is to com-

pute the transition amplitudes,

Vb,n,j,k =

∫
d3r⃗

∫
d3r⃗′ϕ∗b(r⃗)ϕn(r⃗)Vint(|r⃗ − r⃗′|)ϕ̃j(r⃗′)ϕ̃∗k(r⃗′),

(56)

where the indices b, n, j and k are now “super” - indices.
The calculation of the transition amplitudes necessitates
the summation of a considerable number of lattice points,
given by N2

r · N2
θ · N2

ϕ, at lowest order to calculate one
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of S2 · B2 transition amplitudes. Possible is a screened
Coulomb potential,

Vint(|r⃗ − r⃗′|) = λ

|r⃗ − r⃗′|+ d
, (57)

which is not considered in the following or a standard
Gaussian potential,

Vint(|r⃗ − r⃗′|) = λ√
(2π)3σ3

e−|r⃗−r⃗′|2/(2σ2). (58)

Improvements to the runtime can be achieved through
the assumption of a local, or so-called s-wave interaction,

Vint(|r⃗ − r⃗′|) = λ δ(d)(|r⃗ − r⃗′|), (59)

which results in only Nr ·Nθ ·Nϕ points and were already
used in our earlier work [3]. As an important remark,
we want to point out here that in eqs. (58) and (59) the
coupling strength λ becomes dimension-ful with [λ] =
ld−1.

We now want to have a look at the bound-state forma-
tion in 3 dimensions. Similarly to the one-dimensional
scenario, we apply here a “spherical box”,

VS(r⃗) ..=


−V0 if |r⃗| ≤ a

2 ,

0 if |r⃗| > a
2 ,

∞ if |r⃗| > R,

(60)

were we have choose V0 = 292.6 MeV, a = 1.2 fm and
R = 10 fm to mimic one bound state of about −2.2 MeV,
which is roughly the binding energy of the deuteron. We
are again restricted to finite- and constant-volume calcu-
lations, which of course can not approximate the real ex-
panding fireball in heavy-ion collisions. The (fermionic)
basis sizes are chosen to be S = 30 for the system, with
wave functions according to eq. (A23).

For the mass in the corresponding Schrödinger equa-
tion the reduced mass of the two nucleons is chosen to
µS = 496 MeV. The coupling strength according to
eq. (59) is chosen as λ = 389.3 fm2 and the bath temper-
ature remains at 100 MeV.

For the (bosonic) bath particles we assume a mass of
mB = 469 MeV (increased to reach higher energies with
the bath states, in order to enable more scattering pro-
cesses), a chemical potential of µbath = −10.0 MeV and
a basis size of B = 27. We found, that it is unsuitable to
put the bath particles in a larger spherical box around
the system. The reason for this phenomenon is the or-
thogonality of the spherical harmonics, which results in
selection rules that are so restrictive with regard to the
transition amplitudes that only a small number of tran-
sitions are permitted. Consequently, equilibration and,
by extension, thermalization are both impossible.

To at least partly resolve this issue, the symmetry
of the total system has to be broken. It was hypothe-
sized that the spherical system would be placed within
a rectangular bath, with the lengths of the sides, Lx =

26 fm, Ly = 24 fm and Lz = 28 fm, which could vary
if necessary. This would result in the dissolution of the
degeneration energy eigenstates of the system.
In light of the aforementioned background, the present

study aims to investigate the formation of a deuteron-like
state in a bath of other, heavier mesons. First, we sim-
ulate how one initially existing deuteron, c<0,0(0, 0) = 1
and all other zero, can equilibrate within a bath of around
O(100) particles, with an accuracy up to a tolerance of
ϵabs = 2 · 10−5. The occupation numbers of the quantum
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FIG. 16. The temporal evolution of the s-states (upper panel)
and different non s-states (lower panel).

states are suppressed in accordance with their energies,
as depicted in fig. 16. The states develop in the direc-
tion of a thermal equilibrium, whereby the development
is clearly non-exponential and shows tendencies of “over-
shooting” at early times, which was not observed in the
one-dimensional case. The equilibration times are quite
long, although a very large cross-section is employed.
In order to verify that the final state is at the tem-

perature of the bath, we perform the thermal fit in ac-
cordance to eq. (26), which has also been used in [3]. In
fig. 17, the occupation numbers for the three dimensional
deuteron scenario are shown at initial, intermediate, and
final times. It is noteworthy that the explicit breaking
of degeneracy, induced by the spherical symmetry of the
external potential table II, can also be discerned through
coupling to the heat bath. This is evident in the obser-
vation that the magnetic quantum number m now exerts
an influence on the occupation numbers. In both fig-
ures, fig. 18 and fig. 19, the spectral functions of various
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FIG. 17. The evolution of the occupation numbers for the
initial occupied ground state in three dimensions towards its
equilibrium state at temperature Tsyst = 100.82 MeV and
chemical potential µsyst = −264.89 MeV.

s- and non-s states are shown. The blue lines indicate
again the bare on-shell energy of the corresponding en-
ergy eigenstate of the single-particle Hamiltonian h0. As
an overall trend, we can identify that the widths become
smaller for higher states, indicating that they are slightly
less coupled, but the coupling is strong enough to ensure
equilibration. A non-local interaction, cf. eqs. (57)
and (58), could accelerate the process of thermalization
without increasing the coupling parameter λ, because it
enables a larger range of overlap of the wave functions
and therefore a larger set of transition amplitudes are
non-zero.

D. Open bosonic systems with Kadanoff-Baym
equations

The Kadanoff-Baym approach also allows to study
bosonic particles, e.g. cold atoms, trapped in an exter-
nal, e.g. harmonic, potential coupled to a surrounding
heat bath. These kind of systems have been studied for
closed systems by T. Gasenzer, J. Berges et. al. [42] with
the Kadanoff-Baym approach in one dimension, and first
studies towards open systems have been conducted with
the use of master equations and Kadanoff-Baym equa-
tions, but only at mean-field level in [2].

The external potential for this study is harmonic, as
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FIG. 18. The spectral functions ãi,i(ω, t̄) of the s-states (up-
per panel fig. 16) at t̄ = 127 fm.
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(lower panel fig. 16) at t̄ = 127 fm.

often used in experiments,

V (r)S/B ..=
1

2
ΩS/Br

2. (61)

The seasoned reader may draw parallels with the
renowned Caldeira-Leggett model [8], wherein an oscilla-
tor and heat-bath oscillators are coupled. It is not feasi-
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FIG. 20. The time evolution of the ground state and higher
excited states of bosonic particles in a harmonic trap.

ble to achieve a genuine Bose-Einstein condensation using
this methodology, as such a phenomenon is only observ-
able in the continuum limit. Unfortunately, given that
the computational burden increases drastically with the
total number of particles and that it is necessary to utilize
increasingly smaller time steps to accurately resolve the
dynamics, it is not possible to attain a system comprising
mare than O(100) particles [63].

An attempt was made to simulate in different dimen-
sions; however, it was found that even in two or three
dimensions, the degeneracy factor gn =

(
dim+n−1

n

)
of the

different energy levels was so restrictive that thermal-
ization in three dimensions can in principle be achieved,
but the physical relevance is at least questionable, if only
the three lowest energy eigenstates are considered in the
system (nx = ny = nz = 3 → 27 total eigenstates).

In one dimension, we simulate 11 bosonic (system) par-
ticles in a harmonic potential at temperature Tbath =
100 MeV, a chemical potential µbath = −3 MeV, and
with frequencies ΩS/B = 39.46 MeV and a coupling con-
stant of λ = 0.2. For this interaction a non-local Gaus-
sian potential is used,

Vint(|r − r′|) = λ√
2πσ2

e−|r−r′|2/(2σ2) (62)

where σ is set to 0.5 fm. The precision is set to ϵabs =
2 · 10−6 here. This is already an improvement compared
to [42] and [63], but still far from real macroscopic oc-
cupation numbers. Nevertheless, we can already observe
some interesting features such as bosonic spectral func-
tions, changes of the ground-state wave function due to
the interaction with the heat bath and the energy decom-
position as outlined in section III B. In fig. 20, the time
evolution of various quantum states is depicted. We ob-
serve a clear splitting of the states and an enhancement
of the ground-state population even in this small system.
In the long time limit, it is also clear, that the system
has reached its equilibrium state.

In fig. 21, the evolution of the density

n(r, t) = i S<(r, t, r, t) is shown for the Bose gas. It is
intuitive, that the enhancement of the ground-state will
let the ground-state wave function, which is of Gaussian
bell shape, dominate in the late time for the density.

However, a more intriguing question would be, how the
spectral function of the ground-state in particular looks
like. In fig. 22, the spectral functions of three exemplary
quantum states are shown. It is quit remarkable, that
a purely bosonic feature of the spectral function can be
observed here, namely that the spectral function can be-
come negative and somehow lose its interpretation of a
stochastic distribution function, where its value repre-
sents the probability of finding a particle in this state
with a given energy ω. Note,however that the integral
over all the spectral functions is still normalized, i.e. its
integral over ω also yields unity for bosons. The zero
value of the spectral function, which is also still visible
for the second exited state and very clear to see for the
ground state, represents the value of the chemical poten-
tial µsyst ≈ −50 MeV for this specific system. A short
derivation of this can be found in section D. It should be
noted that the energy peaks have been slightly shifted
to higher values, thus indicating a higher effective value
of ΩS due to the interaction with the heat bath. But

because of the broadening, especially the ground state
contains negative contributions, which make it hard to
define an effective frequency.
To further investigate the shift of the peak energy, we

compare the wave function of the ground state with in-
teraction to the bare non-interacting wave function.
We can see in fig. 23, that the ground state remains

symmetric in position space, but becomes narrower due
to artifacts from higher, even modes of the initial Hamil-
tonian h0, which can suggest an increase in the effective

ground-state energy Epeak
0 > E0 = ΩS

2 , because the ef-
fective width of the ground-state wave function of the

oscillator scales as Leff ∝ Ω
− 1

2
s .

In fig. 24, we can see the evolution of the total energy
and its constituents for an initial condition specified in
fig. 20. After initialization, there is a sufficient decrease
of the internal energy caused by the population of lower
modes. This behavior is strongly depending on the initial
condition, but will always lead to a strong in/decrease
in the early times. The Hartree contribution is in this
case nearly time-independent, because the bath is always
in equilibrium (Born-Markov approximation). An effect
which is well known from earlier calculations, e.g. [22], is
the build-up of correlations smoothly after initialization
on a much shorter time scale than (pre)-equilibration or
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FIG. 21. The density n(r, t) = i S<(r, t, r, t) at different times during the evolution depicted in fig. 20.

thermalization. The overall energy balance is negative, so
during the thermalization process more heat was trans-
ferred from the system to the bath than vice versa, so
the system was cooled.

V. SUMMARY AND CONCLUSIONS

This investigation sought to demonstrate the utility of
the Kadanoff-Baym equations for the analysis of open
quantum systems.

The inhomogeneous Green’s functions utilized in this
study have been employed in prior studies on closed sys-
tems [38–40, 44, 66]. The application of open quantum
systems to this field is a relatively recent development [3],
as evidenced by the use of alternative density matrix ap-
proaches, such as the Lindblad equation [4–6, 67], which
have been predominantly studied.

The question of equilibration and decoherence in an
open quantum system for the inhomogeneous case in one
dimension has been previously examined in [3], where
the merits of this approach over the Lindblad equation
(e.g. the appearance of spectral functions) were dis-
cussed. The advantages are particularly important in

identifying the energy states of the interacting system
and clarifying the issue of the persistence of a bound
state. Moreover, the paper demonstrated that the ap-
proach is self-consistent and the numerics have been suf-
ficiently tested using the requisite spectral functions, cf.
fig. 8.
To better understand the formation of bound states

and to investigate the justification for their description by
classical Boltzmann equations in heavy ion collions, we
compared the full Kadanoff-Baym equations with some
approximations in section III C.
Our analysis revealed that the mere memory of

the quantum-kinetic master equation to the diagonal
Kadanoff-Baym equation results in a relatively minor ad-
justment to the relaxation time. However, incorporat-
ing additional correlations within the full Kadanoff-Baym
equation leads to a substantial increase, surpassing three-
fold, in the relaxation time. In the context of decoher-
ence, it was recently suggested in [12] that decoherence
is an important factor in extending thermalization times.
A further investigation of the effect of correlations and

decoherence (diagonal vs. full Kadanoff-Baym equations)
on the spectral properties showed that in this approx-
imation the mean field/Hartree term is very well ap-
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FIG. 23. The ground state wave function squared of the initial
non-interacting and final interacting system for the case of
bosons in a harmonic trap in a bath of bosonic particles also
in a harmonic potential. The diagonalization was performed
with the Armadillo library [64, 65].

proximated, due to its diagonal-dominant appearance,
cf. eq. (43) and eq. (17).

In the one-dimensional scenario, two further crite-
ria were employed to confirm the equilibrium position:
namely, the entropy and the KMS condition (fluctuation-
dissipation theorem). It was also observed that the en-
tropy in the (sub)system does not necessarily have to in-
crease or can also decrease. This corresponds to a cooling
process of the system by the coupled bath that is also ex-
plicitly shown in fig. 24 for a bosonic system. It should
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FIG. 24. The total energy eq. (40) and its separate contribu-
tions for the case fig. 20.

be noted that, irrespective of the direction of the process
(i.e. cooling or heating), the entropy of the system is
expected to reach a state of equilibrium with the bath.

However, it has been demonstrated that entropy alone
does not provide any more detailed specifications of the
equilibrium state with regard to the temperature and
chemical potential. In addition to the standard scheme,
in which the occupation numbers (i.e. the diagonal ele-
ments of c<) are approximated by an integral of a product
of the spectral function and the respective Fermi/Bose
distribution over ω, an alternative method is employed.
This is due to the fact that only maximal S states can
be used for the fit, a method that remains effective for
fermions. Nevertheless, this approach is inconvenient for
bosons, as the attempt to obtain the temperature and
chemical potential necessitates integrating over the pole
of the Bose distribution, thereby hindering the conver-
gence of the minimization procedure. An alternative
method, which subsequently emerged as a significantly
more efficient and numerically stable approach, is the
KMS condition. In this approach, one of the S states
can be selected independently, thereby enhancing the ac-
curacy of the fit due to the closer alignment of points
in the definition range, i.e. the parameter space, of the
distribution. This can be achieved either by increasing
the number of grid points in the two-time plane or by
ensuring an average time-step size that is not too small.

In section IVC, the formal differences that arise dur-
ing the transition to higher dimensions were presented
and the measures for reusing or modifying the existing
algorithm are explained.

The simplified deuteron problem has then been simu-
lated using a concrete example with spherical symmetry,
showing that thermalization is also achieved in three di-
mensions.

The spectral functions of the three-dimensional case
were depicted in figs. 18 and 19. Concerning the existence
of the bound state in the heat bath, it has been found that
it no longer needs to be completely bound, cf. fig. 18, as it
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is now distributed over a broader energy range. The shift
to the positive part of the spectrum is predominantly
driven by the Hartree term.

Furthermore, it should be noted that the increase in
dimension (due to the hardware limitations) does not
provide anywhere near the number of states in three di-
mensions that are available in one dimension. A future
increase in the number of basis states could at least pro-
vide new scattering states. This may also be relevant
in the simulation of Bose-Einstein condensates, which is
touched on in section IVD, since the dynamics of such
effects can only be resolved with a sufficiently large basis
and a large number of particles in the continuum limit.

However, the present calculations for trapped bosons
in one dimension have surpassed the existing calcula-
tions, [42], regarding the particle number, and a clear
tendency to separate the ground state has been recog-
nized in figs. 20 and 21. In this context, the possibility of
forcing the spectral function of the bosonic ground state
to negative values in a certain range ω < µsyst has also
been observed, cf. fig. 22, as is shown formally in sec-
tion D.

Finally, the change in energy levels due to the inter-
action with the heat bath, HSB, was linked to the new
eigenstates of the system. In contrast to the solution of
the time-independent Schrödinger equation for h0, the

full Hamiltonian HS +HSB was diagonalized and the ef-
fect on the ground-state wave function of the harmonic
oscillator is shown in fig. 23.
From a practical point of view, the standard kinetic

master equations basically allow the description of bound
states via elastic collisions with the environment particles
[29, 31, 33, 68]. In further investigations, it is planed
within the non-equilibrium Green’s function framework
to implement potentials, that enable the formation of
multiple, stronger bound states like charmonia, e.g. J/Ψ
[69].
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Appendix A: Numerics, parallelization and adaptive time stepping/integration

1. Algorithm for the two-time propagation of the Green’s functions

To integrate the Kadanoff-Baym equation numerically, we discretize the time arguments of c
≷
n,m(t, t′) in (at this

point) equidistant grid of units ∆. The non-equilibrium, inhomogenous Green’s function is propagated in accordance
with the methodology outlined in [22, 37–40, 44, 46], building upon the earlier work of S. Köhler et al. [21]. It is
possible to express the functional time-evolution of the development of the Green’s function in a general abstract
form,

c>(t+∆, t′) = F
[
c>(t, t′), Veff

[
nB/F , V

]]
, I>1 (t, t′)

[
c≷, V

]]
,

c<(t, t′ +∆) = F
[
c<(t, t′), Veff

[
nB/F , V

]]
, I<2 (t, t′)

[
c≷, V

]]
,

c<(t+∆, t′ +∆) = F
[
c<(t, t), Veff

[
nB/F , V

]]
, I<1/2(t, t

′)
[
c≷, V

]]
.

(A1)

It should be noted that, in the initial time step (where, for simplicity, t = t′ = 0), all collision integrals I
≷
1/2 vanish

and c≷(0, 0) is defined by the initial and boundary conditions. Integrating the first equation for c> in eq. (20)
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c>n,m(t+∆, t′) = c>n,m(t, t′) +

∫ t+∆

t

dt̄
∂c>n,m(t̄, t′)

∂t̄

≈ c>n,m(t, t′) + ∆
[
−i

S∑
i

Veffn,i(t)c
>
i,m(t, t′) + I>n,m1(t, t

′)
]
+O(∆2)

=

S∑
i

(δn,i − iVeffn,i(t)∆ +O(∆2)) c>i,m(t, t′) + ∆ I>n,m1(t, t
′) +O(∆2)

≈
S∑
i

[e−iVeff (t)∆]n,i︸ ︷︷ ︸
..=U(∆)n,i

c>i,m(t, t′) + ∆ I>n,m1(t, t
′) (A2)

by using the standard Euler method reveals the potential for a U(1) transformation similar to a time-evolution
operator U(t). Mathematically, it is just an application of the “variation of constants” method known from inho-
mogeneous linear ordinary differential equations. In the following we drop the indices and use an implied matrix
notation. This U(t) allows for a redefinition of the Green’s function via [21, 39]

c≷(t, t′) = U(t)C≷(t, t′)U†(t′) (A3)

and enables us with the help of eq. (20) to write down equations of motion for C≷. For C> it takes the form

∂C>(t, t′)

∂t
=
U†(t)

∂t
c>(t, t′)U(t′) + U†(t)

c>(t, t′)

∂t
U(t′) = U†(t)I>1 (t, t′)U(t′) (A4)

where we used the properties of U to cancel the first term in eq. (A2). Using now eqs. (A3) and (A4) in eq. (A2),
we can write [39]

c>(t+∆, t′) = U(t+∆)C>(t+∆, t′)U†(t′) = U(t+∆)

[
C>(t, t′) +

∫ t+∆

t

dt̄
∂C>(t̄, t′)

∂t̄

]
U†(t′)

= U(∆)

[
c>(t, t′) +

∫ t+∆

t

dt̄ U(t− t̄)I>1 (t̄, t′)

]
≈ U(∆)

[
c>(t, t′) +

(∫ t+∆

t

dt̄ U(t− t̄)
)
I>1 (t, t′)

]
(A5)

where we assumed in the last step, that the collision integral is constant in this infinitesimal time interval [t, t+∆].
The remaining integral can be solved analytically∫ t+∆

t

dt̄ U(t− t̄) =

∫ t+∆

t

dt̄ U†(t̄− t) =

∫ ∆

0

dt̄′ U†(t̄′) =
eiVeff (t)∆ − 1

iVeff(t)
..= K̄(t,∆)

→ K(t,∆) ..= U(∆)K̄(t,∆) = −i

[
1− e−iVeff (t)∆

Veff(t)

]
. (A6)

A corresponding equation for c< can be obtained in full analogy to eq. (A5),

c<(t, t′ +∆) = U(t)C<(t, t′ +∆)U†(t′ +∆) = U(t)

[
C<(t, t′) +

∫ t′+∆

t′
dt̄
∂C<(t, t̄)

∂t̄

]
U†(t′ +∆)

=

[
c<(t, t′)∓

∫ t′+∆

t′
dt̄ I<2 (t, t̄)U†(t′ − t̄)

]
U†(∆) ≈

[
c<(t, t′)∓

(∫ t′+∆

t′
dt̄ U†(t′ − t̄)

)
I<2 (t, t′)

]
U†(∆)

→ c<(t, t′ +∆) ≈ c<(t, t′)U†(∆)∓ I<2 (t, t′)K†(t′,∆).
(A7)

The specific equation utilized to describe the propagation of the time-diagonal must be treated in a manner that
is distinct from that of the previous equations. But first we notice, that the commutator in the third equation of
eq. (20) is vanishing after the unitary transformation,

∂C<(t, t)

∂t
=

[
U†(t)

∂t
c<(t, t)U(t) + U†(t)

c<(t, t)

∂t
U(t) + U†(t)c<(t, t)

U(t)

∂t

]
= U†(t)

(
±I<1 (t, t)∓ I<2 (t, t)

)
︸ ︷︷ ︸

..=I<
diag

U(t). (A8)
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Again integrating over an infinitesimal time interval yields the discrete version [39],

c<(t+∆, t+∆) = U(t+∆)C<(t+∆, t+∆)U†(t+∆) = U(t+∆)

[
C<(t, t) +

∫ t+∆

t

dt̄
∂C<(t̄, t̄)

∂t̄

]
U†(t+∆)

= U(∆)

[
c<(t, t) +

∫ t+∆

t

dt̄ U†(t̄− t)I<diag(t̄, t̄)U(t̄− t)

]
U†(∆) ≈ U(∆)

[
c<(t, t) +

∫ ∆

0

dt̄′ U†(t̄′)I<diag(t, t)U(t̄′)

]
U†(∆).

(A9)

At this juncture, it becomes evident that the collision term cannot be extracted from the integral on the assumption
that it remains constant during the infinitesimal time step. This is because the equation is matrix-valued, and
therefore, I<diag(t̄, t̄) and U(t̄ − t) cannot be interchanged arbitrarily. This issue can be circumvented by employing
Hadamard’s lemma, which states

eiVeff t̄I<diage
−iVeff t̄ = I<diag + it̄

[
Veff , I

<
diag

]
+

(it̄)2

2!

[
Veff ,

[
Veff , I

<
diag

]]
+

(it̄)3

3!

[
Veff ,

[
Veff ,

[
Veff , I

<
diag

]]]
+O(t̄4).

(A10)

Numerically, this can be computed recursively via [39],∫ ∆

0

dt̄′ U†(t̄′)I<diag(t, t)U(t̄′) =

∞∑
m=0

Tm ; Tm =
i∆

m+ 1

[
Veff , Tm−1

]
; T0 = I<diag(t, t). (A11)

As evidenced in prior research [39, 66], maintaining m ≤ mmax = 3 ensures sufficient accuracy. Inserting eq. (A11)
into eq. (A9) completes the set of time stepping equations,

c>(t+∆, t′) = U(∆)c>(t, t′) +K(t,∆)I>1 (t, t′),

c<(t, t′ +∆) = c<(t, t′)U†(∆)∓ I<2 (t, t′)K†(t′,∆),

c<(t+∆, t+∆) = U(∆)

[
c<(t, t) +

mmax∑
m=0

Tm

]
U†(∆). (A12)

It should be mentioned here, that one recovers the standard Euler method, when expanding the exponentials in
U(∆) and K(t,∆) and setting mmax = 0 respectively. In the numerical calculation, the following procedure is applied
in sequence [21, 39, 66]:

1. The Green’s functions c≷ are initialized at time argument t0 = 0.

2. Compute ΣH and together with h0 then Veff at time t.

3. Compute the step operators U(∆) and K(t,∆).

4. Compute Σ≷, which are needed for the collision integrals I
≷
1/2.

5. Evaluate the collision integrals at times (t, t′) needed in eq. (A12).

6. Propagate the Green’s functions c≷ according to eq. (A12).

7. Compute ΣH and together with h0 then Veff at time t+∆.

8. Compute the step operators U(∆) and K(t+∆,∆).

9. Compute Σ≷, which are needed for the collision integrals I
≷
1/2.

10. Evaluate the collision integrals at times t+∆ and t′ +∆ needed in (A12).

11. The collision integrals and the effective potentials are modified according to the Trapezoidal rule:

Veff →
[
Veff(t) + Veff(t+∆)

]
/2; I

≷
1/2 →

[
I
≷
1/2(t, ·) + I

≷
1/2(t+∆, ·)

]
/2

12. Propagate the Green’s functions c≷ according to eq. (A12), set t = t+∆, and return to 2.

The predictor-corrector method, how such methods as described above are called, is known as “Heun’s method”.
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2. Parallelisation of the predictor-corrector Algorithm

In order to facilitate parallelization, it is essential to conduct a detailed examination of the structure of the KB
equations. In light of the fact that the Green’s functions and the self energies in accordance with eq. (13) are
skew-Hermitian, and the Green’s functions in addition fulfill boundary conditions (depending on whether fermionic
or bosonic), it is now necessary to ascertain which Green’s functions or self energies are required to determine the
collision integrals. Therefore, let us revisit eq. (13) in more depth.

We start with I>1 at the point in the two-time plane (t, t′) and suppose we are at time step nt = t/∆ at arbitrary
time t′ ∈ [0, t−∆] → t > t′ . The Green’s functions are required as,

∀ t̄ ∈ [0, t] c>(t̄, t′) ..=


c>(t′, t̄)∗ if t̄ ≤ t′,

1∓ c<(t′, t′) if t̄ = t′,

c>(t̄, t′) if t̄ > t′

∀ t̄ ∈ [0, t′] c<(t̄, t′). (A13)

The self energies, and thus the Green’s functions within them, enter via

∀ t̄ ∈ [0, t] Σ>(t, t̄),

∀ t̄ ∈ [0, t] Σ<(t, t̄) = Σ<(t̄, t)∗. (A14)

For I<2 , analogous considerations can be made at the point (t′, t). Here the Green’s functions and self energies are
required as,

∀ t̄ ∈ [0, t] c<(t, t̄) ..=

{
c<(t̄, t)∗ if t̄ ≤ t,

c<(t, t̄) if t̄ = t

∀ t̄ ∈ [0, t′] c>(t, t̄),

∀ t̄ ∈ [0, t] Σ>(t̄, t) = Σ>(t, t̄)∗,

∀ t̄ ∈ [0, t] Σ<(t̄, t). (A15)

I<1 is only needed for the diagonal time step when t = t′,

∀ t̄ ∈ [0, t] :

c<(t̄, t),

c>(t̄, t) ..=

{
c>(t, t̄)∗ if t̄ ≤ t,

1∓ c<(t, t) if t̄ = t,

Σ>(t̄, t) = Σ>(t, t̄)∗,

Σ<(t̄, t). (A16)

For a fixed time t′, the collision integrals generally involve the following Green’s functions in the two-time plane.
Firstly, the Green’s functions, which enter the self energies and are situated on the border of the current state of
the calculation, with at least one time argument designated as t. And secondly, those which depend on earlier time
arguments and are located on lines parallel to the time axes which are intersecting at point (t′, t′). In accordance
with the diagonal time step eq. (A9), the two described areas are found to be equal [70].

In a real calculation, the whole non-equilibrium Green’s function (c≷ ∈ C) must be stored to compute the collision
integrals. The computational burden associated with solving these equations increases significantly with the number
of time steps. This is due to the necessity of evaluating the time-integrals on the one hand and, on the other hand,
in the i-th time step (2 · i+ 1) propagations for S2 matrix elements have to be evaluated.
Consequently, the quantity of data accumulated in each time step increases steadily. This is because a number of

(2 · i+1) ·S2 correlation functions must be stored when performing a time step. Assuming double precision, the total
memory demand is given by roughly

16 ·N2
t · S2 (A17)

bytes [66, 70] (temporally allocated self energies and collision integrals not counted), where Nt is the total number
of time steps in the calculation, which can quickly exceed the O(100) gigabyte scale. In order to describe physical
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systems at realistic temperatures and stronger couplings, we are constrained to employ small ∆ and/or large S, which
results in increased computation times and reduced simulation time ranges. An excessively large ∆ will inevitably
result in the failure of convergence and unstable propagation, including the emergence of divergent collision integrals
and the contravention of particle number conservation. Consequently, the simulation of a thermalization process is
generally a challenging problem that requires fine tuning when setting the dimension of the eigenbasis S or the step
size ∆, where in the future we will explore the possibility of making it adaptive.

In addition to the physical requirements of the physical system, the numerical propagation of eq. (A12) is similarly
limited by the available computer hardware and performance.

The calculations with distributed memory were done on the Goethe-HLR (CSC) in Frankfurt am Main. On the
newer “general1” node, comprising two Intel Xeon Gold 6148 (Skylake) CPUs, with 192 or 768 gigabyte RAM and
40(80) cores (hyperthreading) per node, were accessible. However, to ensure optimal utilization of the CSC cluster,
it is imperative to implement reliable high-performance computing methodologies that incorporate message-passing
paradigms (to accommodate the distributed-memory architecture and highly parallel computing). This is crucial to
achieve results within the prescribed computation time limit (21 days) of the computer cluster.

It is feasible to augment the efficiency of the aforementioned propagation algorithm by parallelizing all significant
loops in OpenMP (open multi-processing). However, this approach would inherently constrain our calculations to
smaller basis sets, S,B, and grid sizes, Nt, due to the restricted RAM and the limited number of CPU cores. This
approach, however, still refers to the inhomogenous Green’s function as a shared-memory object, and thus fails to
address the primary issue in propagation, namely the enormous amount of dynamic memory required to account for
the Kadanoff-Baym equations’ non-Markovian structure.

Throughout this section, we will show how existing parallel algorithms for large-scale computing with distributed
memory, which can be used for large-scale distributed memory computing, can be improved and we will also establish
a time stepping process that will be effective in accomplishing these large-scale computing tasks in the first place. For
the purpose of circumventing the necessity to frequently repeat and spend a considerable amount of time accessing
non-local memory, it is crucial to plan out a well-adapted distribution of memory and to utilize the specific structure
of the collision integrals examined in the previous section [66, 70]. The resulting algorithm is designed to minimize
communication between computer nodes.

The following discussion on distributed memory computing is based on the Message Passing Interface (MPI) [71].
It is important to note that MPI employs a distinct approach in comparison to OpenMP. In MPI, multiple instances
of the same program are initiated, with the number #ranks of instances determining the total number of MPI
ranks. The process of parallelization is obtained by solving independent but yet synchronized subtasks on each rank.
This is accomplished through the exchange of information via point-to-point and/or collective communications. The
conventional method for identifying a particular MPI process, which involves designating the initial MPI rank as zero,
is analogous to the convention of loops in C/C++ also starting at zero and continuing up to #ranks− 1.

From the perspective of computational efficiency, it is advantageous in the context of parallel algorithms involving
numerous MPI processes to have direct access for each MPI process to the Green’s functions necessary to calculate

specific collision integrals I
≷
1/2. This eliminates the need for Green’s functions to be communicated between different

MPI ranks, allowing for the rapid evaluation of collision integrals. A scheme for implementing precomputed self
energies is achieved through a decomposition of the discretized two-time plane into columns and rows of distinct
perpendicular blocks [66, 70]. The distribution of memory is then allocated in a manner that assigns the inhomogenous
Green’s function in different domains to specific MPI ranks, contingent on the number of MPI processes available
[66, 70].

The optimal configuration involves storing the Green’s function at point (ti, t
′
j) in the memory of two MPI processes,

designated pa and pb. In the discretized two-time plane, any point can be expressed as a function of the (constant)
grid spacing, ti = i · ∆, t′j = j · ∆, where i, j ∈ N0. The values for pa, pb ∈ [0,#ranks − 1] can be computed in a
straightforward manner

pa = (ti/∆)%#ranks = i%#ranks,

pb = (tj/∆)%#ranks = j%#ranks, (A18)

where % denotes the modulo operator. Of course this is not an optimal handling of the memory, when the two
MPI processes are identical pa = pb. This will happen if, for example the corresponding grid coordinates (i, j) are
a #ranks multiple of the same rank. As an example we consider two MPI ranks, then all Green’s functions at
(ti, t

′
j) = (2 · i∆, 2 · j∆); i, j ∈ N0 will be stored twice in rank p0. In general, we have

#ranks−1∑
a=0

pa+#ranks·n<Nt∑
n=0

2 ·Nt · 16 · S2 [byte] (A19)
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reserved. If one divides eq. (A19) by the (shared) total amount of memory required eq. (A17),

#ranks−1∑
a=0

pa+#ranks·n<Nt∑
n=0

2

Nt
= 2, (A20)

the Green’s function is stored twice. The memory stored per MPI rank instead decreases ∝ 1
#ranks [66, 70], thus

including more and more ranks will reduce the memory, which has to be stored in each rank, and enables in principle
large Nt.

If the memory is distributed in an appropriate manner as previously described, it allows for a straightforward
parallel treatment of the collision integrals. In light of the preceding discussion, it is evident that Green’s functions
entering the collision integral directly are accessible, whereas those entering indirectly via the self energies are not.
This is in accordance with the findings presented in eqs. (A13) and (A16). Fortunately, the structure of the self
energies eq. (16) is compatible with the distribution of memory, thereby allowing them to be computed for given time
arguments on a single MPI rank. To achieve optimal efficiency, a strategy that involves the parallel computation of
Σ≷ on each individual rank is recommended, followed by the subsequent dissemination of those values to the other
ranks through collective MPI communication. Moreover, the step operators U(∆) and K(t,∆), must be calculated at
each time step. In self-interacting systems, the MPI rank responsible for storing the diagonal time Green’s function
at time (t, t) is uniquely capable of computing the Hartree term, but in the case of system-bath interaction, any
rank could theoretically assume the task, obviating the need for additional communication, which would be a time-
saving measure. Once the step operators and self energies have been distributed to all MPI ranks, the time steps
for the Green’s function can be calculated in both the t and t′ directions. To achieve this, the collision integrals,

I
≷
1/2, are calculated at the specified points in time for the respective MPI ranks. Subsequently, the respective values

of c>(t + ∆, t′) and c<(t′, t + ∆) can be calculated one at a time in sequence. At this juncture, the hybrid MPI-
OpenMP parallelization, which has recently been incorporated into our algorithm, becomes operational. This enables

the calculation of the distinct matrix elements, c
≷
n,m ∀n,m ∈ [0, S − 1], for each MPI rank according to eq. (A12)

using OpenMP. As previously stated, propagation to c<n,m(t + ∆, t + ∆) on the time diagonal, which requires a
distinctive approach according to the final equation in eq. (A12), is carried out by the same MPI rank, propagating
both c>(t+∆, t) and c<(t, t+∆), as for these steps c≷(t, t) must be available at that rank. Once the corrector steps
have been performed and the newly calculated Green’s function has been correctly distributed to its storage locations,
the diagonal elements are sent to new MPI ranks. In the following table, we will provide a detailed overview of the
extended, parallelized algorithm (based on ([66, 70]).

1. The Green’s functions c≷ are initialized at every MPI rank n ∈ [0,#rank − 1] at time argument t0 = 0.

2. On each MPI rank the wave functions ϕm and the corresponding eigenvalues Em of h0 are read in.

3. The “transition amplitudes” Vb,n,j,k are calculated via eq. (17) using the full hybrid MPI-OpenMP parallelization
and are broadcasted in sequence by each rank (via MPI Bcast) to all other ranks. In the case, that the interaction
is with a heat bath only, the Hartree self energies can be computed in a similar manner.

4. The actual calculation starts at time ti (i = 0 initially) on each MPI rank. Memory for the self energies and
collision integrals is allocated locally on each MPI rank-

5. If the system is (also) self-interacting, it is necessary to diagonalize the effective potential Veff on the “main” MPI
rank i%(#ranks) and utilize the eigenvectors and eigenvalues with the armadillo library [64, 65] to compute
the step operators U(∆) and K(ti,∆). Subsequent to this, a broadcast is employed on the rank i%(#ranks) to
all other MPI ranks.

6. The self energies Σ>(ti, tj) and Σ<(tj , ti) are calculated ∀j ≤ i on the corresponding MPI ranks j%(#ranks)
using the intrinsic OpenMP parallelization, which is a novel approach. If i > (#ranks) at least one MPI rank
has to compute more than one pair of self energies Σ≷. Finally, at the end a broadcast of the self energies Σ≷

to each other MPI rank is performed. On each MPI rank, the received self energies have to be stored at the
right positions.

7. After a MPI Barrier statement, that forces synchronization of all ranks, till all needed self energies are received,
the collision integrals I>1 (ti, tj) and I

<
2 (tj , ti) are calculated ∀j ≤ i on the corresponding MPI ranks j%(#ranks)

and afterwards the Green’s function c>(ti+1, tj) and c<(tj , ti+1) are obtained via eq. (A12). On MPI rank
i%(#ranks) especially, the Green’s function c<(ti+1, ti+1) is evaluated. Again the loop over ≷ and the matrix
elements of the Green’s functions is parallelized intrinsically via OpenMP. At the end, each MPI rank (all if
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i > (#ranks)) that participated in the propagation process of the Green’s functions has to store them in their
local memory and send them (via MPI Isend) to the next “main” MPI rank (i + 1)%(#ranks). From this we
can conclude, that the new main MPI rank does not have to send anything to itself. To be able to perform the
corrector steps in the following, the collision integrals I<1/2(ti, ti) in the time diagonal have to be sent as well to

the new main rank.

8. After the new main MPI rank has received (by MPI Recv) the collison integrals and Green’s functions, additional
memory for the new self energies and collision integrals is allocated.

9. The effective potential Veff is now diagonalized with the armadillo library [64, 65] on the new main MPI rank,
which is the (i + 1)%(#ranks)th rank. Consequently, the step operators U(∆) and K(ti+1,∆) are calculated
on this rank and broadcast to all other MPI ranks.

10. The self energies, Σ>(ti+1, tj) and Σ<(tj , ti+1), are calculated for all j ≤ i + 1 in order to accommodate the
additional load of one MPI rank, if not all MPI ranks were already utilized in the fifth step. Finally, on each
MPI rank, a broadcast of the self energies, denoted by Σ≷, is performed to the other MPI ranks, denoted by
l ̸= j%(#ranks). On each MPI rank, the received self energies must be stored.

11. On each MPI rank the collision integrals I>1 (ti+1, tj) and I<2 (tj , ti+1) are calculated ∀j ≤ i + 1 on the corre-
sponding MPI ranks and afterwards (ensured by MPI Barrier) the Green’s functions c>(ti+1, tj) and c

<(tj , ti+1)
are obtained via equation (A12) but with the Trapezoidal rule:

Veff →
[
Veff(t) + Veff(t+∆)

]
/2; I

≷
1/2 →

[
I
≷
1/2(t, ·) + I

≷
1/2(t+∆, ·)

]
/2.

On MPI rank (i + 1)%(#ranks) the Green’s function c<(ti+1, ti+1) is corrected. The Green’s functions are
stored in the local memory and transmitted (via MPI Isend) to the new main MPI rank (i + 1)%(#ranks).
Once every communication is received, the propagation step corresponding to the i-th iteration is completed,
and the process begins again at step 4 with i→ i+ 1.

Should one desire to extend the propagation of the Green’s functions beyond the computing time limit of the cluster,
each MPI rank stores its data at the conclusion of the calculation. However, the quantity of data to be stored on
the scratch system becomes exceedingly large for advanced time evolution. This significantly impedes the algorithmic
process and, in particular, necessitates the consumption of considerable resources on reinitialization.

3. Extension to 3 dimensions

The practical aspect of the numerical approach presented for solving the Kadanoff-Baym equations is that it is
independent of the dimensionality of the space, which is a significant advantage. The most straightforward approach
is to focus on the dimension d = 3, which will be relevant later. The only additional fundamental condition is that the
system under consideration can evolve into discrete states [18, 38–40, 66]. The entire spatial dependence, for instance,
of the wave functions or the interaction, is encapsulated in the transition amplitudes Vm,a,k,j and is integrated out
before the actual calculation begins.

Although more complex from a numerical point of view, the method for computing these quantities is unambiguous.
However, the addition of higher dimensions introduces a new challenge: the degeneracy of energy eigenstates. To
achieve a comparable energy cut-off to one dimension, one must consider a larger number of states. In three dimensions,
the Green’s functions can be expanded using either Cartesian,

S>(1, 1′) = −i
∑

nx,ny,nz

∑
n′
x,n

′
y,n

′
z

⟨ĉnx,ny,nz (t)ĉn′
x,n

′
y,n

′
z
(t′)†⟩ϕnx,ny,nz (r⃗)ϕ

∗
n′
x,n

′
y,n

′
z
(r⃗′),

S<(1, 1′) = ∓i
∑

nx,ny,nz

∑
n′
x,n

′
y,n

′
z

⟨ĉn′
x,n

′
y,n

′
z
(t′)†ĉnx,ny,nz (t)⟩ϕnx,ny,nz (r⃗)ϕ

∗
n′
x,n

′
y,n

′
z
(r⃗′), (A21)

or spherical coordinates,

S>(1, 1′) = −i
∑

n1,l1,m1

∑
n′
1,l

′
1,m

′
1

⟨ĉn1,l1,m1
(t)ĉn′

1,l
′
1,m

′
1
(t′)†⟩ϕn1,l1,m1

(r⃗)ϕ∗n′
1,l

′
1,m

′
1
(r⃗′),

S<(1, 1′) = ∓i
∑

n1,l1,m1

∑
n′
1,l

′
1,m

′
1

⟨ĉn′
1,l

′
1,m

′
1
(t′)†ĉn1,l1,m1(t)⟩ϕn1,l1,m1(r⃗)ϕ

∗
n′
1,l

′
1,m

′
1
(r⃗′). (A22)
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In the case of Cartesian coordinates the quantum numbers are as usual nx/y/z ∈ [0, nmax] and for spherical coordi-

nates the quantum numbers are n ∈ N+, l ∈ [0, n− 1] and m ∈ [−l, l]. The eigenfunctions are given in this case via a
product ansatz,

ϕnx,ny,nz
(r⃗) = ϕnx

(x)ϕny
(y)ϕnz

(z),

ϕn,l,m(r⃗) = Rn,l(r)Yl,m(θ, φ). (A23)

The degeneracy enters naturally here, because in spherical coordinates the energies usually do not depend on m
and in Cartesian coordinates, when certain symmetries lead to degeneracies of the spectrum in different directions.

In both cases it is possible to find a bijective “super” - index ns(nx, ny, nz) or ns(n, l,m), which labels the states
in a certain order, such that the same algorithm can be applied just with new computed transition amplitudes.

4. Adaptive time stepping and integration

Depending on the initial conditions, stiffness, or large coupling constants, small time-step sizes are often necessary
to correctly resolve the dynamics and avoid instabilities. However, in order to observe long-time effects, such as
thermalization, it is necessary to be able to enlarge the time-step size until sufficient accuracy is reached to have access
to these time scales. Otherwise, an excessive number of time steps would be required, resulting in a computation
time that scales at least cubically with the maximal number of time steps, Nt. This would cause the time per step to
increase, thereby slowing down the overall calculation.

One potential solution to this issue is to implement an adaptive multi-step method, e.g. the variable Adams method,
as suggested in [46, 72]. In the present case, we propose the use of the adaptive “Heun” method as the simplest multi-
step method. This is because the developed algorithm is already in this form, so there is no need for further changes
in communication or parallelization.

The important point in all adaptive methods is the crucial estimation of the local error. Therefore, the consistency
of the single-step method used must be adapted in the predictor step. A single-step method (e.g., simple Euler
method) for solving an initial value problem

ẏ(t) = F
(
t, y(t),

∫
y(t)

)
; y(t0) = y0 (A24)

is said to be of consistency order k, if for a prediction yi+1 the single-step method complies

lim
∆→0

sup
ti∈[t0,tf ]

|yi+1 − y(ti +∆)|
∆k+1

i

<∞ (A25)

for a given step size ∆i. This implies that there exist constants C and ∆0 for which

sup
ti∈[t0,tf ]

|yi+1 − y(ti +∆i)| ≤ Ci∆
k+1
i (A26)

holds ∀∆ ∈ (0,∆0). It is evident that the simple Euler method is of consistency order 1, while the subsequent
application of the ”Heun” method, with consistency order 2, can be demonstrated by examining the error of the
corresponding integration method, in this case, the simple Riemann blocks or trapezoidal rule.

It should be noted that in real-world applications, the precise value of a function at a given point in time is not
always known. In such cases, it is common to compare the result obtained with a more accurate method, denoted by
ŷi+1, which has a higher consistency value, k′ > k.

|yi+1 − y(ti +∆i)| = |yi+1 − ŷ(ti +∆i)|+O(∆k′+1
i ). (A27)

To achieve a given tolerance ϵabs with a optimal step size ∆̂i, we demand

ϵabs = Ci∆̂
k+1
i . (A28)

Inserting now eqs. (A27) and (A28)) in eq. (A26) yields

∆̂i = ∆i
k+1

√
ϵabs

|yi+1 − ŷ(ti +∆i)|
= ∆i eqi (A29)
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for the new step size, where eqi denotes the error quotient at this time step. Given the high cost of evaluating this
error, in practice a safety factor of 0.9 is often included. Also limiting factors for the maximal/minimal scaling are
useful to avoid repeated adjusting o f the step size via

∆̂i = ∆i ·min(maxscal,max(minscaling, safety factor · eqi)) (A30)

and the correction of the step size is only performed, when eqi < 1, and the same time step is repeated till eqi ≥ 1.
If this is achieved, the subsequent time step commences with the step size that has satisfied the requisite accuracy of
the preceding step.

When applying this procedure to the Kadanoff-Baym equations, one encounters a matrix-valued (integro)-
differential equation, which necessitates the consideration of an appropriate error estimation. A suitable orientation
for this error estimation is the diagonal time step |c<(ti+1, ti+1)− ĉ<(ti+1, ti+1)|. In particular, the maximum norm
is employed,

|c<(ti+1, ti+1)− ĉ<(ti+1, ti+1)| = max
n,m∈[0,S−1]

|c<n,m(ti+1, ti+1)− ĉ<n,m(ti+1, ti+1)|. (A31)

In the previously described parallelized algorithm, the step size correction is initiated at step 11. on the new main
MPI rank. However, in the event that a new step size is required to achieve the desired level of accuracy, a step back
to 5. is necessary.

The entire mechanism of step-size control is based on the assumption that the right-hand side of eq. (A24) is
known in an exact analytical form. However, this is not the case for integro-differential equations, as the integrals
are approximated numerically via, for instance, the compound trapezoidal rule, which inherently introduces errors.
Provided that the step size remains constant throughout the calculation, the addition of errors is not problematic
as long as the order of accuracy for the value of the integral is at least of the order of consistency of the multi-
step method employed. To illustrate, we demonstrate that Heun’s method remains consistent when employing the
compound trapezoidal rule for integral evaluation. In this context, the subsequent time step prediction is provided by

yi+1 = yi +
∆

2

[
F
(
ti, y(ti),

∫
y(t) +O(∆2)

)
+ F

(
ti+1, y(ti+1),

∫
y(t) +O(∆2)

)]
+O(∆3)

= yi +
∆

2

[
F
(
ti, y(ti),

∫
y(t)

)
+O(∆2) + F

(
ti+1, y(ti+1),

∫
y(t)

)
+O(∆2)

]
+O(∆3)

= yi +
∆

2

[
F
(
ti, y(ti),

∫
y(t)

)
+ F

(
ti+1, y(ti+1),

∫
y(t)

)]
+O(∆3). (A32)

Thus, the error remains to be of order O(∆3). But if the step size is adaptive, this is no longer the case, because the
error of the compound trapezoidal rule scales with order O(∆2

max), where ∆max = maxj∈[0,Nt−1] ∆j . This approach
may result in time steps that are less consistent than those obtained through the application of Heun’s method, thus
affecting the overall consistency of the solution obtained,

yi+1 = yi +
∆i

2

[
F
(
ti, y(ti),

∫
y(t)

)
+ F

(
ti+1, y(ti+1),

∫
y(t)

)]
+O(∆2

max ∆i). (A33)

The integration on a non-uniform grid can be enhanced by employing higher-order polynomials for interpolation,
thereby achieving a higher order of accuracy. The two fundamental approaches under consideration are the Newton
polynomials [46] and the Lagrange polynomials, which will be the subject of a further discussion later, but also other
approaches are possible [72]. The integrals we aim to solve are of the form∫ ti

t0

dt̄K(t, t̄, t′) =

i∑
n=1

∫ tn

tn−1

dt̄K(t, t̄, t′), (A34)

where K(t, t̄, t′) is a product of Green’s functions c≷ and self energies Σ≷ respectively. To compute these integrals
on a non-uniform grid, the function K is approximated by a polynomial of order p (we will neglect the external times
t, t′ in the following)

P (t̄) =

p∑
j=0

aj · ϕj(t̄)

K(t̄) = P (t̄) + Ep(t̄), (A35)
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where ϕj denotes a set of basis polynomials, e.g standard, Newton, or Lagrange basis and Ep the error of the
interpolation at the time point. In order to proceed, the coefficients aj must be calculated using the grid points tj
and the corresponding function values Kj . This results in a set of linear equations, which can be written in matrix
form as follows,

p∑
j

ϕj(tl)aj = Kl. (A36)

ϕj(tl) denotes the so-called “Vandermonde” matrix, which is regular, as far as all grid points are distinct. The
numerical value to be solved for in linear equations of this type scales as O(p3), so it is common to attempt to identify
a basis set where the Vandermonde matrix has a simple form, such as triangular (Newton) or diagonal (Lagrange).
However, direct approaches, as described in [72], which employ fast LU decomposition, are also used. The focus of
this discussion will be on the Lagrange polynomials, which will prove to be numerically more efficient for calculational
purposes. A disadvantage of the Lagrange polynomials in comparison to the Newton polynomials is that they cannot
be enlarged, when adding new data points and want to increase the degree of the polynomial. In this case, one has
to calculate all coefficients aj again. The effort to solve the system of linear equations is undoubtedly the simplest
in the case of Lagrange basis, because the Vandermonde matrix is diagonal and no “divided differences” have to be
calculated. However, the construction of the Lagrange basis is more complicated than the Newton basis, resulting
in a numerical effort of the order of O(p2) in both cases. This can be seen directly from the definition of the basis
polynomials,

nj(t̄) =

j−1∏
n=0

(t̄− tn),

lj(t̄) =

p∏
n=0;n̸=j

t̄− tn
tj − tn

. (A37)

The Newton polynomials are said to be more stable, especially when the grid points are no longer uniformly
distributed and the degree of the polynomial is higher (> 4), see Runge’s phenomenon. This will limit us in the order
of the polynomial interpolation, but we will leverage the significant advantage of the Lagrange polynomials, namely
that not only the associated basis functions, lj , are independent of the interpolation values, Kj , implies that different
sets of interpolation values, Kj , with identical interpolation points, t̄j , can be interpolated expediently once the basis
functions, lj , have been established, but also the coefficients of the polynomial are directly given by the interpolating
function values aj = Kj .

This is precisely the case for the Kadanoff-Baym equations, where the Green’s functions c
≷
n,m are all situated on

the same grid in the two-time plane. Consequently, at a given time in this plane, the Lagrange basis polynomials
are evaluated only once for all S2 Green’s functions, which renders this approach more advantageous as the number
of included eigenstates S increases. All integrals are then reduced to integrals over the Lagrange basis polynomials,
which are known analytically. A problem, which cannot be circumvented in all direct quadrature methods, is the fact,
that for every n in eq. (A34) this procedure has to be done. The aforementioned approach thus appears to be an even
more efficacious methodology when one’s objective is to ascertain long-term behavioral tendencies. Then eq. (A34)
takes the following form, dropping the outer time indices,∫ ti

t0

dt̄K(t̄) =

i∑
n=1

∫ tn

tn−1

dt̄K(t̄) ≈
i∑

n=1

∫ tn

tn−1

dt̄ Pn(t̄) =

i∑
n=1

∫ tn

tn−1

dt̄

p∑
j=0

K
(n)
j · l(n)j (t̄)

=

∫ tp

t0

dt̄

p∑
j=0

Kj ·
p∏

f=0;f ̸=j

t̄− tf
tj − tf

+

i∑
n=p+1

∫ tn

tn−1

dt̄

n∑
j=n−p

Kj ·
n∏

f=n−p;f ̸=j

t̄− tf
tj − tf︸ ︷︷ ︸

=l
(n)
j (t̄)

=

p∑
j=0

Kj ·
∫ tp

t0

dt̄ l
(p)
j (t̄) +

i∑
n=p+1

n∑
j=n−p

Kj ·
∫ tn

tn−1

dt̄ l
(n)
j (t̄). (A38)

Now, we want to know what we have gained in terms of accuracy at the end. Therefore, we want to have a closer
look at the error Ep(t) in eq. (A35) and also the resulting error of the integrals we calculate. We will do this here
for the case of the Newton polynomial, but for other polynomials, it will follow similarly. From standard textbook
knowledge we know from Taylor expansions and mean value theorem, that the error can be estimated by
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Ep(t) = K(t)− P (t) =
K(p+1)(ξ)

(p+ 1)!

p∏
i=0

(t− ti), (A39)

where ξ ∈ [t0, tp]. Here we can also see, that for equidistant time steps the error can be estimated upwards by

Ep(t) ≤
K(p+1)(ξ)

(p+ 1)!
((p− 1) ·∆)p. (A40)

But how does this now effect the error of the integral? We remember from eq. (A34), that we only have to do this
for the small divided intervals [tn−1, tn]. Integrating eq. (A39) over one time step yields,∫ tn

tn−1

dt̄ Ep(t̄) =
K(p+1)(ξ)

(p+ 1)!

∫ tn

tn−1

dt̄

p∏
i=0

(t̄− tn−i) ≤
1

(p+ 1)!
max

tn−p<ξ<tn
|K(p+1)(ξ)|

∫ tn

tn−1

dt̄ |
p∏

i=0

(t̄− tn−i)|, (A41)

and after applying eq. (A38), we end up with the error of the whole integration given by∫ ti

t0

dt̄ Ep(t̄) =

∫ tp

t0

dt̄ Ep(t̄) +

i∑
n=p+1

∫ tn

tn−1

dt̄ Ep(t̄) ≤
1

(p+ 1)!
max

t0<ξ<tp
|K(p+1)(ξ)|

∫ tp

t0

dt̄ |
p∏

i=0

(t̄− tp−i)|

+
i∑

n=p+1

1

(p+ 1)!
max

tn−p<ξ<tn
|K(p+1)(ξ)|

∫ tn

tn−1

dt̄ |
p∏

i=0

(t̄− tn−i)|. (A42)

The final step is to select the optimal degree of the polynomial, popt, to minimize the error. We can see in eq. (A42),
that larger p do not have to lead to smaller errors. This may be due to oscillatory behavior, cf. Runges phenomenon,
which implies large higher derivatives in the interval of interest. And if p this is chosen too small, the approximation
of the integral may be too inaccurate, as evidenced by the compound trapezoidal rule, so up to now it is not clear
how to select and appropriate order.

In order to identify popt, a straightforward test case scenario is employed, as outlined in [72], where a test function
is integrated over the time interval utilizing a range of interpolation polynomials at varying degrees. An appropriate
choice of this test function could be the collision term, that enters the diagonal time step in the two-time plane,

Cn
test =

∫ t0

t

dt̄

S∑
i

[
Σ>

n,i(t, t̄) c
<
i,n(t̄, t)− Σ<

n,i(t, t̄) c
>
i,n(t̄, t)− c>n,i(t, t̄) Σ

<
i,n(t̄, t) + c<n,i(t, t̄) Σ

>
i,n(t̄, t)

]
. (A43)

The optimal degree is then obtained by [72]

popt = min
p∈[2,pmax]

[
S−1∑
n=0

|Cn
testp − Cn

testp−1
|

]
. (A44)

The value |Cn
testpopt

− Cn
testpopt−1

| can then be used as an error estimation in the algorithm, which can be used to

adjust the next timestep size. This is done in our case by an upper boundary of this integration error and when the
current error overshoots this value, the timestep size cannot be increased in this step.

It should be noted that this selection does not require a significant computational effort in comparison to evaluating
2(2 · j + 1) · S2 in the j-th time step. This mechanism is repeated at each step-size adaptation. As the selection
of the optimal order is conducted on the main MPI rank, a broadcast of popt to all other ranks is inserted after its
computation (before Step 7. in section A2).

5. On higher-order time-stepping with the variable Adams method

As an improvement of the predictor-corrector method described in section A1 applied in earlier works [21, 22, 37–
40, 44], in recent works [46, 72] a more accurate approximation of the integrals in the last steps of eqs. (A5), (A7)
and (A9) has been achieved by using higher-order polynomials for interpolation similar to the evaluation of the
memory integrals in the previous section A4.

This results in the so-called (variable) Adams methods depending on the order of the polynomial used. However,
the implementation is straightforward, when using the routines for the memory integrals. We show this as an example
for eq. (A5), which can of course be generalized to the other time steps, eqs. (A7) and (A9). For the explicit/predictor
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step, we use the existing values of I>1 and U for t̄ ≤ ti to build a polynomial, which is then used for extrapolation in
the integration interval [ti, ti +∆i],

c>(ti +∆i, t
′) = U(∆i)

[
c>(ti, t

′) +

∫ ti+∆i

ti

dt̄ U(ti − t̄)I>1 (t̄, t′)

]

= U(∆i)

[
c>(ti, t

′) +

∫ ti+1=ti+∆i

ti

dt̄

p∑
j=0

p∏
f=0;f ̸=j

t̄− ti−f

ti−j − ti−f
· U(ti − ti−j)I

>
1 (ti−j , t

′)

]
. (A45)

In the implicit/corrector step, all calculated values up to ti+1 are used to construct the interpolation polynomial for
the integration interval [ti, ti+1]. The formula can be obtained from the explicit/predictor step by shifting the indices
under the integral from i→ i+ 1,

c>(ti +∆i, t
′) = U(∆i)

[
c>(ti, t

′) +

∫ ti+∆i

ti

dt̄ U(ti − t̄)I>1 (t̄, t′)

]

= U(∆i)

[
c>(ti, t

′) +

∫ ti+1=ti+∆i

ti

dt̄

p∑
j=0

p∏
f=0;f ̸=j

t̄− ti+1−f

ti+1−j − ti+1−f
· U(ti − ti+1−j)I

>
1 (ti+1−j , t

′)

]
.

(A46)

The important and more advanced part is to manage the memory correctly. For the first two equations in (A12)
no significant changes regarding MPI have to be done, because these propagation steps are always on the same MPI

rank, just the memory integrals I
≷
1/2 and the evolution operator U(t) have to be stored for the last p + 1 time-steps

(including the current one). In the algorithm, this is realized by implementing the arrays for the collision integrals

twice, namely for the explicit and the implicit time step. Before the (explicit) memory integrals I
≷
1/2 are calculated in

step 7. of the parallelized algorithm, the array of the implicit collision integral is copied into the explicit one. Then
the value of the (explicit) collision integral is calculated and overwrites the last entry coming from the array of the
implicit collision integral. After performing the explicit time step, the entries of the explicit array are copied into the
implicit one by a shift of 1 entry, allowing to let the first entry free, where the value of the (implicit) collision integral
can be placed after its calculation in step 11. of the parallelized algorithm.

For the time diagonal, this is more difficult. In principle the steps are the same as described before, but after
performing the explicit time step, the explicit array cannot be copied into the implicit one directly because the MPI
rank, which is performing the implicit time-step changes. All shifted entries have to be sent, compare step 7. of the
parallelized algorithm.

At the end of this rather abstract numerical section, we have to answer the question, if this amount of work has
been totally worth it and can be applied without fearing any instabilities, which may arise due to error resummation
or oscillatory behavior of the interpolating polynomials. This is unfortunately another topic in mathematics, which
has developed under the name “(linear) control theory” since the 60s of the last century [73, 74]. In short: There is no
guaranteed mechanism for e.g. order selection even for ordinary differential equations, but just “(heuristic) dynamic
error models” including the history of time steps in the calculation of the local error [74]. So, what should they be for
ordinary integro-differential equations? The most important observation during our calculations was that the changes
in time step size should be smooth (∆i/∆i−1 ≈ 1), which can be achieved by a limitation of the change in step size
[74], and the order of the time stepping should be smaller than the order of integration when calculating the memory
integrals. An all-purpose weapon, it is by no means, and also high orders like p > 5 have turned out to be highly
unstable, contradicting the experiences of the authors in [46].

Appendix B: Derivation of the master equation

The following section presents a concise derivation of the Quantum-Kinetic-Master (QKM) equation, starting
directly from the Kadanoff-Baym equations in the two-time and eigenstate representation as utilized within this work.
A brief review of this derivation is provided for the sake of two key objectives: first, to highlight the connection
between the full Kadanoff-Baym equations and its approximated form, and second, to elucidate the assumptions that
enter the QKM equation.

The QKM equation, which describes the temporal evolution of distribution functions for quantum states, is analo-
gous to the Boltzmann equation, which describes quasi-particle behavior.
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We can use now the equation for the time-diagonal eq. (20) to derive an equation of motion for the distribution
function of the quantum states,

− ∂

∂t
c<b,a(t, t)− i[E, c<(t, t)]b,a =

∫ t

t0

dt̄

S∑
i

(
Σ>

b,i(t, t̄) c
<
i,a(t̄, t)− Σ<

b,i(t, t̄) c
>
i,a(t̄, t) + c<b,i(t, t̄) Σ

>
i,a(t̄, t)− c>b,i(t, t̄) Σ

<
i,a(t̄, t)

)
.

(B1)

Usually the on-shell energy Ea can depend on time, when self interacting Hartree terms are taken into account
Ea → Ea + ΣHa,a(t). To eliminate the commutator, the phase shifts of the Green’s function (compare eq. (15)) are
taken explicitly, similar to the U(1) gauge transformation applied in definition eq. (A3),

c
≷
b,a(t, t

′) → e−iEbtc
≷
b,a(t, t

′)eiEat
′
. (B2)

This has the advantage that the commutator in eq. (B1) is eliminated, and the time evolution of the quantum state
distribution function is determined solely by the collision terms, self energies, and Green’s functions within. Inserting
eq. (B2) in eq. (B1) yields for the right hand side terms,

∫ t

t0

dt̄

S∑
i

Σ>
b,i(t, t̄) c

<
i,a(t̄, t) =

∫ t

t0

dt̄

S∑
m,n,i

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵj)

)
Vb,n,j,k c

>
n,m(t, t̄)Vm,i,k,j c

<
i,a(t̄, t) e

−i(ϵj−Ea−ϵk+En)t

ei(ϵj−Ei−ϵk+Em)t̄
)
,∫ t

t0

dt̄

S∑
i

Σ<
b,i(t, t̄) c

>
i,a(t̄, t) =

∫ t

t0

dt̄

S∑
m,n,i

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
Vb,n,j,k c

<
n,m(t, t̄)Vm,i,k,j c

>
i,a(t̄, t) e

i(ϵj−Ea−ϵk+En)t

e−i(ϵj−Em−ϵk+Ei)t̄
)
,∫ t

t0

dt̄

S∑
i

c<b,i(t, t̄) Σ
>
i,a(t̄, t) =

∫ t

t0

dt̄

S∑
m,n,i

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
Vi,n,j,k c

>
n,m(t, t̄)Vm,a,k,j c

<
b,i(t̄, t) e

i(ϵj−Eb−ϵk+Em)t

e−i(ϵj−En−ϵk+Ei)t̄
)
,∫ t

t0

dt̄

S∑
i

c>b,i(t, t̄) Σ
<
i,a(t̄, t) =

∫ t

t0

dt̄

S∑
m,n,i

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
Vi,n,j,k c

<
n,m(t, t̄)Vm,a,k,j c

>
b,i(t̄, t) e

−i(ϵj−Em−ϵk+Eb)t

ei(ϵj−En−ϵk+Ei)t̄
)
.

(B3)

As we are interested in developing a pure quantum-kinetic equation that is comparable to a Boltzmann equation
for discrete quantum states, we have made several approximations, as outlined in [22]. All quantum correlations
between these quantum states will be neglected, resulting in the matrix-valued coefficients becoming vector-valued.
To ensure the equations are Markovian, the vector-valued occupation numbers of the quantum states are reduced
to their maximal-time argument. This involves neglecting all spectral information and retaining only the statistical
information, as discussed in [22, 47, 48]. This results in the following proposed replacement for the equation,

c
≷
b,a(t, t

′) → δb,a c
≷
b,a(tmax, tmax) = c

≷
b (tmax), (B4)

where the maximal time tmax = max(t, t′) has been introduced [22]. The time integration inherent to the collision
integrals will now be rendered inconsequential, as all Green’s functions, which previously depended on twice the local
(maximal) time and the integration variable, can be extracted from the time integration. Inserting eq. (B4) in eq. (B3)
and using Vb,n,k,j = V ∗

n,b,j,k yields,
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Σ>
b (t) c

<
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c>n (t, t̄) c<b (t)

∫ t

t0

dt̄ e−i(t−t̄)(ϵj−Eb−ϵk+En),

Σ<
b (t) c

>
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c<n (t) c>b (t)

∫ t

t0

dt̄ ei(t−t̄)(ϵj−En−ϵk+Eb),

c<b (t) Σ
>
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c>n (t) c<b (t)

∫ t

t0

dt̄ ei(t−t̄)(ϵj−Eb−ϵk+En),

c>b (t) Σ
<
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c<n (t) c>b (t)

∫ t

t0

dt̄ e−i(t−t̄)(ϵj−En−ϵk+Eb). (B5)

The first and the third and the second and the fourth term in eq. (B5), which are added/subtracted in eq. (B1),
can be combined, which results in a cosine under the integral,

Σ>
b (t) c

<
b (t) + c<b (t) Σ

>
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c>n (t, t̄) c<b (t)

∫ t

t0

dt̄ 2 cos

(
(t− t̄)(ϵj − Eb − ϵk + En)

)
,

Σ<
b (t) c

>
b (t) + c>b (t) Σ

<
b (t) =

S∑
n

B∑
j,k

(
(1 + nB(ϵj))nB(ϵk)

(1− nF (ϵj))nF (ϵk)

)
|Vb,n,k,j |2 c<n (t) c>b (t)

∫ t

t0

dt̄ 2 cos

(
(t− t̄)(ϵj − En − ϵk + Eb)

)
.

(B6)

For the distribution function the equal time (anti) commutation relation can be used, c>n (t) = 1± c<n (t), resulting
in the Bose enhancement factor or Pauli blocking factor known from the usual Boltzmann equation. The terms in
eq. (B1) describe (2 ↔ 2) scattering processes, as is well-established in the literature. Consequently, we find the
typical gain and loss terms in eq. (B6) here, where particles in the quantum state b can be scattered out into quantum
states n or vice versa.
As for the full Green’s function the resulting evolution equation is depending on the initial value (occupation)

of the various quantum states at time t0. One would immediately ask oneself, why there is no energy-conserving
delta-function as in the common Boltzmann equation? We will briefly address later, why a completely conserving
approach is useless, when the energy levels are discrete, but for now we will see, what happens, when we calculate the
integrals in eq. (B6),

2

∫ t

t0

dt̄ cos

(
(t− t̄)(ϵj − En − ϵk + Eb)

)
= −2

∫ 0

t−t0

dt̂ cos

(
t̂(ϵj − En − ϵk + Eb)

)
=2

∫ t−t0

0

dt̂ cos

(
t̂(ϵj − En − ϵk + Eb)

)
=

2

(ϵj − En − ϵk + Eb)
sin

(
(t− t0)(ϵj − En − ϵk + Eb)

)
. (B7)

In the limit as t − t0 → ∞ for fixed t0, the sinc function converges to an energy-conserving delta function, as
anticipated from the Boltzmann equation,

lim
t−t0→∞

2

(ϵj − En − ϵk + Eb)
sin

(
(t− t0)(ϵj − En − ϵk + Eb)

)
= 2πδ(ϵj − En − ϵk + Eb). (B8)

However, distributions are only mathematically meaningful below an integral, so in the limit of continuous energy
levels. As we are not doing this, this requires some physical interpretation in analogy to [50, 51].

In the case of discrete states, the distance between the levels, denoted as ∆E, depends on the properties of the
enclosing potential. Consequently, each discrete state i represents a specific energy interval [Ei − ∆E

2 , Ei +
∆E
2 ]. It is

likewise feasible to discretize a continuous system in this manner, which is invariably undertaken when the objective
is to simulate them accurately. The occupation numbers of the quantum states can then be interpreted as an average
of the continuous distribution function, n(ω), over the specific energy interval, as evidenced in [51],

c<i =

∫ Ei+
∆E
2

Ei−∆E
2

dω

2π

n(ω)

∆E
. (B9)

Accordingly, the delta function as defined in eq. (B8) should be understood to represent [51]
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δ(ϵj − En − ϵk + Eb) =
δϵj−En−ϵk+Eb,0

∆E
, (B10)

where δϵj−En−ϵk+Eb,0 is the Kronecker delta. The equation has now become numerically manageable. However,
the Kronecker delta is only physically meaningful if the energy gaps, represented by the symbol ∆E, are constant
and do not depend on the state. Nevertheless, this is only the case for the harmonic oscillator or the discretization of
continuous systems, where the degree of discretization can be freely selected. In general, this is not the case. In such
instances, the forced conservation of energy would preclude the occurrence of significant scattering processes, with
only “trivial” scattering being possible.

To circumvent this issue and avoid the use of a diverging delta function, we restrict the sinc function to certain
widths. Thus the final QKM equation is now obtained as,

∂

∂t
c<b (t) =

S∑
n

B∑
j,k

(
(1± nB/F (ϵj))nB/F (ϵk) c

>
b (t) c

<
n (t)− (1± nB/F (ϵk))nB/F (ϵj)c

>
n (t) c

<
b (t)

)
|Vb,n,k,j |2

2

(ϵj − En − ϵk + Eb)
sin

(
(t̃− t0)(ϵj − En − ϵk + Eb)

)
,

t̃ ..=

{
tmax if t > tmax,

t if t ≤ tmax.
, (B11)

where tmax ensures, that the sinc does not diverge for large times. Another limitation of the expression (B7) is that
it is identically zero when t = t0 = 0. This issue can be addressed by shifting the reference point to an earlier time
than the start of the actual calculation [22].

It is now necessary to provide a brief recapitulation of the approximations that were employed in the derivation
of the QKM equation. Two of these approximations are directly present in eq. (B2). The first is the negligibility
correlations in contrast to the Kadanoff-Baym equations. The second is the Markovianity of the QKM equation.
Another significant approximation is the on-shell (including Hartree terms) ansatz for the dispersion relation, which
is only valid when the collisional broadening of the state is much smaller than the energy gap ∆E. Otherwise,
the quasi-particle interpretation is meaningless because the properties of a particle with a certain energy cannot be
described by a single state of the single-particle Hamiltonian [51].

Appendix C: KMS Condition

This property, which is fundamental to all Green’s functions (not only two-point functions), goes back to R. Kubo,
P. C. Martin and J. Schwinger [61, 62]. We want to give a short derivation which is based on [15]. First the c<

Green’s function can be rearranged using the cyclic property of the trace,

c<n,m(t, t′) = ⟨ĉm(t′)†ĉn(t)⟩ =
Tr

(
e−β(Ĥ−µN̂)ĉm(t′)†ĉn(t)

)
Tr

(
e−β(Ĥ−µN̂)

) =
Tr

(
ĉn(t)e

−β(Ĥ−µN̂)ĉm(t′)†
)

Tr
(
e−β(Ĥ−µN̂)

) . (C1)

To obtain a thermal average again, a suitable one is inserted

Tr
(
ĉn(t)e

−β(Ĥ−µN̂)ĉm(t′)†
)

Tr
(
e−β(Ĥ−µN̂)

) =
Tr

(
e−β(Ĥ−µN̂)eβ(Ĥ−µN̂)ĉn(t)e

−β(Ĥ−µN̂)ĉm(t′)†
)

Tr
(
e−β(Ĥ−µN̂)

) = ⟨eβ(Ĥ−µN̂)ĉn(t)e
−β(Ĥ−µN̂)ĉm(t′)†⟩.

(C2)

To compress further, we want to recapitulate the solution of the Heisenberg equation of motion for an operator,
which is given as

ĉn(t) = eiĤtĉn(0)e
−iĤt → ĉn(t− iβ) = eβĤ ĉn(t)e

−βĤ . (C3)

For the particle number operator N̂ =
∑

i ĉ
†
i ĉi, the commutator with the annihilation operator can be computed

by using the standard product rules and the corresponding fundamental (anti) commutation relations,
[
ĉi, ĉ

†
j

]
= δi,j

for bosons and
{
ĉi, ĉ

†
j

}
= δi,j for fermions. For bosons one obtains
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ĉn, N̂

]
=

∑
i

[
ĉn, ĉ

†
i ĉi

]
=

∑
i

[
ĉn, ĉ

†
i

]
ĉi + ĉ†i

[
ĉn, ĉi

]
= ĉn (C4)

and similarly for fermions [
ĉn, N̂

]
=

∑
i

[
ĉn, ĉ

†
i ĉi

]
=

∑
i

{
ĉn, ĉ

†
i

}
ĉi − ĉ†i

{
ĉn, ĉi

}
= ĉn. (C5)

So in both cases we have

ĉnN̂ =
(
N̂ + 1

)
ĉn → e−βµN̂ ĉne

βµN̂ = eβµĉn. (C6)

Inserting eqs. (C3) and (C6) in eq. (C2) one is left with

c<n,m(t, t′) = ⟨eβ(Ĥ−µN̂)ĉn(t)e
−β(Ĥ−µN̂)ĉm(t′)†⟩ = eβµ c>n,m(t− iβ, t′). (C7)

Applying a Fourier transformation in the relative time ∆t on both sides yields

c<n,m(ω, t̄) = eβµ
∫
d∆t eiω∆tc>n,m(∆t− iβ, t̄) = eβµ

∫
d∆t̄ eiω(∆t̄+iβ)c>n,m(∆t̄, t̄) = e−β(ω−µ) c>n,m(ω, t̄), (C8)

which is the KMS condition, that should be fulfilled at any time t̄ when the system is in equilibrium.

Appendix D: Spectral functions

It is known since the invention of the Källen-Lehmann representation, that the spectral function can be written as
a sum over eigenstates of the (complete interacting) Hamiltonian.

(Ĥ − µN̂) |n⟩ = (En − µNn)︸ ︷︷ ︸
..=Ẽn

|n⟩ (D1)

We can first derive an expression for the retarded Green’s function in thermal equilibrium (t̄ → ∞) and later use
the relation ãn,n(ω) = −2 Im(cretn,n(ω)). We define the retarded Green’s function as

cretn,n(∆t) = −iΘ(∆t)
〈[
ĉn(t), ĉ

†
n(t

′)
]
∓

〉
. (D2)

Now we use the definition of the thermal expectation value and write the trace explicitly in the states of the

Hamiltonian and define as a shortcut for the partition function Z = Tr(e−β(Ĥ−µN̂)).

cretn,n(∆t) = −i Θ(∆t)

Z

∑
a,b

e−βẼa

[
ei(Ea−Eb)(t−t′) ⟨a| ĉn |b⟩ ⟨b| ĉ†n |a⟩ ∓ e−i(Ea−Eb)(t−t′) ⟨a| ĉ†n |b⟩ ⟨b| ĉn |a⟩

]
= −i Θ(∆t)

Z

∑
a,b

[
e−βẼa ∓ e−βẼb

]
ei(Ea−Eb)(t−t′)| ⟨a| ĉn |b⟩ |2 (D3)

Now one can Fourier transform into frequency space, where the relevant integral is∫
d∆teiω∆tΘ(∆t)ei(Ea−Eb)(∆t) = lim

ϵ→0+

∫ ∞

0

d∆tei(ω+iϵ)∆tei(Ea−Eb)(∆t) = lim
ϵ→0+

i

ω + Ea − Eb + iϵ
(D4)

So we have

cretn,n(ω) =
1

Z

∑
a,b

[
e−βẼa ∓ e−βẼb

]
ω + Ea − Eb + i0+

| ⟨a| ĉn |b⟩ |2 (D5)

To obtain the final result, we use the Sokhotski–Plemelj theorem, which states
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lim
ϵ→0+

1

x± iϵ
= ∓iπδ(x) + P

( 1

x

)
, (D6)

where P denotes the Cauchy principal value. Inserting eq. (D6) into eq. (D5) yields

cretn,n(ω) =
1

Z

∑
a,b

[
e−βẼa ∓ e−βẼb

][
−iπδ(ω + Ea − Eb) + P

( 1

ω + Ea − Eb

)]
| ⟨a| ĉn |b⟩ |2. (D7)

The spectral function follows as

ãn,n(ω) = −2 Im(cretn,n(ω)) =
2π

Z

∑
a,b

[
e−βẼa ∓ e−βẼb

]
δ(ω + Ea − Eb) | ⟨a| ĉn |b⟩ |2

=
2π

Z

∑
a,b

[
1∓ e−β(Ẽb−Ẽa)

]
e−βẼaδ(ω + Ea − Eb) | ⟨a| ĉn |b⟩ |2. (D8)

As in our case ĉn is a one-particle annihilation operator, the matrix element can only contribute if Nb = Na +1, so
we can rewrite the energy differences in the exponent to

Ẽb − Ẽa = Eb − µNb − (Ea − µNa) = Eb − Ea − µ, (D9)

where eq. (D1) was used. This finally yields after applying the delta function

ãn,n(ω) =
2π

Z

[
1∓ e−β(ω−µ)

]∑
a,b

e−βẼaδ(ω + Ea − Eb) | ⟨a| ĉn |b⟩ |2. (D10)

This was already shown in [75] and shows indeed, that the bosonic spectral function can be negative, if ω−µ < 0 .
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[21] H. S. Köhler, N. H. Kwong, and H. A. Yousif, “A fortran
code for solving the kadanoff–baym equations for a ho-
mogeneous fermion system,” Comp. Phys. Comm. 123,
123–142 (1999).

[22] S. Juchem, W. Cassing, and C. Greiner, Physical Review
D 69 (2004), 10.1103/physrevd.69.025006.

[23] Linda Shen, Jürgen Berges, Jan M. Pawlowski, and
Alexander Rothkopf, “Thermalization and dynamical
spectral properties in the quark-meson model,” Phys.
Rev. D 102, 016012 (2020).

[24] P. Danielewicz, “Quantum Theory of Nonequilibrium
Processes. 1.” Annals Phys. 152, 239–304 (1984).

[25] Carsten Greiner and Stefan Leupold, “Stochastic inter-
pretation of Kadanoff-Baym equations and their rela-
tion to Langevin processes,” Annals Phys. 270, 328–390
(1998), arXiv:hep-ph/9802312.

[26] R.P Feynman and F.L Vernon, “The theory of a gen-
eral quantum system interacting with a linear dissipative
system,” Annals of Physics 24, 118–173 (1963).

[27] V M Galitskii and A B Migdal, “Application of quantum
field theory methods to the many body problem,” Zhur.
Eksptl’. i Teoret. Fiz. 34 (1958).

[28] C.M. Ko, Z.W. Lin, and Y. Oh, “Transport model study
of deuteron production in relativistic heavy ion colli-
sions,” Nuclear Physics A 834, 253c–256c (2010), the
10th International Conference on Nucleus-Nucleus Col-
lisions (NN2009).

[29] J. Staudenmaier, D. Oliinychenko, J. M. Torres-Rincon,
and H. Elfner, “Deuteron production in relativistic heavy
ion collisions via stochastic multiparticle reactions,”
Phys. Rev. C 104, 034908 (2021).
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