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Nice, link to Asymptotic Safety?
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Now our idea coming from the UV:
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| g(HA(T) = G(1) - A(D)
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P - —1(20)
e Non trivial “coincidence”
 Works for many flow truncations
e UV FP @ inflation makes sense
e Separatrix special flow trajectory

: k
* scale setting makes sense — = ¢="29

ko
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%Simplifying assumption:

Matter couplings don’t run (so much)
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Solve Numerically and compare to
NON-5D
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