The Lifshitz regime in QCD

RDP, VV Skokov & A Tsvelik, 1801.08156

Chiral spirals and their fluctuations

1. Standard phase diagram in T & μ: critical end-point (CEP)

Not seen from lattice at small μ

- 2. Quarkyonic phase at large N_c (analytic) and $N_c = 2$ (lattice)
- 3. Chiral Spirals in Quarkyonic matter: sigma models, SU(N) and U(1)
- 4. Phase diagram: *just* a 1st order line,

with large fluctuations in the Lifshitz regime

"Standard" phase diagram for QCD in T & µ: CEP?

Lattice: at quark chemical potential $\mu = 0$, crossover at $T_{ch} \sim 154$ MeV At $\mu \neq 0$, quarks *might* change scalar 4-pt coupling < 0, so transition 1st order Must meet at a Critical End Point (CEP), *true* 2nd order phase transition Asakawa & Yazaki '89, Stephanov, Rajagopal & Shuryak '98 & '99

Lifshitz phase diagram for QCD

Instead: "Lifshitz regime": strongly coupled, large fluctuations

Unbroken 1st order line to spatially inhomogeneous phases = "chiral spirals"

Hints in heavy ion data?

Fundamental problem in field theory: analogies to phase diagram for polymers Could be CEP as well...

Lattice, hot QCD: no CEP at small µ

Lattice: Hot QCD, 1701.04325

Expand about $\mu = 0$, power series in μ^{2n} , n = 1, 2, 3.

Estimate radius of convergence. No sign of CEP by $\mu_{ak} \sim T$

Cluster expansion: no CEP at small μ

Lattice: Vovchenko, Steinheimer, Philipsen & Stoecker, 1701.04325

Use cluster expansion method, different way of estimating power series in μ No sign of CEP by $\mu_{\sigma k}$ ~ T

So if there is no critical endpoint,

what could be going on?

Lattice for T = 0, $\mu \neq 0$, two colors

Lattice: Bornyakov et al, 1711.01869. No sign problem for $N_c = 2$. Two flavors.

Heavy pions, $m_{\pi} \sim 740$ MeV. $\sqrt{\sigma} = 470$ MeV. 32^4 lattice, $a \sim .04$ fm

Confined until very high $\mu_{ak} \sim 1$ GeV. Bare Polyakov loop:

Lattice for T = 0, $\mu \neq 0$, two colors

Lattice: Bornyakov et al, 1711.01869.

String tension in time: nonzero up to $\mu_{qk} \sim 750 \text{ MeV}$

Phases for $N_c = 2$, $T \sim 0$, $\mu \neq 0$

Braguta, Ilgenfritz, Kotov, Molochkov, & Nikolaev, 1605.04090 (earlier: Hands, Skellerud + ...)

Lattice: $N_c = 2$, $N_f = 2$. $m_{\pi} \sim 400$ MeV, fixed $T \sim 50$ MeV, vary μ_{qk} .

Hadronic phase: $0 \le \mu_{qk} < m_{\pi} / 2 \sim 200$ MeV. Confined, independent of μ

Dilute baryons: $200 < \mu_{gk} < 350$. Bose-Einstein condensate (BEC) of diquarks.

Dense Baryons: $350 < \mu_{gk} < 600$. Pressure *not* perturbative, BEC

Quarkyonic: $600 < \mu_{qk} < 1100$: pressure ~ perturbative, but excitations *confined* (Wilson loop ~ area)

Perturbative: $1100 < \mu_{qk}$, but μ a too large.

Quarkyonic matter

McLerran & RDP 0706.2191

At large N_c , $g^2 N_c \sim 1$, $g^2 N_f \sim 1/N_c$, so need to go to *large* $\mu \sim N_c^{1/2}$.

$$m_{Debye}^2 = g^2((N_c + N_f/2)T^2/3 + N_f\mu^2/(2\pi^2))$$

Doubt large N_c applicable at $N_c = 2$.

When does perturbation theory work?

 $T = \mu = 0$: scattering processes computable for momentum p > 1 GeV

 $T \neq 0$: $p > 2 \pi T$, lowest Matsubara energy

 $\mu \neq 0$, T = 0: μ is like a scattering scale, so *perhaps* $\mu_{pert} \sim 1$ GeV.

At least for the pressure. Excitations determined by region near Fermi surface

Possible phases of cold, dense quarks

Confined: $0 \le \mu_{qk} < m_{baryon} / 3$. μ doesn't matter

Dilute baryons: m_{baryon} 3 < μ_{qk} < μ_{dilute} :. Effective models of baryons, pions

Dense baryons: $\mu_{dilute} < \mu_{qk} < \mu_{dense}$. Pion/kaon condensates.

Quarkyonic: $\mu_{dilute} < \mu_{qk} < \mu_{perturbative}$. 1-dim. chiral spirals.

Perturbative: $\mu_{perturbative} < \mu_{qk}$. Color superconductivity

 $\mu_{perturbative} \sim 1 \text{ GeV}?$

Dense baryons and quarkyonic *continuously* related.

U(1) order parameter in both.

Relevance for neutron stars

Fraga, Kurkela, & Vuorinen 1402.6618.

Maximum μ_{qk} may reach quarkyonic (for pressure), but true perturbative?

Ghisoiu, Gorda, Kurkela, Romatschke, Säppi, & Vuorinen, 1609.04339: pressure(μ_{qk}) ~ g^6 . Will be able to compute Λ_{pert} = # μ_{qk} # ~ 1?

Quarkyonic matter: 1-dim. reduction

Kojo, Hidaka, McLerran & RDP 0912.3800: as toy model, assume confining potential

$$\Delta_{00} = \frac{\sigma_0}{(\vec{p}^2)^2} , \ \Delta_{ij} \sim \frac{1}{p^2}$$

Near the Fermi surface, reduces to effectively 1-dim. problem in patches. For *either* massless or massive quarks, excitations have zero energy about Fermi surface; just Fermi velocity $v_F < 1$ if $m \ne 0$.

Spin in 4-dim. -> "flavor" in 1-dim., so *extended* $2N_f$ flavor symmetry, $SU(N_f)_L xSU(N_f)_R -> SU(2\ N_f)_L xSU(2\ N_f)_R$. Similar to Glozman,1511.05857.

Extended 2 N_f flavor sym. broken by transverse fluctuations, only approximate.

Number of patches $N_{patch} \sim \mu/\sigma_0$, so spherical Fermi surface recovered as $\sigma_0 \to 0$

Transitions with # patches

Minimal number of patches = 6.

Probably occurs in dense baryonic phase.

In quarkyonic, presumably weak 1st order transitions as # patches changes.

Like Keplers....

Chiral spirals in 1+1 dimensions

In 1+1 dim., can eliminate μ by chiral rotation:

$$q' = e^{i\mu z \Gamma_5} q$$
, $\overline{q}(\cancel{D} + i\mu \Gamma_0) q = \overline{q}' \cancel{D} q'$, $\Gamma_5 \Gamma_z = \Gamma_0$

Thus a constant chiral condensate automatically becomes a chiral spiral:

$$\overline{q}'q' = \cos(2\mu z)\overline{q}q + i\sin(2\mu z)\overline{q}\gamma_5q$$

Argument is only suggestive.

N.B.: anomaly ok, gives quark number: $\langle \overline{q} \Gamma_0 q \rangle = \mu/\pi$

Pairing is between quark & quark-hole, both at edge of Fermi sea.

Thus chiral condensate varies in z as $\sim 2 \mu$.

Bosonization in 1+1 dimensions

Do not need detailed form of chiral spiral to determine excitations.

Use bosonization. For one fermion,

$$\overline{\psi} \not \partial \psi \leftrightarrow (\partial_i \phi)^2$$

 ϕ corresponds to U(1) of baryon number. In general, non-Abelian bosonization. For flavor modes,

$$\mathcal{S}_{eff}^{flavor} = \int dt \int dz \, 3 \, \frac{1}{16\pi} \, \mathrm{tr}(\partial_{\mu} U^{\dagger})(\partial_{\mu} U) + \dots$$

where U is a $SU(2 N_f)$ matrix.

Do not show Wess-Zumino-Witten terms for level 3 = # colors.

Also effects of transverse fluctuations, reduce $SU(2 N_f) \rightarrow SU(N_f)$; quark mass

Lastly, SU(3) + level 2 N_f sigma model. Modes are gapped by confinement.

Pion/kaon condensates & U(1) phonon

Overhauser '60, Migdal '71....Kaplan & Nelson '86...

Pion/kaon condensate:

$$\langle \overline{q}_L q_R \rangle \sim \langle \Phi \rangle \sim \Phi_0 \exp(i(qz + \phi)t_3)$$

Condensate along σ and $\pi^0 => t_3$. Kaon condensate σ and K, etc.

Excitations are the SU(N_f) Goldstone bosons and a "phonon", φ.

Phases with pion/kaon condensates and quarkyonic Chiral Spirals both spontaneously break U(1), have associated massless field.

Continuously connected: $SU(N_f)$ of π/K condensate => ~ $SU(2 N_f)$ of CS's.

Fluctuations same in both.

Perhaps WZW terms for π/K condensates?

Anisotropic fluctuations in Chiral Spirals

Spontaneous breaking of global symmetry => Goldstone Bosons have derivative interactions, $\sim \partial^2$

π/K condensates and CS's break *both* global *and* rotational symmetries

Interactions along condensate direction usual quadratic, $\sim \partial_z^2$

Those quadratic in transverse momenta, $\sim \partial_{\perp}^{2}$, cancel, leaving quartic, $\sim \partial_{\perp}^{4}$.

$$\mathcal{L}_{eff} = f_{\pi}^{2} |(\partial_{z} - ik_{0})U|^{2} + \kappa |\partial_{\perp}^{2}U|^{2} + \dots$$

Valid for *both* the U(1) phonon φ and Goldstone bosons U

Hidaka, Kamikado, Kanazawa & Noumi 1505.00848; Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Nitta, Sasaki & Yokokura 1706.02938

No long range order in Chiral Spirals

Consider tadpole diagram with anisotropic propagator

$$\int d^2k_{\perp} dk_z \, \frac{1}{(k_z - k_0)^2 + (k_{\perp}^2)^2} \sim \int d^2k_{\perp} \, \frac{1}{k_{\perp}^2} \sim \log \Lambda_{\rm IR}$$

Old story for π/K condensates: Kleinert '81; Baym, Friman, & Grinstein, '82.

Similar to smectic-C liquid crystals: ordering in one direction, liquid in transverse.

Hence anisotropic propagator

Chiral Spirals in 1+1 dimensions

Overhauser/Migdal's pion condensate:

$$(\sigma, \pi^0) = f_{\pi}(\cos(k_0 z), \sin(k_0 z))$$

Ubiquitous in 1+1 dimensions:Basar, Dunne & Thies, 0903.1868; Dunne & Thies 1309.2443+ ... *Wealth* of exact solutions, phase diagrams at *infinite* N_f .

Chiral spiral:

Chiral Spirals in 3+1 dimensions

In 3+1, common in NJL models: Nickel, 0902.1778 +Buballa & Carignano 1406.1367 + ...

In reduction to 1-dim, $\Gamma_5^{1-\text{dim}} = \gamma_0 \gamma_z$, so chiral spiral between $\overline{q}q \& \overline{q}\gamma_0 \gamma_z \gamma_5 q$

Both of these phase diagrams are *dramatically* affected by fluctuations:

no Lifshitz point in 1+1 or 3+1 dimensions at finite N

there is a Lifshitz regime

Standard phase diagram

$$\mathcal{L} = (\partial_{\mu}\phi)^{2} + m^{2}\phi^{2} + \lambda\phi^{4} + \kappa\phi^{6}$$

Negative quartic coupling, λ , turns a 2nd order transition into 1st order. Two phases.

Lifshitz phase diagram (in mean field theory)

$$\mathcal{L}_{\text{Lifshitz}} = (\partial_0 \phi)^2 + Z(\partial_i \phi)^2 + \frac{1}{M^2} (\partial_i^2 \phi)^2 + m^2 \phi^2 + \lambda \phi^4$$

Negative kinetic term, Z < 0, generates spatially inhomogeneous phase, CS. Three phases.

No massless modes in too few dimensions

No massless modes in $d \le 2$ dimensions:

$$\int d^2k \, \frac{1}{k^2} \sim \log \Lambda_{\rm IR}$$

Cannot break a continuous symmetry in $d \le 2$ dimensions: instead of Goldstone bosons, generate a mass *non*-perturbatively.

Lifshitz point: $Z = m^2 = 0$, so propagator just ~ $1/k^4$:

$$\int d^4k \, \frac{1}{k^4} \sim \log \Lambda_{\rm IR}$$

Hence *no* Lifshitz point in $d \le 4$ (spatial) dimensions.

Must generate either a mass m², or term ~ Z $p^2 \neq 0$, non-perturbatively

Lifshitz regime

Example: inhomogenous polymers

Like mixing oil & water: polymers A & B, with AB diblock copolymer ("co-AB")

Three phases: high temperature, A & B mix, symmetric phase

low temperature, little co-AB: A & B seperate, broken phase

co-AB tends to decrease interface tension between A & B phases, can turn it negative. Like Z < 0

Low temperature, high concentration co-AB: "lamellar" phase, stripes of A & B. Like smectic.

Lifshitz point in inhomogenous polymers: mean field

Three phases, symmetric, broken, & spatially inhomogenous

Mean field predicts Lifshitz point at given T & concentration of co-AB Fredrickson & Bates, Jour. Polymer Sci. 35, 2775 (1997)

Lifshitz regime in inhomogenous polymers

Instead of Lifshitz point predicted by mean field theory, find

Bicontinuous microemulsion: $Z \neq 0$, $m^2 = 0$: Lifshitz regime

Dolumer Jour 121 (11) 2012

Bicontinuous microemulsion: $Z \approx 0$

Experiment

Jones & Lodge, Polymer Jour. 131 (44) 2012

Self-consistent field theory

Fredrickson, "The equilibrium theory of inhomogenous polymers"

Phase diagram for QCD in T & μ : usual picture

Two phases, one Critical End Point (CEP) between crossover and line of 1st order transitions Ising fixed point, dominated by *massless* fluctuations at CEP

Lifshitz phase diagram for QCD

Lifshitz regime: strongly coupled, large fluctuations

Unbroken 1st order line to spatially inhomogeneous phases = "chiral spirals"

Heavy ions: could go through two 1st order transitions T_0 : maximum T_0 point of equal concentrations (unequal entropy)

Fluctuations at 7 GeV

Beam Energy Scan, down to 7 GeV.

Fluctuations MUCH larger when up to 2 GeV than to 0.8 GeV

Trivial multiplicity scaling? ... or Chiral Spiral?

But fluctuations in nucleons, not pions.

X. Luo & N. Xu, 1701.02105, fig. 37; Jowazee, 1708.03364

$$c_n = \frac{\partial^n}{\partial \mu^n} p(T, \mu)$$

Experimentally

For any sort of periodic structure (1D, 2D, 3D...),

Fluctuations concentrated about some characteristic momentum k₀

So "slice and dice": bin in intervals, 0 to .5 GeV, .5 to 1., etc.

If peak in fluctuations in a bin not including zero, may be evidence for $k_0 \neq 0$.

Signals for Lifshitz regime?

Must measure fluctuations in pions, kaons...

NJL models and Lifshitz points

Consider Nambu-Jona-Lasino models.

Nickel, 0902,1778 & 0906.5295 + + Buballa & Carignano 1406.1367

$$\mathcal{L}_{\text{NJL}} = \overline{\psi}(\partial \!\!\!/ + g\sigma)\psi + \sigma^2$$

Integrating over ψ ,

$$\operatorname{tr} \log(\partial + g \sigma) \sim \ldots + \kappa_1((\partial \sigma)^2 + \sigma^4) + \ldots$$

Due to scaling, $\partial \rightarrow \lambda \partial$, $\sigma \rightarrow \lambda \sigma$.

Consequently, in NJL @ 1-loop, *tricritical* = *Lifshitz point*.

Special to including only σ at one loop.

Not generic: violated by the inclusion of more fields, to two loop order, etc.

Improved gradient expansion near critical point:

Carignano, Anzuni, Benhar, & Mannarelli, 1711.08607.

Symmetric to CS: 1D (Brazovski) fluctuations

Consider $m^2 > 0$, Z < 0: minimum in propagator at *nonzero* momentum

Brazovski '75; Hohenberg & Swift '95 + ...;

Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Yoshiike, Lee & Tatsumi 1702.01511

$$\Delta^{-1} = m^2 + Z k^2 + k^4 / M^2$$
$$= m_{\text{eff}}^2 - 2 Z k_z^2 + O(k_z^3, k_z k_\perp^2)$$

 $\mathbf{k} = (\mathbf{k}_{\perp}, \mathbf{k}_{\mathbf{z}} - \mathbf{k}_{0})$: no terms in \mathbf{k}_{\perp}^{2} , only $(\mathbf{k}_{\perp}^{2})^{2}$.

Due to spon. breaking of rotational sym.

1-loop tadpole diagram:

$$\int d^3k \; \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim M^2 \int \frac{dk_z}{k_z^2 + m_{\text{eff}}^2} \sim \frac{M^2}{m_{\text{eff}}}$$

Effective reduction to 1-dim for any spatial dimension d, any global symmetry

1st order transition in 1-dim.

Strong infrared fluctuations in 1-dim., both in the mass:

$$\Delta m^2 \sim \lambda \int d^3k \; \frac{1}{k_z^2 + m_{\text{eff}}^2 + \dots} \sim \lambda \; \frac{M}{m_{\text{eff}}}$$

and for the coupling constant:

$$\Delta \lambda \sim -\lambda^2 \int \frac{d^3k}{(k_z^2 + m_{\text{eff}}^2 + \ldots)^2} \sim -\lambda^2 M^3 \int_{m_{\text{eff}}} \frac{dk_z}{k_z^4} \sim -\lambda \frac{M^3}{m_{\text{eff}}^3}$$

Cannot tune m_{eff}^{2} to 0: λ_{eff} goes negative, 1st order trans. induced by fluctuations

Not like other 1st order fluc-ind'd trans's: just that in 1-d, $m_{eff}^{2} \neq 0$ always