
  

                            The Lifshitz regime in QCD
                    
RDP, VV Skokov & A Tsvelik, 1801.08156

Chiral spirals and their fluctuations

1. Standard phase diagram in T & μ: critical end-point (CEP)

    Not seen from lattice at small μ

2. Quarkyonic phase at large Nc (analytic) and Nc = 2 (lattice)

3. Chiral Spirals in Quarkyonic matter: sigma models, SU(N) and U(1)

4. Phase diagram: just a 1st order line, 
                             with large fluctuations in the Lifshitz regime



  

  “Standard” phase diagram for QCD in T & μ: CEP?    

Lattice: at quark chemical potential μ = 0, crossover at Tch ~ 154 MeV
At μ≠0, quarks might change scalar 4-pt coupling < 0, so transition 1st order
Must meet at a Critical End Point (CEP), true 2nd order phase transition 
Asakawa & Yazaki ‘89, Stephanov, Rajagopal & Shuryak ‘98 & ‘99
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Lifshitz phase diagram for QCD    
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Instead: “Lifshitz regime”: strongly coupled, large fluctuations
Unbroken 1st order line to spatially inhomogeneous phases = “chiral spirals”
Hints in heavy ion data?
Fundamental problem in field theory: analogies to phase diagram for polymers
Could be CEP as well...



  

  Lattice, hot QCD: no CEP at small μ    
Lattice: Hot QCD, 1701.04325
Expand about μ = 0, power series in μ2n, n = 1, 2, 3.  
Estimate radius of convergence.  No sign of CEP by μqk ~ T 



  

  Cluster expansion: no CEP at small  μ    
Lattice: Vovchenko, Steinheimer, Philipsen & Stoecker, 1701.04325
Use cluster expansion method, different way of estimating power series in μ
No sign of CEP by μqk ~ T 



  

So if there is no critical endpoint,

what could be going on?



  

  Lattice for T = 0, μ ≠ 0, two colors    

Lattice: Bornyakov et al, 1711.01869.  No sign problem for Nc = 2.  Two flavors.  
Heavy pions, m

π
 ~ 740 MeV.  √σσ = 470 MeV.  324 lattice, a ~ .04 fm

Confined until very high μqk ~ 1 GeV. Bare Polyakov loop:



  Lattice for T = 0, μ ≠ 0, two colors    
Lattice: Bornyakov et al, 1711.01869.

String tension in time: nonzero up to μqk ~ 750 MeV 



Phases for Nc = 2, T ~ 0, μ ≠ 0  
Braguta, Ilgenfritz, Kotov, Molochkov, & Nikolaev, 1605.04090 (earlier: Hands, Skellerud + …)

Lattice: Nc = 2, Nf = 2.  mπ ~ 400 MeV, fixed T ~ 50 MeV, vary μqk.  

Hadronic phase: 0 ≤ μqk < mπ /2 ~ 200 MeV.  Confined, independent of μ

Dilute baryons: 200 < μqk < 350 .  Bose-Einstein condensate (BEC) of diquarks.

Dense Baryons: 350 < μqk < 600.  Pressure not perturbative, BEC

Quarkyonic: 600 < μqk < 1100: pressure ~ perturbative, but excitations confined
                                                (Wilson loop ~ area)

Perturbative: 1100 < μqk, but μa too large.



Quarkyonic matter  
McLerran & RDP 0706.2191

At large Nc, g2 Nc ~ 1, g2 Nf ~ 1/Nc, so need to go to large μ ~ Nc
1/2.

Doubt large Nc  applicable at  Nc = 2 .

When does perturbation theory work?  

T = μ = 0: scattering processes computable for momentum p > 1 GeV

T ≠ 0: p > 2 π T , lowest Matsubara energy

μ ≠ 0, T = 0: μ is like a scattering scale, so perhaps μpert ~ 1 GeV.  
    At least for the pressure.  Excitations determined by region near Fermi surface



Possible phases of cold, dense quarks

ΛQCD

μ

Confined: 0 ≤ μqk < mbaryon /3 .   μ doesn’t matter

Dilute baryons: mbaryon 3  < μqk < μdilute: .  Effective models of baryons, pions

Dense baryons: μdilute < μqk < μdense .  Pion/kaon condensates.

Quarkyonic: μdilute < μqk < μperturbative .  1-dim. chiral spirals.

Perturbative: μperturbative < μqk. Color superconductivity

μperturbative ~ 1 GeV?

Dense baryons and quarkyonic continuously related.

U(1) order parameter in both.



Relevance for neutron stars
Fraga, Kurkela, & Vuorinen 1402.6618.

Maximum μqk may reach quarkyonic (for pressure), but true perturbative?

Ghisoiu, Gorda, Kurkela, Romatschke, Säppi, & Vuorinen, 1609.04339: pressure(μqk) ~ g6.
   Will be able to compute Λpert = # μqk  # ~ 1?

μ→

Dense 
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Quarkyonic matter: 1-dim. reduction

Kojo, Hidaka, McLerran & RDP 0912.3800: as toy model, assume confining potential

Near the Fermi surface, reduces to effectively 1-dim. problem in patches.  
For either massless or massive quarks, excitations have zero energy about
Fermi surface; just Fermi velocity vF < 1 if m ≠ 0.

Spin in 4-dim. -> “flavor” in 1-dim., so extended 2Nf flavor symmetry, 
SU(Nf)LxSU(Nf)R -> SU(2 Nf)LxSU(2 Nf)R   . Similar to Glozman,1511.05857.  

Extended 2 Nf flavor sym. broken by transverse fluctuations, only approximate.

Number of patches Npatch ~ μ/σ0 , so spherical Fermi surface recovered as σ0 -> 0



      Transitions with # patches

Minimal number of patches = 6.

Probably occurs in dense baryonic phase.

In quarkyonic, presumably weak 1st order
transitions as # patches changes.

Like Keplers....



Chiral spirals in 1+1 dimensions

In 1+1 dim., can eliminate μ by chiral rotation:

Thus a constant chiral condensate automatically becomes a chiral spiral:

Argument is only suggestive.  

N.B.: anomaly ok, gives quark number:

Pairing is between quark & quark-hole,both at edge of Fermi sea.  
Thus chiral condensate varies in z as ~ 2 μ.  



Bosonization in 1+1 dimensions
Do not need detailed form of chiral spiral to determine excitations.
Use bosonization.  For one fermion,

ϕ corresponds to U(1) of baryon number.  In general, non-Abelian bosonization.
For flavor modes,

where U is a SU(2 Nf) matrix.  
Do not show Wess-Zumino-Witten terms for level 3 = # colors.
Also effects of transverse fluctuations, reduce SU(2 Nf) -> SU(Nf); quark mass

Lastly, SU(3) + level 2 Nf sigma model.  Modes are gapped by confinement.



Pion/kaon condensates & U(1) phonon

Overhauser ‘60, Migdal ‘71....Kaplan & Nelson ‘86...
Pion/kaon condensate:

Condensate along σ and π0 => t3.  Kaon condensate σ and K, etc.

Excitations are the SU(Nf) Goldstone bosons and a “phonon”, φ.

Phases with pion/kaon condensates and quarkyonic Chiral Spirals both 
spontaneously break U(1), have associated massless field.

Continuously connected: SU(Nf) of π/K condensate => ~ SU(2 Nf) of CS’s.
Fluctuations same in both.

Perhaps WZW terms for π/K condensates?  



  

Valid for both the U(1) phonon φ and Goldstone bosons U 

Hidaka, Kamikado, Kanazawa & Noumi 1505.00848; 
Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Nitta, Sasaki & Yokokura 1706.02938

                     Anisotropic fluctuations in Chiral Spirals

Spontaneous breaking of global symmetry => 
Goldstone Bosons have derivative interactions, ~ 2 

π/K condensates and CS’s break both global and rotational symmetries

Interactions along condensate direction usual quadratic, ~ z
2

Those quadratic in transverse momenta, ~ 


2 , cancel, leaving quartic, ~  


4. 



  

                     No long range order in Chiral Spirals

Consider tadpole diagram with anisotropic propagator 

Old story for π/K condensates: Kleinert ‘81; Baym, Friman, & Grinstein, ‘82 .

Similar to smectic-C liquid crystals:
ordering in one direction, 
liquid in transverse.
Hence anisotropic propagator



  

               Chiral Spirals in 1+1 dimensions
Overhauser/Migdal’s pion condensate:

Ubiquitous in 1+1 dimensions:Basar, Dunne & Thies, 0903.1868; Dunne & Thies 1309.2443+ ...

Wealth of exact solutions, phase diagrams at infinite Nf.
                       Usual Gross-Neveu model:
                         Phase diagram                                Chiral spiral:



  

               Chiral Spirals in 3+1 dimensions
In 3+1, common in NJL models:  Nickel, 0902.1778 + ....Buballa & Carignano 1406.1367 + ...

In reduction to 1-dim, Γ5
1-dim = γ0γz , so chiral spiral between  

←Lifshitz = Critical End Point



  

Both of these phase diagrams are
dramatically affected by fluctuations:

no Lifshitz point in 1+1 or 3+1 dimensions
at finite N

there is a Lifshitz regime



  

        Standard phase diagram

Negative quartic coupling, λ,  turns a 2nd order transition into 1st order.
Two phases. 

X = tri-critical point, m2 =  λ = 0



  

   Lifshitz phase diagram (in mean field theory)

X = Lifshitz point, m2 =  Z = 0

Negative kinetic term, Z < 0,  generates spatially inhomogeneous phase, CS.
Three phases.



  

        No massless modes in too few dimensions

No massless modes in d ≤ 2 dimensions:

Cannot break a continuous symmetry in d ≤ 2 dimensions: instead of
Goldstone bosons, generate a mass non-perturbatively.

Lifshitz point: Z = m2 = 0, so propagator just ~ 1/k4:

Hence no Lifshitz point in d ≤ 4 (spatial) dimensions.

Must generate either a mass m2, or term ~ Z  p2≠ 0, non-perturbatively 



  

                        Lifshitz regime

Lifshitz regime (shaded):
Z and/or m2 are ≠ 0 everywhere
strongly coupled, non-perturbative

Brazovski 1st →



  

          Example: inhomogenous polymers

Like mixing oil & water: polymers A & B, with AB diblock copolymer (“co-AB”)

Three phases: high temperature, A & B mix, symmetric phase

                       low temperature, little co-AB: A & B seperate, broken phase

co-AB tends to decrease interface tension between A & B phases, 
                        can turn it negative.  Like Z < 0

Low temperature, high concentration co-AB: 
“lamellar” phase, stripes of A & B.  Like smectic.



  

 Lifshitz point in inhomogenous polymers: mean field

Three phases, symmetric, broken, & spatially inhomogenous

Mean field predicts Lifshitz point at given T & concentration of co-AB
Fredrickson & Bates, Jour. Polymer Sci. 35, 2775 (1997)

← Lifshitz 
     point

← co-AB conc.



  

          Lifshitz regime in inhomogenous polymers
Instead of Lifshitz point predicted by mean field theory, find
Bicontinuous microemulsion: Z ≠ 0, m2 = 0: Lifshitz regime

← co-AB conc.Jones & Lodge
Polymer Jour. 131 (44) 2012



  

          Bicontinuous microemulsion: Z ≈ 0

         Experiment                                         Self-consistent field theory
           Jones & Lodge,                             Fredrickson, “The equilibrium theory of   
    Polymer Jour. 131 (44) 2012                                                   inhomogenous polymers”           
                                          



  

Phase diagram for QCD in T & μ: usual picture    
Two phases, one Critical End Point (CEP) 
between crossover and line of 1st order transitions
Ising fixed point, dominated by massless fluctuations at CEP

Critical End Point
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Lifshitz phase diagram for QCD    

Quark matterT0T0T0

Hadronic

Quark-Gluon Plasma
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crossover↑

Chiral 
spirals

Lifshitz regime

Lifshitz regime: strongly coupled, large fluctuations
Unbroken 1st order line to spatially inhomogeneous phases = “chiral spirals”

Heavy ions: could go through two 1st order transitions
T0: maximum T, point of equal concentrations (unequal entropy)



  

                           Fluctuations at 7 GeV
Beam Energy Scan, down to 7 GeV.
Fluctuations MUCH larger when up to 2 GeV than to 0.8 GeV
Trivial multiplicity scaling? ... or Chiral Spiral?
But fluctuations in nucleons, not pions.
X. Luo & N. Xu, 1701.02105, fig. 37; Jowazee, 1708.03364



  

                              Experimentally

For any sort of periodic structure (1D, 2D, 3D...), 

        Fluctuations concentrated about some characteristic momentum k0

        So “slice and dice”: bin in intervals, 0 to .5 GeV, .5 to 1., etc.

        If peak in fluctuations in a bin not including zero, 
        may be evidence for k0  0.

Signals for Lifshitz regime?

Must measure fluctuations in pions, kaons...



  

NJL models and Lifshitz points  
Consider Nambu-Jona-Lasino models.
Nickel, 0902,1778 & 0906.5295 + .... + Buballa & Carignano 1406.1367

Integrating over ψ,

Due to scaling,  -> λ, σ -> λσ.  
Consequently, in NJL @ 1-loop, tricritical = Lifshitz point.

Special to including only σ at one loop.
Not generic: violated by the inclusion of more fields, to two loop order, etc.

Improved gradient expansion near critical point:
Carignano, Anzuni, Benhar, & Mannarelli, 1711.08607. 



  

             Symmetric to CS: 1D (Brazovski) fluctuations
Consider m2  > 0, Z < 0: minimum in propagator at nonzero momentum
Brazovski ‘75; Hohenberg & Swift ‘95 + ... ; 
Lee, Nakano, Tsue, Tatsumi & Friman, 1504.03185; Yoshiike, Lee & Tatsumi 1702.01511

k=(k
⊥
,kz-k0): no terms in k

⊥

2, only (k
⊥

2)2. 
Due to spon. breaking of rotational sym.
1-loop tadpole diagram: 

Effective reduction to 1-dim for any spatial dimension d, any global symmetry



  

                           1st order transition in 1-dim.

Strong infrared fluctuations in 1-dim., both in the mass:

and for the coupling constant:

Cannot tune meff
2 to 0: λeff goes negative, 1st order trans. induced by fluctuations

Not like other 1st order fluc-ind’d trans’s: just that in 1-d, meff
2 ≠ 0 always
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