The Initial Correlations of the Glasma EnergyMomentum Tensor

Pablo Guerrero Rodríguez ${ }^{a}$ in collaboration with:
Javier L. Albacete ${ }^{a}$ and Cyrille Marquet ${ }^{b}$
${ }^{a}$ CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada
${ }^{b}$ Centre de Physique Théorique at École Polytechnique, Palaiseau, France

January 24th, 2019
FIAS, Frankfurt
J. High Energ. Phys. (2019) 2019:73
arXiv:1808.00795

Universidad de Granada

Outline

1- Introduction
2- The Color Glass Condensate
3- Calculation of the gluon fields
4- Correlators of the energy-momentum tensor
4.1-Correlator of n Wilson lines and m color sources
4.2- Correlator of 4 Wilson lines and 4 external sources
4.3- Color projections of the correlator of 4 Wilson lines

5- Covariance of the Glasma energy density
6- Comparison with the Glasma Graph approximation
7- Conclusions

Introduction

Introduction: The QCD phase space

- Value of QCD's coupling constant depends on conditions of temperature and baryon density
- Low temperature and densities: hadronic phase (confinement and spontaneously broken chiral symmetry)
- Lattice simulations indicate a transition at high temperature to a deconfined, chiral-symmetric phase: The QUARK-GLUON PLASMA

Introduction: The QCD phase space

- This state of matter can be accessed in particle colliders through Heavy Ion Collision experiments

- Performed at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC) and CERN's Large Hadron Collider (ALICE experiment)

Introduction: Stages of a heavy ion collision

- After the collision, matter goes through different phases as it cools down
- In the last part, it reaches the hadronic phase, and this is how it appears in the detectors

Introduction: Stages of a heavy ion collision

Final state correlations

- After the collision, matter goes through different phases as it cools down
- In the last part, it reaches the hadronic phase, and this is how it appears in the detectors
- QGP can be studied through the non-trivial correlations between the measured particles

Introduction: Stages of a heavy ion collision

- After the collision, matter goes through different phases as it cools down
- In the last part, it reaches the hadronic phase, and this is how it appears in the detectors
- QGP can be studied through the non-trivial correlations between the measured particles
- BUT: Initial state fluctuations reflect in the final state correlations!
\longrightarrow We need robust theoretical description

Introduction: Stages of a heavy ion collision

- No theoretical agreement on the initial conditions of Glasma evolution
- Large degree of phenomenological modeling
- Source of uncertainty for parameters used in Hydro models

Introduction: Stages of a heavy ion collision

- No theoretical agreement on the initial conditions of Glasma evolution
- Large degree of phenomenological modeling
- Source of uncertainty for parameters used in Hydro models
- We provide a first-principles analytical calculation of:
$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle$
$\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\mu \nu}\left(y_{\perp}\right)\right\rangle$
In the classical approximation (Color Glass Condensate)

Initial conditions: the Color-Glass Condensate

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of nucleons is vastly dominated by a high density of gluons

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of nucleons is vastly dominated by a high density of gluons
- Relativistic kinematics: at high energies,
 the nuclei appear almost two-dimensional in the laboratory frame due to Lorentz

contraction

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of nucleons is vastly dominated by a high density of gluons
- Relativistic kinematics: at high energies,
 the nuclei appear almost two-dimensional in the laboratory frame due to Lorentz contraction

- QCD becomes non-linear and non-perturbative!

Color Glass Condensate: McLerran-Venugopalan model

- Perturbative techniques would require computing infinite diagrams
- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

Color Glass Condensate: McLerran-Venugopalan model

- Perturbative techniques would require computing infinite diagrams
- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

Color Glass Condensate: McLerran-Venugopalan model

- Perturbative techniques would require computing infinite diagrams
- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho^{a}(x) t^{a}
$$

- Calculation of observables: average over background classical fields

$$
\langle\mathcal{O}[\rho]\rangle=\int[d \rho] \exp \left\{-\int d x \operatorname{Tr}\left[\rho^{2}\right]\right\} \mathcal{O}[\rho]
$$

Color Glass Condensate: McLerran-Venugopalan model

- Perturbative techniques would require computing infinite diagrams
- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho^{a}(x) t^{a}
$$

- Calculation of observables: average over background classical fields
- Basic building block: 2-point correlator (McLerran-Venugopalan)

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) \delta^{(2)}\left(x_{\perp}-y_{\perp}\right)
$$

Color Glass Condensate: McLerran-Venugopalan model

- Perturbative techniques would require computing infinite diagrams
- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho^{a}(x) t^{a}
$$

- Calculation of observables: average over background classical fields
- Basic building block: (generalized) 2-point correlator

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) h\left(b_{\perp}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) f\left(x_{\perp}-y_{\perp}\right)
$$

Steps for the calculation

1) Calculate the gluon fields at early times in a HIC

Steps for the calculation

1) Calculate the gluon fields at early times in a HIC

2) Build the energy-momentum tensor

$$
T_{0}^{\mu \nu}\left(x_{\perp}\right)=2 \operatorname{Tr}\left\{\frac{1}{4} g^{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}-F^{\mu \alpha} F_{\alpha}^{\nu}\right\}_{0}
$$

Steps for the calculation

1) Calculate the gluon fields at early times in a HIC

2) Build the energy-momentum tensor

$$
T_{0}^{\mu \nu}\left(x_{\perp}\right)=2 \operatorname{Tr}\left\{\frac{1}{4} g^{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}-F^{\mu \alpha} F_{\alpha}^{\nu}\right\}_{0}
$$

3) Average over the color source distributions

$$
\begin{aligned}
& \left\langle T_{0}^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\int\left[d \rho_{1}\right] W_{1}\left[\rho_{1}\right]\left[d \rho_{2}\right] W_{2}\left[\rho_{2}\right] T_{0}^{\mu \nu}\left(x_{\perp}\right)\left[\rho_{1}, \rho_{2}\right] \\
& \left\langle T_{0}^{\mu \nu}\left(x_{\perp}\right) T_{0}^{\sigma \gamma}\left(y_{\perp}\right)\right\rangle=\int\left[d \rho_{1}\right] W_{1}\left[\rho_{1}\right]\left[d \rho_{2}\right] W_{2}\left[\rho_{2}\right] T_{0}^{\mu \nu}\left(x_{\perp}\right) T_{0}^{\sigma \gamma}\left(y_{\perp}\right)\left[\rho_{1}, \rho_{2}\right]
\end{aligned}
$$

Calculation of the gluon fields

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{\mathbf{1}}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{\mathbf{2}}^{\nu}=\rho_{\mathbf{2}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

The gluon fields at $\mathbf{T}=0^{+}$in HICs

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{2}^{\nu}=\rho_{2}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
A_{1}^{ \pm}= & 0 \\
A_{1}^{i}= & \theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right) t^{b} \equiv \theta\left(x^{-}\right) \alpha_{1}^{i, b}\left(x_{\perp}\right) t^{b} \\
& U_{1}^{a b}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}^{a b}
\end{aligned}
$$

The gluon fields at $\mathrm{T}=0^{+}$in HICs

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{\mathbf{1}}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathrm{J}_{2}^{\nu}=\rho_{2}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
& A_{1}^{ \pm}=0 \\
& A_{1}^{i}=\theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right) t^{b} \equiv \theta\left(x^{-}\right) \alpha_{1}^{i, b}\left(x_{\perp}\right) t^{b} \\
& \qquad U_{1}^{a b}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}
\end{aligned}
$$

[3] Forward light cone $\tau=0^{+}$

$$
\begin{array}{ll}
A^{ \pm}= \pm x^{ \pm} \alpha\left(\tau=0^{+}, x_{\perp}\right) \\
A^{i} & =\alpha^{i}\left(\tau=0^{+}, x_{\perp}\right)
\end{array} \quad \begin{aligned}
& \alpha^{i}\left(\tau=0^{+}, x_{\perp}\right)=\alpha_{1}^{i}\left(x_{\perp}\right)+\alpha_{2}^{i}\left(x_{\perp}\right) \\
& \alpha\left(\tau=0^{+}, x_{\perp}\right)=\frac{i g}{2}\left[\alpha_{1}^{i}\left(x_{\perp}\right), \alpha_{2}^{i}\left(x_{\perp}\right)\right]
\end{aligned}
$$

Calculation of the energy-momentum tensor $T^{\mu \nu}\left(\tau=0^{+}\right)$

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{2}^{\nu}=\rho_{\mathbf{2}}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
& A_{1}^{ \pm}=0 \\
& A_{1}^{i}=\theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right) t^{b} \equiv \theta\left(x^{-}\right) \alpha_{1}^{i, b}\left(x_{\perp}\right) t^{b} \\
& \qquad U_{1}^{a b}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}^{a b}
\end{aligned}
$$

[3] Forward light cone $\tau=0^{+}$

$$
\begin{aligned}
A^{ \pm} & = \pm x^{ \pm} \alpha\left(\tau=0^{+}, x_{\perp}\right) & \alpha^{i}\left(\tau=0^{+}, x_{\perp}\right) & =\alpha_{1}^{i}\left(x_{\perp}\right)+\alpha_{2}^{i}\left(x_{\perp}\right) \\
A^{i} & =\alpha^{i}\left(\tau=0^{+}, x_{\perp}\right) & \alpha\left(\tau=0^{+}, x_{\perp}\right) & =\frac{i g}{2}\left[\alpha_{1}^{i}\left(x_{\perp}\right), \alpha_{2}^{i}\left(x_{\perp}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
T_{0}^{\mu \nu} & =\frac{1}{4} g^{\mu \nu} F^{\alpha \beta, a} F_{\alpha \beta}^{a}-F^{\mu \alpha, a} F_{\alpha}^{\nu, a} \\
& =-\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left(\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right) \times \operatorname{diag}(1,1,1,-1) \\
& \equiv \epsilon_{0} \times \operatorname{diag}(1,1,1,-1) \equiv \epsilon_{0} \times t^{\mu \nu}
\end{aligned}
$$

Correlators of the energy-momentum tensor at $\tau=0^{+}$

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle
\end{aligned}
$$

Building block of

 the calculation$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

REMINDER:

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle
\end{aligned}
$$

- We momentarily take two different transverse positions:

$$
\begin{array}{r}
\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-\prime}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-\prime}, y_{\perp}\right)}{\nabla^{2}} U^{b^{\prime} b}\left(z^{-\prime}, y_{\perp}\right)\right\rangle \\
\sim \exp \left\{i \int^{z^{-}} d x^{-} \rho\right\} \quad \sim \exp \left\{i \int^{z^{-\prime}} d x^{-} \rho\right\}
\end{array}
$$

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) \delta^{(2)}\left(x_{\perp}-y_{\perp}\right)
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

REMINDER:

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle
\end{aligned}
$$

- We momentarily take two different transverse positions:
$\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-1}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-\prime} y_{\perp}\right)}{\nabla_{\perp}^{2}}\right\rangle\left\langle U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-\prime}, y_{\perp}\right)\right\rangle$
Luckily, in this case Wilson lines and (external) color source densities factorize

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) \delta^{(2)}\left(x_{\perp}-y_{\perp}\right)
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle
\end{aligned}
$$

- We momentarily take two different transverse positions:
$\left.\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-} \frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-\prime} y_{\perp}\right)}{\nabla_{\perp}^{2}}\right\rangle\left\langle U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-\prime}, y_{\perp}\right)\right\rangle$

$$
\delta^{a^{\prime} b^{\prime}} \mu^{2}\left(x^{-}\right) \delta\left(x^{-}-y^{-}\right) \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right)
$$

Where:

$$
L\left(x_{\perp}-y_{\perp}\right)=\int d^{2} z_{\perp} G\left(x_{\perp}-z_{\perp}\right) G\left(y_{\perp}-z_{\perp}\right)
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

REMINDER:

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle
\end{aligned}
$$

- We momentarily take two different transverse positions:
$\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-1}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-\prime} y_{\perp}\right)}{\nabla_{\perp}^{2}}\right\rangle\left\langle U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-1}, y_{\perp}\right)\right\rangle$

$$
\begin{aligned}
& \frac{\delta^{a b} \delta^{a^{\prime} b^{\prime}}}{N} \exp \left[-g^{2} \frac{N}{2} \Gamma\left(x_{\perp}, y_{\perp}\right) \bar{\mu}^{2}\left(x^{-}\right)\right] \\
& \equiv \frac{\delta^{a b} \delta^{a^{\prime} b^{\prime}}}{N} C_{\mathrm{adj}}^{(2)}\left(x^{-} ; x_{\perp}, y_{\perp}\right) .
\end{aligned}
$$

Where:

$$
\Gamma\left(x_{\perp}, y_{\perp}\right)=2\left(L\left(0_{\perp}\right)-L\left(x_{\perp}-y_{\perp}\right)\right) .
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

REMINDER:

$$
\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)
$$

$$
\begin{aligned}
&\left\langle\epsilon_{0}\right\rangle=-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
&=-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
&=\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle \\
&=\frac{g^{2}}{8} f^{a b m} f^{c d m}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) \delta^{a c} \delta^{i k} \delta^{b d} \delta^{j l} \bar{\mu}_{1}^{2} \bar{\mu}_{2}^{2}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \\
&=g^{2} C_{A}^{2} C_{F} \bar{\mu}_{1}^{2} \bar{\mu}_{2}^{2}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \\
&=\frac{C_{F}}{g^{2}} \bar{Q}_{s 1}^{2}\left(x_{\perp}\right) \bar{Q}_{s 2}^{2}\left(x_{\perp}\right)\left(4 \pi \partial^{2} L\left(0_{\perp}\right)\right)^{2} \\
& \text { Notation: } \\
& \bar{\mu}^{2}=\int_{-\infty}^{\infty} d z^{-} \mu^{2}\left(z^{-}\right)
\end{aligned}
$$

- Here we have introduced a momentum scale characterizing each nucleus:

$$
\bar{Q}_{s}^{2}=\alpha_{s} N_{c} \bar{\mu}^{2}\left(x_{\perp}\right)
$$

- In the MV model the factor $\partial^{2} L\left(0_{\perp}\right)$ yields a logarithmic UV divergence:

$$
\partial_{\perp}^{2} L\left(0_{\perp}\right)_{\mathrm{MV}}=\frac{1}{4 \pi} \lim _{r \rightarrow 0}\left[\ln \left(\frac{m^{2} r^{2}}{4}\right)\right]
$$

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{gathered}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
\times \underbrace{\left\langle\alpha_{1 x}^{i a} \alpha_{1 x}^{k c} \alpha_{1}^{i^{\prime} a^{\prime}} \alpha_{1 y}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2 x}^{l d} \alpha_{2}^{j^{\prime} b_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle}_{\begin{array}{c}
\text { Building block of } \\
\text { the calculation }
\end{array}}\rangle
\end{gathered}
$$

REMINDER:

$\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) & \left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1 x}^{i a} \alpha_{1 x}^{k c} \alpha_{1}^{i^{\prime} a_{y}^{\prime}} \alpha_{1 y}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d} d \alpha_{2}^{j^{\prime} b_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle
\end{aligned}
$$

- The building block:

$$
\begin{gathered}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1}\left\langle\frac{\partial^{i} \tilde{\rho}^{e}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U^{e a}\left(z^{-}, x_{\perp}\right)\right. \\
\left.\frac{\partial^{k} \tilde{\rho}^{f}\left(w^{-}, x_{\perp}\right)}{\nabla^{2}} U^{f c}\left(w^{-}, x_{\perp}\right) \frac{\partial^{i^{\prime}} \tilde{\rho}^{e^{\prime}}\left(z^{-1}, y_{\perp}\right)}{\nabla^{2}} U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) \frac{\partial^{k^{\prime}} \tilde{\rho}^{f^{\prime}}\left(w^{-\prime}, y_{\perp}\right)}{\nabla^{2}} U^{f^{\prime} c^{\prime}}\left(w^{-\prime}, y_{\perp}\right)\right\rangle . \\
\neq \int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1} \\
\left\langle\frac{\partial^{i} \tilde{\rho}^{e}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} \frac{\partial^{k} \tilde{\rho}^{f}\left(w^{-}, x_{\perp}\right)}{\nabla^{2}} \frac{\partial^{\prime} \tilde{\rho}^{e^{\prime}}\left(z^{-1}, y_{\perp}\right)}{\nabla^{2}} \frac{\partial^{k^{\prime} \tilde{\rho}^{\prime}\left(w^{-1}, y_{\perp}\right)}}{\nabla^{2}}\right\rangle \\
\times\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{\left.e^{\prime} a^{\prime}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle}\right.
\end{gathered}
$$

REMINDER:

$\alpha_{1}^{i, b}\left(x_{\perp}\right)=\int_{-\infty}^{\infty} d z^{-} \frac{\partial^{i} \tilde{\rho}_{1}^{a}\left(z^{-}, z_{\perp}\right)}{\nabla^{2}} U_{1}^{a b}\left(z^{-}, x_{\perp}\right)$

Correlator of n Wilson lines and m external sources

$$
\begin{aligned}
& F^{m, n}\left(b^{-}, a^{-}\right)= \\
& G^{m} H^{0, n}+\sum_{i, j, i<j} G_{(1, \ldots, i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-2} H_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, m\})}^{2, n} \\
&+\sum_{i, j, k, l, i<j<k<l} G_{(1, \ldots i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, k-1,\{k\}, k+1, \ldots, l-1,\{l\}, l+1, \ldots, m)}^{m-4} \\
& \times H_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, k-1\}, k,\{k+1, \ldots, l-1\}, l,\{l+1, \ldots, m\})}^{4, n} \\
&+\ldots+\sum_{i, j, i<j} G_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, m\})}^{2} H_{(1, \ldots, i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{2, n}+H^{m, n}
\end{aligned}
$$

Where: $\quad G_{(1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-1} \equiv\left\langle\rho_{1} \ldots \rho_{j-1} \rho_{j+1} \ldots \rho_{m}\right\rangle$

$$
H_{\left(\left\{1, \ldots, J_{1}-1\right\}, J_{1},\left\{J_{1}+1, \ldots, J_{2}-1\right\}, J_{2},\left\{J_{2}+1, \ldots\right\} \ldots\left\{J_{j}-1\right\}, J_{j},\left\{J_{j+1}, \ldots, m\right\}\right)}^{j, n} \equiv\left\langle\rho_{\left.J_{1} \rho_{J_{2}} \ldots \rho_{J_{j}} U_{1} \ldots U_{n}\right\rangle_{\mathrm{c}}}\right.
$$

Correlator of n Wilson lines and m external sources

$$
+\ldots+\sum_{i, j, i<j} G_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, m\})}^{2} H_{(1, \ldots, i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{2, n}+H^{m, n}
$$

Where: $\quad G_{(1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-1} \equiv\left\langle\rho_{1} \ldots \rho_{j-1} \rho_{j+1} \ldots \rho_{m}\right\rangle$
$H_{\left(\left\{1, \ldots, J_{1}-1\right\}, J_{1},\left\{J_{1}+1, \ldots, J_{2}-1\right\}, J_{2},\left\{J_{2}+1, \ldots\right\} \ldots\left\{J_{j}-1\right\}, J_{j},\left\{J_{j+1}, \ldots, m\right\}\right)}^{j, n} \equiv\left\langle\rho_{J_{1}} \rho_{J_{2}} \ldots \rho_{J_{j}} U_{1} \ldots U_{n}\right\rangle_{c}$

$$
\begin{aligned}
& : \begin{array}{l:l}
\square & a_{n} \\
b^{-}
\end{array} \\
& \begin{aligned}
+\sum_{i, j, k, l, i<j<k<l} & G_{(1, \ldots i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, k-1,\{k\}, k+1, \ldots, l-1,\{l\}, l+1, \ldots, m)}^{m-4} \\
& \times H_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, k-1\}, k,\{k+1, \ldots, l-1\}, l,\{l+1, \ldots, m\})}^{4, n}
\end{aligned}
\end{aligned}
$$

Correlator of n Wilson lines and m external sources

$$
\begin{aligned}
& \begin{array}{r}
+\sum_{i, j, k, l, i<j<k<l} G_{(1, \ldots i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, k-1,\{k\}, k+1, \ldots, l-1,\{l\}, l+1, \ldots, m)}^{m-4} \\
\times H_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, k-1\}, k,\{k+1, \ldots, l-1\}, l,\{l+1, \ldots, m\})}^{4, n}
\end{array} \\
& +\ldots+\sum_{i, j, i<j} G_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, m\})}^{2} H_{(1, \ldots, i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{2, n}+H^{m, n}
\end{aligned}
$$

Where: $\quad G_{(1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-1} \equiv\left\langle\rho_{1} \ldots \rho_{j-1} \rho_{j+1} \ldots \rho_{m}\right\rangle$

$$
H_{\left(\left\{1, \ldots, J_{1}-1\right\}, J_{1},\left\{J_{1}+1, \ldots, J_{2}-1\right\}, J_{2},\left\{J_{2}+1, \ldots\right\} \ldots\left\{J_{j}-1\right\}, J_{j},\left\{J_{j+1}, \ldots, m\right\}\right)}^{j, n} \equiv
$$

Correlator of n Wilson lines and m external sources

$$
\begin{aligned}
& \begin{array}{r}
+\sum_{i, j, k, l, i<j<k<l} G_{(1, \ldots i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, k-1,\{k\}, k+1, \ldots, l-1,\{l\}, l+1, \ldots, m)}^{m-4} \\
\times H_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, k-1\}, k,\{k+1, \ldots, l-1\}, l,\{l+1, \ldots, m\})}^{4, n}
\end{array} \\
& +\ldots+\sum_{i, j, i<j} G_{(\{1, \ldots, i-1\}, i,\{i+1, \ldots, j-1\}, j,\{j+1, \ldots, m\})}^{2} H_{(1, \ldots, i-1,\{i\}, i+1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{2, n}+H^{m, n}
\end{aligned}
$$

Where: $\quad G_{(1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-1} \equiv\left\langle\rho_{1} \ldots \rho_{j-1} \rho_{j+1} \ldots \rho_{m}\right\rangle$

$$
H_{\left(\left\{1, \ldots, J_{1}-1\right\}, J_{1},\left\{J_{1}+1, \ldots, J_{2}-1\right\}, J_{2},\left\{J_{2}+1, \ldots\right\} \ldots\left\{J_{j}-1\right\}, J_{j},\left\{J_{j+1}, \ldots, m\right\}\right)}^{j, n} \equiv
$$

Correlator of n Wilson lines and m external sources

Where: $\quad G_{(1, \ldots, j-1,\{j\}, j+1, \ldots, m)}^{m-1} \equiv\left\langle\rho_{1} \ldots \rho_{j-1} \rho_{j+1} \ldots \rho_{m}\right\rangle$

$$
H_{\left(\left\{1, \ldots, J_{1}-1\right\}, J_{1},\left\{J_{1}+1, \ldots, J_{2}-1\right\}, J_{2},\left\{J_{2}+1, \ldots\right\} \ldots\left\{J_{j}-1\right\}, J_{j},\left\{J_{j+1}, \ldots, m\right\}\right)}^{j, n} \equiv\left\langle\rho_{J_{1}} \rho_{J_{2} \ldots} \rho_{J_{j}} U_{1} \ldots U_{n}\right\rangle_{\mathrm{c}}
$$

Correlator of n Wilson lines and m external sources

Detail on "connected" correlators

$$
H^{m, n}\left(b^{-}, a^{-} \mid\{b\},\{a\}\right)=H^{1, n}\left(b^{-}, c_{1}^{-} \mid\{b\},\left\{\alpha_{1}\right\}\right)\left[\prod_{p=1}^{m-2} H^{1, n}\left(c_{p}^{-}, c_{p+1}^{-} \mid\left\{\alpha_{p}\right\},\left\{\alpha_{p+1}\right\}\right)\right] H^{1, n}\left(c_{m-1}^{-}, a^{-} \mid\left\{\alpha_{m-1}\right\},\{a\}\right)
$$

Building block of connected correlators

Detail on "connected" correlators

$$
H^{m, n}\left(b^{-}, a^{-} \mid\{b\},\{a\}\right)=H^{1, n}\left(b^{-}, c_{1}^{-} \mid\{b\},\left\{\alpha_{1}\right\}\right)\left[\prod_{p=1}^{m-2} H^{1, n}\left(c_{p}^{-}, c_{p+1}^{-} \mid\left\{\alpha_{p}\right\},\left\{\alpha_{p+1}\right\}\right)\right] H^{1, n}\left(c_{m-1}^{-}, a^{-} \mid\left\{\alpha_{m-1}\right\},\{a\}\right)
$$

Detail on "connected" correlators

$$
H^{m, n}\left(b^{-}, a^{-} \mid\{b\},\{a\}\right)=H^{1, n}\left(b^{-}, c_{1}^{-} \mid\{b\},\left\{\alpha_{1}\right\}\right)\left[\prod_{p=1}^{m-2} H^{1, n}\left(c_{p}^{-}, c_{p+1}^{-} \mid\left\{\alpha_{p}\right\},\left\{\alpha_{p+1}\right\}\right)\right] H^{1, n}\left(c_{m-1}^{-}, a^{-} \mid\left\{\alpha_{m-1}\right\},\{a\}\right)
$$

$$
H^{1, n}\left(b^{-}, a^{-} \mid\{b\},\{a\}\right)^{i}=\left.g \mu^{2}\left(b^{-}\right) \sum_{j=1}^{n} \partial_{y}^{i} L\left(x_{j \perp}-y_{\perp}\right) f^{c b_{j} b^{\prime}} F^{n}\left(b^{-}, a^{-} \mid\{\beta\}\{a\}\right)\right|_{\beta_{j}=b^{\prime}}
$$

$+(\ldots)+$

Correlator of 4 Wilson lines and 4 external sources

NOTATION:

$$
\rho \equiv \frac{\partial \tilde{\rho}}{\nabla_{\perp}^{2}}
$$

$$
\left\langle\rho^{4} U^{4}\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}
$$

Disconnected terms:

$$
\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1}\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i^{\prime}, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle
$$

REMINDER:

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) \delta^{(2)}\left(x_{\perp}-y_{\perp}\right)
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}
$$

Disconnected terms:

$$
\begin{gathered}
\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-1} d w^{-1}\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i_{y}^{\prime}, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-\prime}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-\prime}, y_{\perp}\right)\right\rangle \\
=\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-1} d w^{-1}\left(\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f}\right\rangle\left\langle\tilde{\rho}_{y}^{i^{\prime}, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle+\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{y}^{i^{\prime}, e^{\prime}}\right\rangle\left\langle\tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle+\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle\left\langle\tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i^{\prime}, e^{\prime}}\right\rangle\right) \\
\times\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-\prime}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-\prime}, y_{\perp}\right)\right\rangle
\end{gathered}
$$

(Wick's theorem)

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}
$$

Disconnected terms:

$$
\begin{gathered}
\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1}\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i, e^{\prime}} \tilde{\rho}_{y}^{\left.k^{\prime}, f^{\prime}\right\rangle}\right\rangle\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle \\
=\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1} \\
\left.\frac{\left(\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f}\right\rangle\left\langle\tilde{\rho}_{y}^{i, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle+\left\langle\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{y}^{\prime}, e^{\prime}\right\rangle\left\langle\tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle\right.\right.}{\mathbf{2}}+\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}}\right\rangle\left\langle\tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{\left.i^{\prime}, e^{\prime}\right\rangle}\right\rangle\right) \\
\times\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{\left.e^{\prime} a^{\prime}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle}\right.
\end{gathered}
$$

With:
1- $\propto \delta^{e f} \delta^{e^{\prime} f^{\prime}}\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle=\delta^{a c} \delta^{a^{\prime} c^{\prime}}$
2- $\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle$
3- $\propto \delta^{e f^{\prime}} \delta^{f e^{\prime}}\left\langle U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-1}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\underset{\text { 3 terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c} .}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\begin{aligned}
\left\langle\rho^{4} U^{4}\right\rangle= & \left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c} \\
& \text { 3 terms }
\end{aligned}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty} d z^{-} d z^{-\prime} d w^{-} d w^{-\prime}\left\langle\tilde{\rho}_{u}^{i, a^{\prime}} \tilde{\rho}_{u^{\prime}}^{j, b^{\prime}}\right\rangle\left\langle\tilde{\rho}_{v}^{k, c^{\prime}} \tilde{\rho}_{v^{\prime}}^{l, d^{\prime}} U^{a^{\prime} a}\left(z^{-}, u_{\perp}\right) U^{b^{\prime} b}\left(z^{-\prime}, u_{\perp}^{\prime}\right) U^{c^{\prime} c}\left(w^{-}, v_{\perp}\right) U^{d^{\prime} d}\left(w^{-\prime}, v_{\perp}^{\prime}\right)\right\rangle_{\mathrm{c}} \\
& = \\
& g^{2} \partial_{u}^{i} \partial_{u^{\prime}}^{j} L\left(u_{\perp}-u_{\perp}^{\prime}\right) \int_{-\infty}^{\infty} d z^{-} \int_{-\infty}^{z^{-}} d w^{-} \int_{-\infty}^{w^{-}} d w^{-\prime} \mu^{2}\left(z^{-}\right) \mu^{2}\left(w^{-}\right) \mu^{2}\left(w^{-\prime}\right) \\
& \\
& \times C_{\mathrm{adj}}^{(2)}\left(z^{-}, w^{-} ; u_{\perp}, u_{\perp}^{\prime}\right)\left(\left[\partial_{v}^{k}\left(L\left(v_{\perp}-u_{\perp}^{\prime}\right)-L\left(v_{\perp}-u_{\perp}\right)\right) C_{\mathrm{adj}}^{(3)}\left(w^{-}, w^{-\prime} ; u_{\perp}, u_{\perp}^{\prime}, v_{\perp}\right)\right.\right. \\
& \\
& \times \partial_{v^{\prime}}^{l}\left(f^{A e D} f^{C B e} L\left(v_{\perp}^{\prime}-u_{\perp}\right)+f^{A C e} f^{D B e} L\left(v_{\perp}^{\prime}-u_{\perp}^{\prime}\right)+f^{A B e} f^{e C D} L\left(v_{\perp}^{\prime}-v_{\perp}\right)\right) \\
& \\
& \left.\left.\times Q_{a b c d}^{A B C D}\left(w^{-\prime} ; u_{\perp}, u_{\perp}^{\prime}, v_{\perp}, v_{\perp}^{\prime}\right)\right]+\left[\begin{array}{c}
l \longleftrightarrow k \\
c \longleftrightarrow d \\
v_{\perp} \longleftrightarrow v_{\perp}^{\prime}
\end{array}\right]\right) \\
& = \\
& 2 g^{2} \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right) \int_{-\infty}^{\infty} d z^{-} \int_{-\infty}^{z^{-}} d w^{-} \int_{-\infty}^{w^{-}} d w^{-\prime} \mu^{2}\left(z^{-}\right) \mu^{2}\left(w^{-}\right) \mu^{2}\left(w^{-\prime}\right) \\
& \\
& \times C_{\mathrm{adj}}^{(2)}\left(z^{-}, w^{-} ; x_{\perp}, y_{\perp}\right) \partial_{x}^{k}\left(L\left(x_{\perp}-x_{\perp}\right)-L\left(x_{\perp} y_{\perp}\right)\right) C_{\mathrm{adj}}^{(3)}\left(w^{-}, w^{-\prime} ; x_{\perp}, y_{\perp}, x_{\perp}\right) \\
& \\
& \times \partial_{y}^{l}\left(L\left(y_{\perp}-y_{\perp}\right)-L\left(y_{\perp}-x_{\perp}\right) f^{A C e} f^{B D e} Q_{a b c d}^{A B C D}\left(w^{-\prime} ; x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)\right.
\end{aligned}
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\underset{\text { 3 terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}+\underset{\text { 4 terms }}{\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\propto f^{A C e} f^{B D e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(y_{\perp}\right) U^{C a^{\prime}}\left(x_{\perp}\right) U^{D c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\underset{\text { 3 terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}+\underset{\text { 4 terms }}{\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\propto f^{A C e} f^{B D e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(y_{\perp}\right) U^{C a^{\prime}}\left(x_{\perp}\right) U^{D c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Fully connected terms:

$$
\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-\prime}\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i^{\prime}, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}} U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-\prime}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-1}, y_{\perp}\right)\right\rangle_{\mathrm{c}}
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\underset{\text { 3 terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}+\underset{\mathbf{4} \text { terms }}{\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}+\left\langle\rho^{4} U^{4}\right\rangle_{c}}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\propto f^{A C e} f^{B D e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(y_{\perp}\right) U^{C a^{\prime}}\left(x_{\perp}\right) U^{D c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Fully connected terms:

$$
\begin{array}{r}
\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-\prime}\left\langle\tilde{\rho}_{x}^{i, e} \tilde{\rho}_{x}^{k, f} \tilde{\rho}_{y}^{i^{\prime}, e^{\prime}} \tilde{\rho}_{y}^{k^{\prime}, f^{\prime}} U^{e a}\left(z^{-}, x_{\perp}\right) U^{f c}\left(w^{-}, x_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(z^{-\prime}, y_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(w^{-\prime}, y_{\perp}\right)\right\rangle_{c} \\
H^{4,4}\left(z^{-},-\infty \mid e, f, e^{\prime}, f^{\prime} ; a, c, a^{\prime}, c^{\prime}\right)=H^{1,1}\left(z^{-}, w^{-} \mid e ; \alpha_{1}\right)^{i} H^{1,2}\left(w^{-}, z^{-\prime} \mid \alpha_{1}, f ; \alpha_{2}, \beta_{1}\right)^{k} \\
\times H^{1,3}\left(z^{-\prime}, w^{-1} \mid \alpha_{2}, \beta_{1}, e^{\prime} ; \alpha_{3}, \beta_{2}, \gamma_{1}\right)^{i^{\prime}} \\
\times H^{1,4}\left(w^{-\prime},-\infty \mid \alpha_{3}, \beta_{2}, \gamma_{1}, f^{\prime} ; a, c, a^{\prime}, c^{\prime}\right)^{k^{\prime}} \\
\left.H^{1,1}\left(z^{-}, w^{-} \mid e ; \alpha_{1}\right)^{i}=g \lambda\left(z^{-}, b_{\perp}\right) \partial_{x}^{i} L\left(0_{\perp}\right) f^{e e \alpha}\right)\left(U^{\alpha \alpha_{1}}\left(z^{-}, w^{-} ; x_{\perp}\right)\right\rangle=0
\end{array}
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\rho^{4} U^{4}\right\rangle=\underset{\mathbf{3} \text { terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}+\underset{\mathbf{0} \text { terms }}{\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}}+\underset{0^{2}}{\left\langle\nu_{c}\right.}
$$

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{T} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{T}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\propto f^{A C e} f^{B D e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(y_{\perp}\right) U^{C a^{\prime}}\left(x_{\perp}\right) U^{D c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Fully connected terms:

$$
\propto f^{e e \alpha}=0
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

Disconnected terms:

$$
\propto \delta^{e e^{\prime}} \delta^{f f^{\prime}}\left\langle U^{e a}\left(x_{\perp}\right) U^{f c}\left(y_{\perp}\right) U^{e^{\prime} a^{\prime}}\left(x_{\perp}\right) U^{f^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Connected terms:

$$
\propto f^{A C e} f^{B D e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(y_{\perp}\right) U^{C a^{\prime}}\left(x_{\perp}\right) U^{D c^{\prime}}\left(y_{\perp}\right)\right\rangle
$$

Fully connected terms:

$$
\propto f^{e e \alpha}=0
$$

- These terms contain specific projections in color space of the correlator of four Wilson lines in the adjoint representation.
- We will calculate them via a discretization of space in the x^{-}-direction:

$$
\int d x^{-} \longrightarrow \sum_{i=0}^{n} \Delta x^{-}
$$

Wilson line correlators

- Discretization of Wilson line: $U\left(x^{-}, x_{\perp}\right)_{i j}=\left(U^{n}\left(x_{n}^{-}, x_{\perp}\right) U^{n-1}\left(x_{n-1}^{-}, x_{\perp}\right) \ldots U^{1}\left(x_{1}^{-}, x_{\perp}\right)\right)_{i j}$

Wilson line correlators

- Discretization of Wilson line: $U\left(x^{-}, x_{\perp}\right)_{i j}=\left(U^{n}\left(x_{n}^{-}, x_{\perp}\right) U^{n-1}\left(x_{n-1}^{-}, x_{\perp}\right) \ldots U^{1}\left(x_{1}^{-}, x_{\perp}\right)\right)_{i j}$
- Discretization of two-point correlator: $\left\langle\tilde{A}^{+a}\left(x^{-}, x_{\perp}\right) \tilde{A}^{+b}\left(y^{-}, y_{\perp}\right)\right\rangle=\delta_{x^{-} y^{-}} \delta^{a b} B_{x y}\left(x^{-}, b_{\perp}\right)$ with $B_{x y}\left(x^{-}, b_{\perp}\right) \equiv g^{2} \Delta x^{-} \lambda\left(x^{-}, b_{\perp}\right) L\left(x_{\perp}-y_{\perp}\right)$.
- We expand one of the n factors to order g^{2} :

$$
U\left(x^{-}, x_{\perp}\right)_{i j} \approx\left(\delta_{i k}+i g \tilde{A}^{+a}\left(x_{n}^{-}, x_{\perp}\right) t_{i k}^{a} \Delta x^{-}-\frac{C_{F}}{2} \delta_{i k} B_{x x}\left(x_{n}^{-}, x_{\perp}\right)\right) U_{k j}^{(n-1)}
$$

Wilson line correlators

- Discretization of Wilson line: $U\left(x^{-}, x_{\perp}\right)_{i j}=\left(U^{n}\left(x_{n}^{-}, x_{\perp}\right) U^{n-1}\left(x_{n-1}^{-}, x_{\perp}\right) \ldots U^{1}\left(x_{1}^{-}, x_{\perp}\right)\right)_{i j}$
- Discretization of two-point correlator: $\left\langle\tilde{A}^{+a}\left(x^{-}, x_{\perp}\right) \tilde{A}^{+b}\left(y^{-}, y_{\perp}\right)\right\rangle=\delta_{x^{-} y^{-}} \delta^{a b} B_{x y}\left(x^{-}, b_{\perp}\right)$ with $B_{x y}\left(x^{-}, b_{\perp}\right) \equiv g^{2} \Delta x^{-} \lambda\left(x^{-}, b_{\perp}\right) L\left(x_{\perp}-y_{\perp}\right)$.
- We expand one of the n factors to order g^{2} :

$$
U\left(x^{-}, x_{\perp}\right)_{i j} \approx\left(\delta_{i k}+i g \tilde{A}^{+a}\left(x_{n}^{-}, x_{\perp}\right) t_{i k}^{a} \Delta x^{-}-\frac{C_{F}}{2} \delta_{i k} B_{x x}\left(x_{n}^{-}, x_{\perp}\right)\right) U_{k j}^{(n-1)}
$$

Correlator of 2 Wilson lines in the fundamental representation

$\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle$

$$
=\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle^{(n-1)}\left(1-\frac{g^{2}}{2} C_{F} \Delta x^{-} \lambda\left(x_{n}^{-}, b_{\perp}\right) \Gamma\left(x_{\perp}-y_{\perp}\right)\right)
$$

We will neglect terms of order $\left(\Delta x^{-}\right)^{2}$ or higher

Wilson line correlators

- Discretization of Wilson line: $U\left(x^{-}, x_{\perp}\right)_{i j}=\left(U^{n}\left(x_{n}^{-}, x_{\perp}\right) U^{n-1}\left(x_{n-1}^{-}, x_{\perp}\right) \ldots U^{1}\left(x_{1}^{-}, x_{\perp}\right)\right)_{i j}$
- Discretization of two-point correlator: $\left\langle\tilde{A}^{+a}\left(x^{-}, x_{\perp}\right) \tilde{A}^{+b}\left(y^{-}, y_{\perp}\right)\right\rangle=\delta_{x^{-} y^{-}} \delta^{a b} B_{x y}\left(x^{-}, b_{\perp}\right)$ with $B_{x y}\left(x^{-}, b_{\perp}\right) \equiv g^{2} \Delta x^{-} \lambda\left(x^{-}, b_{\perp}\right) L\left(x_{\perp}-y_{\perp}\right)$.
- We expand one of the n factors to order g^{2} :

$$
U\left(x^{-}, x_{\perp}\right)_{i j} \approx\left(\delta_{i k}+i g \tilde{A}^{+a}\left(x_{n}^{-}, x_{\perp}\right) t_{i k}^{a} \Delta x^{-}-\frac{C_{F}}{2} \delta_{i k} B_{x x}\left(x_{n}^{-}, x_{\perp}\right)\right) U_{k j}^{(n-1)}
$$

Correlator of 2 Wilson lines in the fundamental representation

$\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle$

$$
=\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle^{(n-1)}\left(1-\frac{g^{2}}{2} C_{F} \Delta x^{-} \lambda\left(x_{n}^{-}, b_{\perp}\right) \Gamma\left(x_{\perp}-y_{\perp}\right)\right)
$$

- We iterate the process:

$$
=\left(1-\frac{g^{2}}{2} C_{F} \Gamma\left(x_{\perp}-y_{\perp}\right) h\left(b_{\perp}\right) \sum_{i=1}^{n} \Delta x^{-} \mu^{2}\left(x_{i}^{-}\right)\right)=\left(1-\frac{g^{2}}{2} C_{F} \Gamma\left(x_{\perp}-y_{\perp}\right) \bar{\lambda}\left(x^{-}, b_{\perp}\right)\right)
$$

Wilson line correlators

- Discretization of Wilson line: $U\left(x^{-}, x_{\perp}\right)_{i j}=\left(U^{n}\left(x_{n}^{-}, x_{\perp}\right) U^{n-1}\left(x_{n-1}^{-}, x_{\perp}\right) \ldots U^{1}\left(x_{1}^{-}, x_{\perp}\right)\right)_{i j}$
- Discretization of two-point correlator: $\left\langle\tilde{A}^{+a}\left(x^{-}, x_{\perp}\right) \tilde{A}^{+b}\left(y^{-}, y_{\perp}\right)\right\rangle=\delta_{x^{-} y^{-}} \delta^{a b} B_{x y}\left(x^{-}, b_{\perp}\right)$ with $B_{x y}\left(x^{-}, b_{\perp}\right) \equiv g^{2} \Delta x^{-} \lambda\left(x^{-}, b_{\perp}\right) L\left(x_{\perp}-y_{\perp}\right)$.
- We expand one of the n factors to order g^{2} :

$$
U\left(x^{-}, x_{\perp}\right)_{i j} \approx\left(\delta_{i k}+i g \tilde{A}^{+a}\left(x_{n}^{-}, x_{\perp}\right) t_{i k}^{a} \Delta x^{-}-\frac{C_{F}}{2} \delta_{i k} B_{x x}\left(x_{n}^{-}, x_{\perp}\right)\right) U_{k j}^{(n-1)}
$$

Correlator of 2 Wilson lines in the fundamental representation

$\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle$

$$
=\left\langle\operatorname{Tr}\left\{U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\}\right\rangle^{(n-1)}\left(1-\frac{g^{2}}{2} C_{F} \Delta x^{-} \lambda\left(x_{n}^{-}, b_{\perp}\right) \Gamma\left(x_{\perp}-y_{\perp}\right)\right)
$$

- We iterate the process:

$$
=\left(1-\frac{g^{2}}{2} C_{F} \Gamma\left(x_{\perp}-y_{\perp}\right) h\left(b_{\perp}\right) \sum_{i=1}^{n} \Delta x^{-} \mu^{2}\left(x_{i}^{-}\right)\right)=\left(1-\frac{g^{2}}{2} C_{F} \Gamma\left(x_{\perp}-y_{\perp}\right) \bar{\lambda}\left(x^{-}, b_{\perp}\right)\right)
$$

- Reexponentiation:

We assume that the neglected higher order terms add up to an exponential expression:

$$
=\exp \left\{-\frac{g^{2}}{2} C_{F} \Gamma\left(x_{\perp}-y_{\perp}\right) \bar{\lambda}\left(x^{-}, b_{\perp}\right)\right\} .
$$

Correlator of 4 Wilson lines in the adjoint representation

$$
\left\langle U^{a b}\left(z_{\perp}\right) U^{c d}\left(z_{\perp}\right) U^{e f}\left(x_{\perp}\right) U^{g h}\left(y_{\perp}\right)\right\rangle
$$

Correlator of 4 Wilson lines in the adjoint representation

$$
\begin{array}{r}
\left\langle U^{a b}\left(z_{\perp}\right) U^{c d}\left(z_{\perp}\right) U^{e f}\left(x_{\perp}\right) U^{g h}\left(y_{\perp}\right)\right\rangle=\left\langle U^{a a^{\prime}}\left(z_{\perp}\right) U^{c c^{\prime}}\left(z_{\perp}\right) U^{e e^{\prime}}\left(x_{\perp}\right) U^{g g^{\prime}}\left(y_{\perp}\right)\right\rangle^{(n-1)} \\
\times\left(\delta^{a^{\prime} b} \delta^{c^{\prime} d} \delta^{e^{\prime} f} \delta^{g^{\prime} h}\left(1-\frac{N_{c}}{2}\left(2 B_{z}+B_{x}+B_{y}\right)\right)+\delta^{a^{\prime} b} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{g^{\prime} m h} B_{x y}\right. \\
+\delta^{a^{\prime} b} \delta^{e^{\prime} f} f^{c^{\prime} m d} f^{g^{\prime} m h} B_{z y}+\delta^{a^{\prime} b} \delta^{g^{\prime} h} f^{e^{\prime} m f} f^{c^{\prime} m d} B_{z x}+\delta^{e^{\prime} f} \delta^{c^{\prime} d} f^{a^{\prime} m b} f^{g^{\prime} m h} B_{z y} \\
\left.+\delta^{g^{\prime} h} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{a^{\prime} m b} B_{z x}+\delta^{e^{\prime} f} \delta^{g^{\prime} h} f^{a^{\prime} m b} f^{c^{\prime} m d} B_{z}\right)
\end{array}
$$

Correlator of 4 Wilson lines in the adjoint representation

$$
\begin{array}{r}
\left\langle U^{a b}\left(z_{\perp}\right) U^{c d}\left(z_{\perp}\right) U^{e f}\left(x_{\perp}\right) U^{g h}\left(y_{\perp}\right)\right\rangle=\left\langle U^{a a^{\prime}}\left(z_{\perp}\right) U^{c c^{\prime}}\left(z_{\perp}\right) U^{e e^{\prime}}\left(x_{\perp}\right) U^{g g^{\prime}}\left(y_{\perp}\right)\right\rangle^{(n-1)} \\
\times\left(\delta^{a^{\prime} b} \delta^{c^{\prime} d} \delta^{e^{\prime} f} \delta^{g^{\prime} h}\left(1-\frac{N_{c}}{2}\left(2 B_{z}+B_{x}+B_{y}\right)\right)+\delta^{a^{\prime} b} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{g^{\prime} m h} B_{x y}\right. \\
+\delta^{a^{\prime} b} \delta^{e^{\prime} f} f^{c^{\prime} m d} f^{g^{\prime} m h} B_{z y}+\delta^{a^{\prime} b} \delta^{g^{\prime} h} f^{e^{\prime} m f} f^{c^{\prime} m d} B_{z x}+\delta^{e^{\prime} f} \delta^{c^{\prime} d} f^{a^{\prime} m b} f^{g^{\prime} m h} B_{z y} \\
\left.+\delta^{g^{\prime} h} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{a^{\prime} m b} B_{z x}+\delta^{e^{\prime} f} \delta^{g^{\prime} h} f^{a^{\prime} m b} f^{c^{\prime} m d} B_{z}\right)
\end{array}
$$

- We express the previous lines as a matrix equation:

$$
U_{b d f h}^{a c e g}=\left(U_{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}^{a c e g}\right)^{(n-1)} T_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}
$$

using the following color vector basis:

$$
\begin{aligned}
& u_{1}=\delta^{e a} \delta^{g c} \\
& u_{2}=\delta^{c a} \delta^{g e} \\
& u_{3}=\delta^{g a} \delta^{e c} \\
& w_{1}=d^{e a m} d^{g c m} \\
& w_{2}=d^{c a m} d^{g e m} \\
& w_{3}=d^{g a m} d^{e c m}
\end{aligned}
$$

- In this base, $T_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ can be written as $\left(1+M\left(x_{n}^{-}\right)\right)_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ with $M\left(x_{n}^{-}\right)_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ of order Δx^{-}.

Correlator of 4 Wilson lines in the adjoint representation

$$
\begin{array}{r}
\left\langle U^{a b}\left(z_{\perp}\right) U^{c d}\left(z_{\perp}\right) U^{e f}\left(x_{\perp}\right) U^{g h}\left(y_{\perp}\right)\right\rangle=\left\langle U^{a a^{\prime}}\left(z_{\perp}\right) U^{c c^{\prime}}\left(z_{\perp}\right) U^{e e^{\prime}}\left(x_{\perp}\right) U^{g g^{\prime}}\left(y_{\perp}\right)\right\rangle^{(n-1)} \\
\times\left(\delta^{a^{\prime} b} \delta^{c^{\prime} d} \delta^{e^{\prime} f} \delta^{g^{\prime} h}\left(1-\frac{N_{c}}{2}\left(2 B_{z}+B_{x}+B_{y}\right)\right)+\delta^{a^{\prime} b} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{g^{\prime} m h} B_{x y}\right. \\
+\delta^{a^{\prime} b} \delta^{e^{\prime} f} f^{c^{\prime} m d} f^{g^{\prime} m h} B_{z y}+\delta^{a^{\prime} b} \delta^{g^{\prime} h} f^{e^{\prime} m f} f^{c^{\prime} m d} B_{z x}+\delta^{e^{\prime} f} \delta^{c^{\prime} d} f^{a^{\prime} m b} f^{g^{\prime} m h} B_{z y} \\
\left.+\delta^{g^{\prime} h} \delta^{c^{\prime} d} f^{e^{\prime} m f} f^{a^{\prime} m b} B_{z x}+\delta^{e^{\prime} f} \delta^{g^{\prime} h} f^{a^{\prime} m b} f^{c^{\prime} m d} B_{z}\right)
\end{array}
$$

- We express the previous lines as a matrix equation:

$$
U_{b d f h}^{a c e g}=\left(U_{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}^{a c e g}\right)^{(n-1)} T_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}
$$

using the following color vector basis:

$$
\begin{array}{rlrl}
u_{1} & =\delta^{e a} \delta^{g c} & u_{2} & =\delta^{c a} \delta^{g e} \\
w_{1} & =d^{e a m} d^{g c m} & =\delta^{g a} \delta^{e c} \\
w_{2} & =d^{c a m} d^{g e m} & w_{3} & =d^{g a m} d^{e c m}
\end{array}
$$

- In this base, $T_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ can be written as $\left(1+M\left(x_{n}^{-}\right)\right)_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ with $M\left(x_{n}^{-}\right)_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}$ of order Δx^{-}.
- Iterating the expansion process we get:

$$
U_{b d f h}^{a c e g}=1+\sum_{i=1}^{n} M_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime}}\left(x_{i}^{-}\right)=1+\int^{x^{-}} d z^{\prime-} M_{b d f h}^{a^{\prime} c^{\prime} e^{\prime} g^{\prime} g^{\prime}}\left(z^{\prime-}\right)=1+\bar{M}\left(x^{-}\right)
$$

Correlator of 4 Wilson lines in the adjoint representation

- Reexponentiation: we need to diagonalize \bar{M}. We get (using Mathematica):
$\bar{M}_{d}=\left[\begin{array}{ccccc}N_{c} R_{a} & 0 & 0 & 0 & 0 \\ 0 & N_{c} R_{b} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2}\left(R_{a}+R_{b}\right) N_{c} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\left(R_{a}+R_{b}\right) N_{c} & 0 \\ 0 & 0 & 0 & 0 & N_{c} R_{a}-R_{d} \\ 0 & 0 & 0 & 0 & 0 \\ \text { with: } \quad R_{a}=-\frac{g^{2}}{2} \bar{\lambda}\left(x^{-}, b_{\perp}\right)\left(\Gamma\left(z_{\perp}-x_{\perp}\right)-\Gamma\left(z_{\perp}-y_{\perp}\right)\right) & , R_{b}=-\frac{g^{2}}{2} \bar{\lambda}\left(x^{-}, b_{\perp}\right)\left(\Gamma\left(x_{\perp}-y_{\perp}\right)\right) \\ \text { and: } R_{d}=R_{b}-R_{a} . \\ \text { and thus: } \\ U_{b d f h}^{a c e g} \doteq\left(1+\bar{M}_{d}\right)_{b d f h}^{a c e g} \longrightarrow U_{b d f h}^{a c e g} \doteq\left(e^{\bar{M}_{d}}\right)_{b d f h}^{a c e g}\end{array}\right]$.

Correlator of 4 Wilson lines in the adjoint representation

- Reexponentiation: we need to diagonalize \bar{M}. We get (using Mathematica):

$$
\bar{M}_{d}=\left[\begin{array}{cccccc}
N_{c} R_{a} & 0 & 0 & 0 & 0 & 0 \\
0 & N_{c} R_{b} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2}\left(R_{a}+R_{b}\right) N_{c} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2}\left(R_{a}+R_{b}\right) N_{c} & 0 & 0 \\
0 & 0 & 0 & 0 & N_{c} R_{a}-R_{d} & 0 \\
0 & 0 & 0 & 0 & 0 & N_{c} R_{a}+R_{d}
\end{array}\right]
$$

with: $\quad R_{a}=-\frac{g^{2}}{2} \bar{\lambda}\left(x^{-}, b_{\perp}\right)\left(\Gamma\left(z_{\perp}-x_{\perp}\right)-\Gamma\left(z_{\perp}-y_{\perp}\right)\right) \quad, \quad R_{b}=-\frac{g^{2}}{2} \bar{\lambda}\left(x^{-}, b_{\perp}\right)\left(\Gamma\left(x_{\perp}-y_{\perp}\right)\right)$
and: $R_{d}=R_{b}-R_{a}$.
and thus:

$$
U_{b d f h}^{a c e g} \doteq\left(1+\bar{M}_{d}\right)_{b d f h}^{a c e g} \longrightarrow U_{b d f h}^{a c e g} \doteq\left(e^{\bar{M}_{d}}\right)_{b d f h}^{a c e g}
$$

$$
\left.\begin{array}{c}
z_{\perp} \equiv x_{\perp} \\
x_{\perp}=y_{\perp} \equiv y_{\perp}
\end{array}\right\} \longrightarrow \bar{M}_{d}=\left[\begin{array}{cccccc}
N_{c} R_{a} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} N_{c} R_{a} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} N_{c} R_{a} & 0 & 0 \\
0 & 0 & 0 & 0 & \left(N_{c}+1\right) R_{a} & 0 \\
0 & 0 & 0 & 0 & 0 & \left(N_{c}-1\right) R_{a}
\end{array}\right]
$$

Correlator of 4 Wilson lines in the adjoint representation

$\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \doteq \exp \left\{\bar{M}_{d}\right\}=\left[\begin{array}{cccccc}e^{N_{c} R_{a}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{\left(N_{c}+1\right) R_{a}} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{\left(N_{c}-1\right) R_{a}}\end{array}\right]$

- We need to calculate the following projections:

$$
\begin{array}{r}
f^{A B e} f^{D C e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \\
\delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle
\end{array}
$$

Correlator of 4 Wilson lines in the adjoint representation

$\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \doteq \exp \left\{\bar{M}_{d}\right\}=\left[\begin{array}{cccccc}e^{N_{c} R_{a}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{\left(N_{c}+1\right) R_{a}} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{\left(N_{c}-1\right) R_{a}}\end{array}\right]$.

- We need to calculate the following projections:

$$
\begin{gathered}
f^{A B e} f^{D C e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \\
\delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle
\end{gathered}
$$

- The first projection corresponds to the trivial propagation of an eigenvector by $\exp \left\{\bar{M}_{d}\right\}$:
$f^{A B e} f^{D C e}=\left(\begin{array}{c}\frac{2}{N_{c}} \\ 0 \\ -\frac{2}{N_{c}} \\ 1 \\ 0 \\ -1\end{array}\right) \doteq\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
f^{A B e} f^{D C e} & \exp \left\{\bar{M}_{d}\right\}=f^{a b e} f^{d c e} \exp \left\{\frac{1}{2} N_{c} R_{a}\right\} \\
& =f^{a b e} f^{d c e} \exp \left\{-g^{2} \frac{N_{c}}{2} \Gamma\left(x_{\perp}-y_{\perp}\right) \bar{\lambda}\left(x^{-}, b_{\perp}\right)\right\}
\end{aligned}
$$

Correlator of 4 Wilson lines in the adjoint representation

$\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \doteq \exp \left\{\bar{M}_{d}\right\}=\left[\begin{array}{cccccc}e^{N_{c} R_{a}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{1}{2} N_{c} R_{a}} & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{\left(N_{c}+1\right) R_{a}} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{\left(N_{c}-1\right) R_{a}}\end{array}\right]$

- We need to calculate the following projections:

$$
\begin{array}{r}
f^{A B e} f^{D C e}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \\
\delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle
\end{array}
$$

- The second projection is remarkably more difficult:

$$
\delta^{A C} \delta^{B D}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \doteq\left(\begin{array}{c}
1 / N_{c} \\
1 /\left(N_{c}^{2}-1\right) \\
-1 / N_{c} \\
N_{c} /\left(N_{c}^{2}-4\right) \\
1 / 4 \\
-1 / 4
\end{array}\right)
$$

Correlator of 4 Wilson lines in the adjoint representation

- After propagation we obtain:

$$
\begin{aligned}
& \delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B b}\left(x_{\perp}\right) U^{C c}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle \doteq \delta^{A C} \delta^{B D} \exp \left\{\bar{M}_{d}\right\}= \\
& \delta^{a c} \delta^{b d}\left(\frac{N_{c}^{2}-4}{2 N_{c}^{2}} e^{-g^{2} N_{c} \Gamma \bar{\lambda}}+\frac{2}{N_{c}^{2}} e^{-g^{2} \frac{N_{c}}{2} \Gamma \bar{\lambda}}+\frac{N_{c}+2}{4 N_{c}} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}+\frac{N_{c}-2}{4 N_{c}} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right) \\
& +\delta^{a b} \delta^{c d}\left(\frac{1}{N_{c}^{2}-1}-\frac{N_{c}+2}{2 N_{c}\left(N_{c}+1\right)} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}+\frac{N_{c}-2}{2 N_{c}\left(N_{c}-1\right)} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right) \\
& +\delta^{a d} \delta^{b c}\left(-\frac{N_{c}^{2}-4}{2 N_{c}^{2}} e^{-g^{2} N_{c} \Gamma \bar{\lambda}}-\frac{2}{N_{c}^{2}} e^{-g^{2} \frac{N_{c}}{2} \Gamma \bar{\lambda}}+\frac{N_{c}+2}{4 N_{c}} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}+\frac{N_{c}-2}{4 N_{c}} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right) \\
& +d^{a c n} d^{b d n}\left(-\frac{1}{N_{c}} e^{-g^{2} N_{c} \Gamma \bar{\lambda}}+\frac{1}{N_{c}} e^{-g^{2} \frac{N_{c}}{2} \Gamma \bar{\lambda}}+\frac{1}{4} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}-\frac{1}{4} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right) \\
& +d^{a b n} d^{c d n}\left(\frac{N_{c}}{N_{c}^{2}-4} e^{-g^{2} \frac{N_{c}}{2} \Gamma \bar{\lambda}}-\frac{N_{c}+4}{4\left(N_{c}+2\right)} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}+\frac{N_{c}-4}{4\left(N_{c}-2\right)} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right) \\
& +d^{a d n} d^{b c n}\left(\frac{1}{N_{c}} e^{-g^{2} N_{c} \Gamma \bar{\lambda}}-\frac{1}{N_{c}} e^{-g^{2} \frac{N_{c}}{2} \Gamma \bar{\lambda}}+\frac{1}{4} e^{-g^{2}\left(N_{c}+1\right) \Gamma \bar{\lambda}}-\frac{1}{4} e^{-g^{2}\left(N_{c}-1\right) \Gamma \bar{\lambda}}\right)
\end{aligned}
$$

A remarkably complicated contribution.

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\alpha^{4}\right\rangle=\left\langle\rho^{4} U^{4}\right\rangle=\underset{\text { 3 terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}+\underset{\text { 4 terms }}{\left\langle\rho^{2}\right\rangle}\left\langle\rho^{2} U^{4}\right\rangle_{c}
$$

- This expression can be written in terms of the following functions:

Disconnected terms:

$$
\begin{aligned}
& D_{a c ; a^{\prime} c^{\prime}}^{i k ; ;^{\prime} k^{\prime}}\left(x_{\perp}, x_{\perp}, y_{\perp}, y_{\perp}\right)=\frac{1}{4} \delta^{i k} \delta^{i^{\prime} k^{\prime}}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \delta^{a c} \delta^{a^{\prime} c^{\prime}} \bar{\lambda}^{2}\left(b_{\perp}\right) \\
& \begin{aligned}
& D_{a b ; c d}^{i j ; k l}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)=2 \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right) \partial_{x}^{k} \partial_{y}^{l} L\left(x_{\perp}-y_{\perp}\right) \int_{-\infty}^{\infty} d z^{-} \int_{-\infty}^{z^{-}} d w^{-} \lambda\left(z^{-}, b_{\perp}\right) \lambda\left(w^{-}, b_{\perp}\right) \\
& \text { Connected terms: } \times \delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(x_{\perp}\right) U^{C b}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
C_{a b ; c d}^{i j ; k l}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)=f^{a c e} f^{b d e} \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right) \partial_{x}^{k} \Gamma\left(x_{\perp}-y_{\perp}\right) \partial_{y}^{l} \Gamma\left(y_{\perp}-x_{\perp}\right) \\
\times\left(\frac{4}{\Gamma^{3} g^{4} N_{c}^{3}}-\left(\frac{\bar{\lambda}^{2}\left(b_{\perp}\right)}{2 \Gamma N_{c}}+\frac{4}{\Gamma^{3} g^{4} N_{c}^{3}}+\frac{2 \bar{\lambda}\left(b_{\perp}\right)}{\Gamma^{2} g^{2} N_{c}^{2}}\right) C_{\mathrm{adj}}^{(2)}\left(x_{\perp}, y_{\perp}\right)\right)
\end{gathered}
$$

Correlator of 4 Wilson lines and 4 external sources

- Applying the previous rules we can decompose this correlator as:

$$
\left\langle\alpha^{4}\right\rangle=\left\langle\rho^{4} U^{4}\right\rangle=\underset{\mathbf{3} \text { terms }}{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}} \text { 4 terms }
$$

- This expression can be written in terms of the following functions:

Disconnected terms:

$$
\begin{aligned}
& D_{a c ; a^{\prime} c^{\prime}}^{i k ; i^{\prime} k^{\prime}}\left(x_{\perp}, x_{\perp}, y_{\perp}, y_{\perp}\right)=\frac{1}{4} \delta^{i k} \delta^{i^{\prime} k^{\prime}}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \delta^{a c} \delta^{a^{\prime} c^{\prime}} \bar{\lambda}^{2}\left(b_{\perp}\right) \\
& \begin{aligned}
& D_{a b ; c d}^{i j ; k l}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)=2 \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right) \partial_{x}^{k} \partial_{y}^{l} L\left(x_{\perp}-y_{\perp}\right) \int_{-\infty}^{\infty} d z^{-} \int_{-\infty}^{z^{-}} d w^{-} \lambda\left(z^{-}, b_{\perp}\right) \lambda\left(w^{-}, b_{\perp}\right) \\
& \times \delta^{A C} \delta^{B D}\left\langle U^{A a}\left(x_{\perp}\right) U^{B c}\left(x_{\perp}\right) U^{C b}\left(y_{\perp}\right) U^{D d}\left(y_{\perp}\right)\right\rangle
\end{aligned}
\end{aligned}
$$

Connected terms:

$$
\begin{gathered}
C_{a b ; c d}^{i j ; k l}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)=f^{a c e} f^{b d e} \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right) \partial_{x}^{k} \Gamma\left(x_{\perp}-y_{\perp}\right) \partial_{y}^{l} \Gamma\left(y_{\perp}-x_{\perp}\right) \\
\times\left(\frac{4}{\Gamma^{3} g^{4} N_{c}^{3}}-\left(\frac{\bar{\lambda}^{2}\left(b_{\perp}\right)}{2 \Gamma N_{c}}+\frac{4}{\Gamma^{3} g^{4} N_{c}^{3}}+\frac{2 \bar{\lambda}\left(b_{\perp}\right)}{\Gamma^{2} g^{2} N_{c}^{2}}\right) C_{\mathrm{adj}}^{(2)}\left(x_{\perp}, y_{\perp}\right)\right)
\end{gathered}
$$

$$
\left(\begin{array}{rl}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle & =D_{a c ; a^{\prime} c^{\prime}}^{i k ; i^{\prime} k^{\prime}}\left(x_{\perp}, x_{\perp}, y_{\perp}, y_{\perp}\right)+D_{a a^{\prime} ; c c^{\prime}}^{i i^{\prime} ; k k^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right) \\
+D_{a c^{\prime} ; c a^{\prime}}^{i k^{\prime} ; k i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right) & +C_{a a^{\prime} ; c c^{\prime}}^{i i^{\prime} ; k k^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)+C_{a c^{\prime} ; c a^{\prime}}^{i k^{\prime} ; k i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right) \\
& +C_{c c^{\prime} ; a a^{\prime}}^{k k^{\prime} ; i i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)+C_{c a^{\prime} ; a c^{\prime}}^{k i^{\prime} ; i k^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)
\end{array}\right)
$$

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) & \left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime}} \\
& \left.\times \alpha_{1}^{l a} \alpha_{1}^{k c} \alpha_{1}^{i^{\prime} a^{\prime}} \alpha_{1}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d} \alpha_{2}^{j^{\prime} b_{y}^{\prime}} \alpha_{2}^{l, d}\right\rangle
\end{aligned}
$$

- And finally:

\Rightarrow The color structure of this object is frustratingly complex. Even with all parts analytically calculated, the contraction of the color indices demands a computational treatment (via FeynCalc or FORM)

$$
\left.\begin{array}{r}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=D_{a c ; a^{\prime} c^{\prime}}^{i k ; i^{\prime} k^{\prime}}\left(x_{\perp}, x_{\perp}, y_{\perp}, y_{\perp}\right)+D_{a a^{\prime} ; c c^{\prime}}^{i i^{\prime} ; k k^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right) \\
+D_{a c^{\prime} ; c a^{\prime}}^{i k^{\prime} ; k i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)+C_{a a^{\prime} ; c c^{\prime}}^{i i^{\prime} ; k k^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)+C_{a c^{\prime} ; c a^{\prime}}^{i k^{\prime} k i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right) \\
\\
+C_{c c^{\prime} ; ; a^{\prime}}^{k k^{\prime} ; i i^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)+C_{c a^{\prime} ; ; c^{\prime}}^{k i^{\prime} ; i k{ }^{\prime}}\left(x_{\perp}, y_{\perp}, x_{\perp}, y_{\perp}\right)
\end{array}\right)
$$

$\operatorname{Cov}\left[\epsilon_{0}\right]\left(x_{\perp}, y_{\perp}\right)=\left\langle\epsilon_{0}\left(x_{\perp}\right) \epsilon_{0}\left(y_{\perp}\right)\right\rangle-\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle$

$$
\begin{aligned}
\operatorname{Cov}[\epsilon]\left(\tau=0^{+} ; x_{\perp}, y_{\perp}\right)= & \frac{\partial_{x}^{i} \Gamma \partial_{y}^{i} \Gamma\left(N_{c}^{2}-1\right) A\left(4 A^{2}-B^{2}\right)}{16 N_{c}^{2} \Gamma^{5} g^{4}}\left(p_{1} q_{2}+p_{2} q_{1}\right) \\
& +\frac{\left(N_{c}^{2}-1\right)\left(16 A^{4}+B^{4}\right)}{2 N_{c}^{2} \Gamma^{4} g^{4}} p_{1} p_{2}+\frac{\left(\partial_{x}^{i} \Gamma \partial_{y}^{i} \Gamma\right)^{2}\left(N_{c}^{2}-1\right) A^{2}}{64 N_{c}^{2} \Gamma^{6} g^{4}} q_{1} q_{2} \\
& +\frac{\left(N_{c}^{2}-1\right)\left(4 A^{2}+B^{2}\right)}{2 N_{c}^{2} \Gamma^{2} g^{4}}\left(4 \pi \partial^{2} L\left(0_{\perp}\right)\right)^{2}\left(\left[\bar{Q}_{s 1}^{4}\left(Q_{s 2}^{2} r^{2}-4+4 e^{-\frac{Q_{s 2}^{2} r^{2}}{4}}\right)\right]+[1 \leftrightarrow 2]\right) \\
& +\frac{\left(4 A^{2}+B^{2}\right)^{2}}{g^{4} \Gamma^{4} N_{c}^{2}}\left(\left[\frac{N_{c}^{6}+2 N_{c}^{4}-19 N_{c}^{2}+8}{\left(N_{c}^{2}-1\right)^{2}}-4 \frac{N_{c}^{6}-3 N_{c}^{4}-26 N_{c}^{2}+16}{\left(N_{c}^{2}-1\right)\left(N_{c}^{2}-4\right)} e^{-\frac{Q_{s 1}^{2} r^{2}}{4}}\right.\right. \\
& +\frac{\left(N_{c}-1\right)\left(N_{c}+3\right) N_{c}^{3}}{\left(N_{c}+1\right)^{2}\left(N_{c}+2\right)^{2}}\left(\frac{N_{c}}{2} e^{-\frac{\left(N_{c}+1\right) r^{2} Q_{s 2}^{2}}{2 N_{c}}}+\left(N_{c}+2\right)-2\left(N_{c}+1\right) e^{-\frac{Q_{s r^{2}}^{2}}{4}}\right) e^{-\frac{\left(N_{c}+1\right) r^{2} Q_{s 1}^{2}}{2 N_{c}}} \\
& +\frac{\left(N_{c}+1\right)\left(N_{c}-3\right) N_{c}^{3}}{\left(N_{c}-1\right)^{2}\left(N_{c}-2\right)^{2}}\left(\frac{N_{c}}{2} e^{-\frac{\left(N_{c}-1\right) r^{2} Q_{s 2}^{2}}{2 N_{c}}}+\left(N_{c}-2\right)-2\left(N_{c}-1\right) e^{-\frac{Q_{s r^{2}}^{2}}{4}}\right) e^{-\frac{\left(N_{c}-1\right) r^{2} Q_{s 1}^{2}}{2 N_{c}}} \\
& \left.+\frac{r^{4}}{2} Q_{s 1}^{2} Q_{s 2}^{2}-4 r^{2} Q_{s 1}^{2}\left(1-e^{-\frac{Q_{s 2}^{2} r^{2}}{4}}\right)+4 \frac{\left(N_{c}^{2}-8\right)\left(N_{c}^{2}-1\right)\left(N_{c}^{2}+4\right)}{\left(N_{c}^{2}-4\right)^{2}} e^{-\frac{\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right) r^{2}}{4}}\right]
\end{aligned}
$$

With: $p_{1,2} \equiv e^{-\frac{Q_{s 1,2}^{2} r^{2}}{4}}\left(Q_{s 1,2}^{2} r^{2}+4\right)-4, q_{1,2} \equiv e^{-\frac{Q_{s 1,2}^{2} r^{2}}{4}}\left(Q_{s 1,2}^{4} r^{4}+8 Q_{s 1,2}^{2} r^{2}+32\right)-32$.
And some model-dependent parameters: $\Gamma\left(r_{\perp}\right)_{\mathrm{MV}} \approx \frac{r^{2}}{8 \pi} \ln \left(\frac{4}{m^{2} r^{2}}\right)$
And the saturation scale:

$$
\frac{r^{2} Q_{s}^{2}}{4}=g^{2} \frac{N_{c}}{2} \Gamma\left(r_{\perp}\right) \bar{\lambda}\left(b_{\perp}\right)
$$

$$
\begin{aligned}
& A\left(r_{\perp}\right)_{\mathrm{MV}} \approx \frac{1}{8 \pi} \ln \left(\frac{4}{m^{2} r^{2}}\right) \\
& B\left(r_{\perp}\right)_{\mathrm{MV}}=\frac{1}{4 \pi}
\end{aligned}
$$

Pocket formulae

- Omitting (for the moment) the issues with logarithmic divergencies (GBW model):

$$
\begin{array}{c|}
r \rightarrow 0 \\
\lim _{r \rightarrow 0} \operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)=\frac{3 C_{F}}{g^{4} 2 N_{c}} Q_{s 1}^{4} Q_{s 2}^{4} \\
\lim _{r \rightarrow 0} \frac{\left.\operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}\right), y_{\perp}\right)}{\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle}=\frac{3}{\left(N_{c}^{2}-1\right)}
\end{array} \begin{aligned}
& \text { Usual suppression factor } \\
& \text { characteristic of non-trivial } \\
& \text { color correlators }
\end{aligned}
$$

Pocket formulae

- Omitting (for the moment) the issues with logarithmic divergencies (GBW model):

$$
\begin{gathered}
r \rightarrow 0 \\
\underbrace{\lim _{r \rightarrow 0} \operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)=\frac{3 C_{F}}{g^{4} 2 N_{c}} Q_{s 1}^{4} Q_{s 2}^{4}}_{r \rightarrow 0} \\
\lim _{r \rightarrow 0} \frac{\left.\operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}\right), y_{\perp}\right)}{\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle}=\frac{3}{\left(N_{c}^{2}-1\right)}
\end{gathered} \underbrace{\begin{array}{l}
\text { Power law: } \\
\text { Remarkably slow decay! }
\end{array}}_{r Q_{s} \rightarrow \infty} \begin{aligned}
& \lim _{r Q_{s} \gg 1} \operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)=\frac{2\left(N_{c}^{2}-1\right)\left(Q_{s 1}^{4} Q_{s 2}^{2}+Q_{s 2}^{4} Q_{s 1}^{2}\right)}{g^{4} N_{c}^{2} r^{2} \longleftarrow} .
\end{aligned}
$$

Comparison with the 'Glasma Graph' approximation

- Glasma Graph approximation [Lappi \& Schlichting 2018, Muller \& Schaefer 2012]. Assume Gaussian distribution of the produced gluon fields:

$$
\begin{aligned}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle_{\mathrm{GG}} & =\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle .
\end{aligned}
$$

Comparison with the 'Glasma Graph' approximation

- Glasma Graph approximation [Lappi \& Schlichting 2018, Muller \& Schaefer 2012]. Assume Gaussian distribution of the produced gluon fields:

$$
\begin{aligned}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle_{\mathrm{GG}} & =\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle .
\end{aligned}
$$

- Agreement with full result in the $r->0$ limit. Strong discrepancies in the $r->\infty$ limit

- This slowly decaying behavior could potentially have an impact in both physical interpretations and numerical results for any observable built from this quantity.

An application: eccentricity fluctuations

- In the picture proposed by Blaizot et al. ([Blaizot, Broniowski \& Ollitrault'14]), ε_{n} fluctuations can be characterized in terms of n-point correlators of the energy density distribution by assuming that, for a given impact parameter we have:

$$
\epsilon\left(x_{\perp}\right)=\left\langle\epsilon\left(x_{\perp}\right)\right\rangle+\delta \epsilon\left(x_{\perp}\right) \text { with }\left\langle\epsilon\left(x_{\perp}\right)\right\rangle \gg \delta \epsilon\left(x_{\perp}\right)
$$

- To leading order in $\delta \epsilon\left(x_{\perp}\right)$, we have the following expression for the mean squared eccentricities:

$$
\left\langle\Delta \varepsilon_{n}^{2}\right\rangle=\frac{\int_{z_{1} z_{2}} z_{1}^{n} \bar{z}_{2}^{n} \operatorname{Cov}\left[\epsilon\left(z_{1}, z_{2}\right)\right]}{\left(\int_{z}|z|^{n}\langle\epsilon(z)\rangle\right)^{2}}
$$

Conclusions

Conclusions

We have performed an exact analytical calculation of the covariance of the energy momentum tensor of the Glasma at $\tau=0^{+}$, in the framework of the

Color Glass Condensate.

- We find remarkably long-range correlations in comparison to naive expectations and previous calculations (such as the one performed in the Glasma Graph approximation).
- The modifications introduced in the MV model will prove useful in subsequent phenomenological applications of our results.

This work presents a wide variety of applications and potential follow-up projects:

- Computation of time evolution of our result towards thermalization time $\tau \sim 1 / Q_{s}$, where it can serve as input for hydro QGP simulations.

$$
T^{\mu \nu}=T_{0}^{\mu \nu}+T_{1}^{\mu \nu} \tau+T_{2}^{\mu \nu} \tau^{2}+\ldots
$$

- Analytical calculation of eccentricity fluctuations (directly related to experimentally measured anisotropic flow coefficients).
- Computation of dilute-dense limit, appropriate for p-A processes.

