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Introduction: The QCD phase space

Quark Gluon Plasma

• Value of QCD’s coupling constant depends on conditions of 
temperature and baryon density 

• Low temperature and densities: hadronic phase (confinement and 
spontaneously broken chiral symmetry)

• Lattice simulations indicate a transition at high temperature to a 
deconfined, chiral-symmetric phase: The QUARK-GLUON PLASMA
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• This state of matter can be accessed in particle colliders through 
Heavy Ion Collision experiments

• Performed at Brookhaven National Laboratory’s Relativistic Heavy Ion 
Collider (RHIC) and CERN’s Large Hadron Collider (ALICE 
experiment)

Introduction: The QCD phase space
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Introduction: Stages of a heavy ion collision

• After the collision, matter goes through different phases as it cools down 
• In the last part, it reaches the hadronic phase, and this is how it appears in 

the detectors

t=0 ~0.5 fm/c ~10 fm/c ~15 fm/c
time

Quark Gluon PlasmaPre-equlibrium: GLASMA Hadronic phase Finally observed particles
(hadrons)

Collision

Cooling down

Freeze outQuasi-ideal relativistic
hydrodynamicsClassical dynamics: CGC
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Introduction: Stages of a heavy ion collision

• After the collision, matter goes through different phases as it cools down 
• In the last part, it reaches the hadronic phase, and this is how it appears in 

the detectors 
• QGP can be studied through the non-trivial correlations between the 

measured particles

t=0 ~0.5 fm/c ~10 fm/c
time

Quark Gluon PlasmaPre-equlibrium: GLASMA Hadronic phase Finally observed particles
(hadrons)

Collision

Cooling down

Quasi-ideal relativistic
hydrodynamicsClassical dynamics: CGC Freeze out }

Final state correlations
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Introduction: Stages of a heavy ion collision

• After the collision, matter goes through different phases as it cools down 
• In the last part, it reaches the hadronic phase, and this is how it appears in 

the detectors 
• QGP can be studied through the non-trivial correlations between the 

measured particles 
• BUT: Initial state fluctuations reflect in the final state correlations! 

• We need robust theoretical description

~10 fm/c
time

Quark Gluon PlasmaPre-equlibrium: GLASMA Hadronic phase Finally observed particles
(hadrons)

Collision

Cooling down

Quasi-ideal relativistic
hydrodynamicsClassical dynamics: CGC Freeze out }

Final state correlations

}

Initial state correlations
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Introduction: Stages of a heavy ion collision

t=0 ~10 fm/c ~15 fm/c

Quark Gluon PlasmaPre-equlibrium: GLASMA Hadronic phase Finally observed particles
(hadrons)

Collision

Cooling down

Freeze outQuasi-ideal relativistic
hydrodynamics

~0.5 fm/c
time

THIS TALK

Classical dynamics: CGC

• No theoretical agreement on the initial conditions of Glasma evolution 
• Large degree of phenomenological modeling 
• Source of uncertainty for parameters used in Hydro models
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Introduction: Stages of a heavy ion collision

t=0 ~10 fm/c ~15 fm/c

Quark Gluon PlasmaPre-equlibrium: GLASMA Hadronic phase Finally observed particles
(hadrons)

Collision

Cooling down

Freeze outQuasi-ideal relativistic
hydrodynamics

~0.5 fm/c
time

In the classical approximation (Color Glass Condensate)

THIS TALK

Classical dynamics: CGC

• No theoretical agreement on the initial conditions of Glasma evolution 
• Large degree of phenomenological modeling
• Source of uncertainty for parameters used in Hydro models 
• We provide a first-principles analytical calculation of:

hTµ⌫(x?)i
hTµ⌫(x?)T

µ⌫(y?)i
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Initial conditions: the Color-Glass Condensate
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Highly Energetic Heavy Ion Collisions

4 François Gelis
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of nucleons is vastly 
dominated by a high density of gluons
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Highly Energetic Heavy Ion Collisions

• Relativistic kinematics: at high energies, 
the nuclei appear almost two-dimensional 
in the laboratory frame due to Lorentz 
contraction
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of nucleons is vastly 
dominated by a high density of gluons
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Highly Energetic Heavy Ion Collisions
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• Relativistic kinematics: at high energies, 
the nuclei appear almost two-dimensional 
in the laboratory frame due to Lorentz 
contraction

• QCD becomes non-linear and non-perturbative!
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

• At high energies (or equivalently, low x) the 
partonic content of nucleons is vastly 
dominated by a high density of gluons
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• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence quarks
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

Color Glass Condensate: McLerran-Venugopalan model
• Perturbative techniques would require computing infinite diagrams
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• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence quarks

4 François Gelis

-310

-210

-110

1

10

-410
-3

10 -210 -110 1

-310

-210

-110

1

10

 HERAPDF1.0

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

x
f

2 = 10 GeV2Q

vxu

vxd

xS 

xg 

                H1 and ZEUS

-310

-210

-110

1

10

Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Dynamics of the field described by Yang-Mills classical equations:

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

Fµ⌫ = @µA⌫ � @⌫Aµ � ig [Aµ, A⌫ ]

J

⌫,a = �

⌫+
⇢

a(x�
, x?)

Color Glass Condensate: McLerran-Venugopalan model
• Perturbative techniques would require computing infinite diagrams

⇢

a(x)ta
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

• Calculation of observables: average over background classical fields

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

hO [⇢]i =
Z

[d⇢] exp

⇢
�
Z

dxTr

⇥
⇢

2
⇤�O [⇢]

Color Glass Condensate: McLerran-Venugopalan model

• Dynamics of the field described by Yang-Mills classical equations:

• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence quarks

• Perturbative techniques would require computing infinite diagrams

⇢

a(x)ta
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
are small (see the left figure 6) and where a fairly small number of graphs contribute
at each order. On the contrary, when the parton distributions increase, processes
involving many partons become more and more important, as illustrated in the
right panel of the figure 6. The extreme situation arises when the gluon occupation
number is of order 1/↵

s

: in this case, an infinite number of graphs contribute at each
order. This regime of high parton densities is non-perturbative, even if the coupling
constant is weak – the non-perturbative features arise from the fact that the large

A

µ(x)

[Dµ, F
µ⌫ ] = J

⌫ / ⇢(x)

• Basic building block: 2-point correlator (McLerran-Venugopalan)

Color Glass Condensate: McLerran-Venugopalan model

h⇢a(x�
, x?)⇢

b(y�, y?)i = µ

2(x�)�ab�(x� � y

�)�(2)(x? � y?)

• Calculation of observables: average over background classical fields

• Dynamics of the field described by Yang-Mills classical equations:

• We use an approximation of QCD for high gluon densities where we 
replace the gluons with a classical field generated by the valence quarks

• Perturbative techniques would require computing infinite diagrams

⇢

a(x)ta
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Fig. 5. Parton distributions in a proton, measured in Deep Inelastic Scattering at HERA.2

parton distributions at high energy/small x is that the gluons are outnumbering
all the other parton species – the valence quarks are completely negligible in this
kinematical region, and the sea quarks are suppressed by one power of the coupling
↵

s

, since they are produced from the gluons by the splitting g ! qq.

Fig. 6. Left: typical process in a hadronic collision in the dilute regime. Right: typical process in
the dense regime.

This increase of the gluon distribution at small x leads to a major complication
when applying QCD to compute processes in this regime. Indeed, the usual tools of
perturbation theory are well adapted to the situation where the parton distributions
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involving many partons become more and more important, as illustrated in the
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Steps for the calculation.

1. Calculate the gluon field at early times in a HIC                             

Aµ[⇢1, ⇢2]

2. Build the energy-momentum tensor

3. Average over the color source distributions of both nuclei  

This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
the following relations are obtained:
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which act as boundary conditions of the ⌧ -evolution.

3 The EMT correlator in the classical approximation

Using Eq. (2.10) along with the boundary conditions of Eq. (2.12) we obtain the following
expression for the EMT at ⌧ =0
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+ in a point
x? of the transverse plane. A remarkable aspect of this tensor is the maximum pressure
anisotropy denoted by the negative longitudinal direction. This makes it very different to
the characteristic EMT of an ideal fluid, where all the components of the pressure would be
equal and positive. The negative pressure leads to the deceleration of colliding nuclei, while
the remaining components force the system to expand in the transverse directions. This
is problematic for a smooth matching to quasi-ideal hydrodynamics, which is the theory
expected to describe the evolution of the fireball after ⌧ ⇠Q�1
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However, prior to the interpretation of this object we must compute its average over
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As the trace in this expression is performed over color space, in order to compute it we
need to expand the color structure of our fields:
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
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1. The gluon field at τ = 0+ in HIC   [Kovner, McLerran, Weigert 1998]

[1, 2] Single nucleus solution  

[3] Forward light-cone τ = 0+   
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:

A±
1

= 0

Ai

1

= ✓(x�
)

Z 1

�1
dz�U †

1

(z�, x?)

@i⇢̃
1

(z�, x?)

r2

U
1

(z�, x?) ⌘ ✓(x�
)↵i

1

(x?), (2.7)

which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:

U
1

(x�, x?) = P�
exp

(

�ig

Z

x

�

x

�
0

dz�
1

r2

⇢̃
1

(z�, x?)

)

4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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= P�
exp

(

ig

Z

x

�

�1
dz�

Z

dz2?G(z? � x?)⇢̃
1

(z�, z?)

)

, (2.8)

where G(z?�x?) is the Green’s function for the 2-dimensional Laplace operator. In the
previous expression we show explicitly the definition of the differential operator 1/r2,
which is the notation we adopt to denote a convolution with G(z?�x?). The choice of
the integration lower limit x�

0

is arbitrary, with different choices giving us solutions Ai

connected by residual, two-dimensional gauge transformations. We shall adopt x�
0

=�1,
which implies that the fields vanish in the remote past (retarded boundary conditions).
Conversely, for the nucleus moving in the opposite direction5 (indicated with the label 2),
we have:
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2

= 0

Ai
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)
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dz+U †
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U
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2

(x?),

where:

U
2
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exp

(

ig

Z

x

+

�1
dz+

Z

dz2?G(z? � x?)⇢̃
2

(z+, z?)

)

.

Thus, the total gauge field outside the light-cone reads:

A±
= 0

Ai

= ✓(x�
)✓(�x+

)↵i

1

(x?) + ✓(x+

)✓(�x�
)↵i

2

(x?). (2.9)

The gluon field sources vanish everywhere except at the very light-cone (⌧ =0), and thus at
⌧ =0

+ the Yang-Mills equations become homogeneous. In order to solve them we propose
the following ansatz:

A±
=± x±↵(⌧ = 0

+, x?)

Ai

=↵i

(⌧ = 0

+, x?), (2.10)

where we adopted the comoving coordinate system, defined by proper time ⌧ =

p
2x+x�

and rapidity ⌘ =

1

2

log(x+/x�
). Substituting Eq. (2.10), the separate components of the

homogeneous Yang-Mills equations [D
µ

, Fµ⌫

]=0 take the following form (see [7]):
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⌧

↵] � 1
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⌧

↵i
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= 0

⌫ = ⌘ �! 1

⌧
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⌧
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⌧
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⌧
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⌧
@
⌧
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⌧

↵j

) � ig⌧2

⇥

↵,
⇥

Dj , ↵
⇤⇤ � ⇥

Di, F ij

⇤

= 0. (2.11)

5
We work in a specific gauge that acts as a sort of ‘mix’ of the light-cone gauges of both nuclei: the

Fock-Schwinger gauge, defined by the condition (x+
A

� + x

�
A

+)/⌧ = 0. Note that, as the separate fields

of each nuclei already satisfy this condition, the Fock-Schwinger representation does not introduce any

physical assumption that was not already present in the single nucleus characterization.
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
the following relations are obtained:

↵i

(⌧ = 0

+, x?) = ↵i

1

(x?) + ↵i

2

(x?)

↵(⌧ = 0

+, x?) =

ig

2

⇥

↵i

1

(x?), ↵i

2

(x?)

⇤

, (2.12)

which act as boundary conditions of the ⌧ -evolution.

3 The EMT correlator in the classical approximation

Using Eq. (2.10) along with the boundary conditions of Eq. (2.12) we obtain the following
expression for the EMT at ⌧ =0

+:

Tµ⌫

0

(x?)=2 Tr
⇢

1

4

gµ⌫F↵�F
↵�

�Fµ↵F ⌫

↵

�

0

+

=�g2(�ij�kl + ✏ij✏kl)Tr
n⇣

[↵i

1

, ↵j

2

][↵k

1

, ↵l

2

]

⌘

0

+

o

⇥tµ⌫

⌘ ✏
0

(x?)⇥tµ⌫ ,

where tµ⌫ ⌘diag(1, 1, 1, �1) and ✏
0

(x?) is the energy density at proper time ⌧ =0

+ in a point
x? of the transverse plane. A remarkable aspect of this tensor is the maximum pressure
anisotropy denoted by the negative longitudinal direction. This makes it very different to
the characteristic EMT of an ideal fluid, where all the components of the pressure would be
equal and positive. The negative pressure leads to the deceleration of colliding nuclei, while
the remaining components force the system to expand in the transverse directions. This
is problematic for a smooth matching to quasi-ideal hydrodynamics, which is the theory
expected to describe the evolution of the fireball after ⌧ ⇠Q�1

s

.
However, prior to the interpretation of this object we must compute its average over

the background fields. We have hTµ⌫

0

(x?)i=h✏
0

(x?)i⇥tµ⌫ , with:

h✏
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2
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1

(x?), ↵l

2

(x?)]

oE

. (3.1)

As the trace in this expression is performed over color space, in order to compute it we
need to expand the color structure of our fields:

↵i
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�1
dz�U †
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r2
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U †taU

=
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�1
dz�
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Uabtb ⌘ ↵i,b

(x?)tb.

(3.2)
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:

A±
1

= 0

Ai

1

= ✓(x�
)

Z 1

�1
dz�U †

1

(z�, x?)

@i⇢̃
1

(z�, x?)

r2

U
1

(z�, x?) ⌘ ✓(x�
)↵i

1

(x?), (2.7)

which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:

U
1

(x�, x?) = P�
exp

(

�ig
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�
0

dz�
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)

4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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The gluon fields at τ=0  in HICs+ [Kovner, McLerran, Weigert 1998]

[Dµ, F
µ⌫ ] = J⌫

1 + J⌫
2J
⌫
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1. The gluon field at τ = 0+ in HIC   [Kovner, McLerran, Weigert 1998]

[1, 2] Single nucleus solution  

[3] Forward light-cone τ = 0+   
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:

A±
1

= 0

Ai

1

= ✓(x�
)

Z 1

�1
dz�U †

1
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1
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U
1

(z�, x?) ⌘ ✓(x�
)↵i

1

(x?), (2.7)

which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:

U
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exp
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)

4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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= P�
exp

(
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Z

x

�

�1
dz�

Z

dz2?G(z? � x?)⇢̃
1

(z�, z?)

)

, (2.8)

where G(z?�x?) is the Green’s function for the 2-dimensional Laplace operator. In the
previous expression we show explicitly the definition of the differential operator 1/r2,
which is the notation we adopt to denote a convolution with G(z?�x?). The choice of
the integration lower limit x�

0

is arbitrary, with different choices giving us solutions Ai

connected by residual, two-dimensional gauge transformations. We shall adopt x�
0

=�1,
which implies that the fields vanish in the remote past (retarded boundary conditions).
Conversely, for the nucleus moving in the opposite direction5 (indicated with the label 2),
we have:
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where:
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Z

x
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Z
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)

.

Thus, the total gauge field outside the light-cone reads:
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= ✓(x�
)✓(�x+

)↵i

1

(x?) + ✓(x+

)✓(�x�
)↵i

2

(x?). (2.9)

The gluon field sources vanish everywhere except at the very light-cone (⌧ =0), and thus at
⌧ =0

+ the Yang-Mills equations become homogeneous. In order to solve them we propose
the following ansatz:

A±
=± x±↵(⌧ = 0

+, x?)

Ai

=↵i

(⌧ = 0

+, x?), (2.10)

where we adopted the comoving coordinate system, defined by proper time ⌧ =

p
2x+x�

and rapidity ⌘ =

1

2

log(x+/x�
). Substituting Eq. (2.10), the separate components of the

homogeneous Yang-Mills equations [D
µ

, Fµ⌫

]=0 take the following form (see [7]):
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⇤

= 0. (2.11)
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We work in a specific gauge that acts as a sort of ‘mix’ of the light-cone gauges of both nuclei: the

Fock-Schwinger gauge, defined by the condition (x+
A

� + x

�
A

+)/⌧ = 0. Note that, as the separate fields

of each nuclei already satisfy this condition, the Fock-Schwinger representation does not introduce any

physical assumption that was not already present in the single nucleus characterization.
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
the following relations are obtained:
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, (2.12)

which act as boundary conditions of the ⌧ -evolution.

3 The EMT correlator in the classical approximation

Using Eq. (2.10) along with the boundary conditions of Eq. (2.12) we obtain the following
expression for the EMT at ⌧ =0

+:
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where tµ⌫ ⌘diag(1, 1, 1, �1) and ✏
0

(x?) is the energy density at proper time ⌧ =0

+ in a point
x? of the transverse plane. A remarkable aspect of this tensor is the maximum pressure
anisotropy denoted by the negative longitudinal direction. This makes it very different to
the characteristic EMT of an ideal fluid, where all the components of the pressure would be
equal and positive. The negative pressure leads to the deceleration of colliding nuclei, while
the remaining components force the system to expand in the transverse directions. This
is problematic for a smooth matching to quasi-ideal hydrodynamics, which is the theory
expected to describe the evolution of the fireball after ⌧ ⇠Q�1

s

.
However, prior to the interpretation of this object we must compute its average over

the background fields. We have hTµ⌫
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h✏
0

(x?)i=�g2(�ij�kl + ✏ij✏kl)
D

Tr
n

[↵i

1

(x?), ↵j

2

(x?)][↵k

1

(x?), ↵l

2

(x?)]

oE

. (3.1)

As the trace in this expression is performed over color space, in order to compute it we
need to expand the color structure of our fields:
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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The gluon fields at τ=0  in HICs+ [Kovner, McLerran, Weigert 1998]
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1. The gluon field at τ = 0+ in HIC   [Kovner, McLerran, Weigert 1998]

[1, 2] Single nucleus solution  

[3] Forward light-cone τ = 0+   
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:

U
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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where G(z?�x?) is the Green’s function for the 2-dimensional Laplace operator. In the
previous expression we show explicitly the definition of the differential operator 1/r2,
which is the notation we adopt to denote a convolution with G(z?�x?). The choice of
the integration lower limit x�

0

is arbitrary, with different choices giving us solutions Ai

connected by residual, two-dimensional gauge transformations. We shall adopt x�
0

=�1,
which implies that the fields vanish in the remote past (retarded boundary conditions).
Conversely, for the nucleus moving in the opposite direction5 (indicated with the label 2),
we have:
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Thus, the total gauge field outside the light-cone reads:
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The gluon field sources vanish everywhere except at the very light-cone (⌧ =0), and thus at
⌧ =0

+ the Yang-Mills equations become homogeneous. In order to solve them we propose
the following ansatz:
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where we adopted the comoving coordinate system, defined by proper time ⌧ =

p
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1
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log(x+/x�
). Substituting Eq. (2.10), the separate components of the

homogeneous Yang-Mills equations [D
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]=0 take the following form (see [7]):
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5
We work in a specific gauge that acts as a sort of ‘mix’ of the light-cone gauges of both nuclei: the

Fock-Schwinger gauge, defined by the condition (x+
A

� + x

�
A

+)/⌧ = 0. Note that, as the separate fields

of each nuclei already satisfy this condition, the Fock-Schwinger representation does not introduce any

physical assumption that was not already present in the single nucleus characterization.
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
the following relations are obtained:
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which act as boundary conditions of the ⌧ -evolution.

3 The EMT correlator in the classical approximation

Using Eq. (2.10) along with the boundary conditions of Eq. (2.12) we obtain the following
expression for the EMT at ⌧ =0

+:
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where tµ⌫ ⌘diag(1, 1, 1, �1) and ✏
0

(x?) is the energy density at proper time ⌧ =0

+ in a point
x? of the transverse plane. A remarkable aspect of this tensor is the maximum pressure
anisotropy denoted by the negative longitudinal direction. This makes it very different to
the characteristic EMT of an ideal fluid, where all the components of the pressure would be
equal and positive. The negative pressure leads to the deceleration of colliding nuclei, while
the remaining components force the system to expand in the transverse directions. This
is problematic for a smooth matching to quasi-ideal hydrodynamics, which is the theory
expected to describe the evolution of the fireball after ⌧ ⇠Q�1

s

.
However, prior to the interpretation of this object we must compute its average over

the background fields. We have hTµ⌫

0

(x?)i=h✏
0

(x?)i⇥tµ⌫ , with:

h✏
0

(x?)i=�g2(�ij�kl + ✏ij✏kl)
D

Tr
n

[↵i

1

(x?), ↵j

2

(x?)][↵k

1

(x?), ↵l

2

(x?)]

oE

. (3.1)

As the trace in this expression is performed over color space, in order to compute it we
need to expand the color structure of our fields:
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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The gluon fields at τ=0  in HICs+ [Kovner, McLerran, Weigert 1998]

[Dµ, F
µ⌫ ] = J⌫

1 + J⌫
2 [1, 2] Single nucleus solution

U1(x
�
, x?) = P

�
exp

(
�ig

Z
x

�

x

�
0

dz

� 1

r2
⇢̃1(z

�
, x?)

)

[3] Forward light cone ⌧= 0+

A

±=±x

±
↵(⌧ = 0+, x?)

A

i =↵

i(⌧ = 0+, x?)

↵

i(⌧ = 0+, x?) = ↵

i
1(x?) + ↵

i
2(x?)

↵(⌧ = 0+, x?) =
ig

2

⇥
↵

i
1(x?),↵

i
2(x?)

⇤

J⌫
2

A

±
1 = 0

A

i
1 = ✓(x�)

Z 1

�1
dz

�
U

†
1 (z

�
, x?)

@

i
⇢̃1(z�, x?)

r2
U1(z

�
, x?) ⌘ ✓(x�)↵i

1(x?)A

i
1=✓(x�)

Z 1

�1
dz

�@
i
⇢̃

a
1(z

�
, z?)

r2
U

ab
1 (z�, x?)t

b ⌘ ✓(x�)↵i,b
1 (x?)t

b
,

ab

ab



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma

Javier Albacete June 28, 2018Initial correlations of the EMT of Glasma 9

1. The gluon field at τ = 0+ in HIC   [Kovner, McLerran, Weigert 1998]

[1, 2] Single nucleus solution  

[3] Forward light-cone τ = 0+   
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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4
Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge

invariant objects.
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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Providing that we average gauge invariant observables, the specific gauge in which we work does not

affect the result of hOi, as both the Gaussian weight W [⇢] and the functional measure [d⇢] are gauge
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where G(z?�x?) is the Green’s function for the 2-dimensional Laplace operator. In the
previous expression we show explicitly the definition of the differential operator 1/r2,
which is the notation we adopt to denote a convolution with G(z?�x?). The choice of
the integration lower limit x�

0

is arbitrary, with different choices giving us solutions Ai

connected by residual, two-dimensional gauge transformations. We shall adopt x�
0

=�1,
which implies that the fields vanish in the remote past (retarded boundary conditions).
Conversely, for the nucleus moving in the opposite direction5 (indicated with the label 2),
we have:
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Thus, the total gauge field outside the light-cone reads:
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The gluon field sources vanish everywhere except at the very light-cone (⌧ =0), and thus at
⌧ =0

+ the Yang-Mills equations become homogeneous. In order to solve them we propose
the following ansatz:
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where we adopted the comoving coordinate system, defined by proper time ⌧ =

p
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and rapidity ⌘ =

1

2

log(x+/x�
). Substituting Eq. (2.10), the separate components of the

homogeneous Yang-Mills equations [D
µ

, Fµ⌫

]=0 take the following form (see [7]):

⌫ = ⌧ �! ig⌧ [↵, @
⌧

↵] � 1

⌧

⇥

Di, @
⌧

↵i

⇤

= 0

⌫ = ⌘ �! 1

⌧
@
⌧

1

⌧
@
⌧

(⌧2↵) � ⇥

Di,
⇥

Di, ↵
⇤⇤

= 0

⌫ = j �! 1

⌧
@
⌧

(⌧@
⌧

↵j

) � ig⌧2

⇥

↵,
⇥

Dj , ↵
⇤⇤ � ⇥

Di, F ij

⇤

= 0. (2.11)

5
We work in a specific gauge that acts as a sort of ‘mix’ of the light-cone gauges of both nuclei: the

Fock-Schwinger gauge, defined by the condition (x+
A

� + x

�
A

+)/⌧ = 0. Note that, as the separate fields

of each nuclei already satisfy this condition, the Fock-Schwinger representation does not introduce any

physical assumption that was not already present in the single nucleus characterization.
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This system provides the initial conditions for the proper time evolution of the gluon field
in the future light-cone, be it computed via analytical or numerical methods. In order
to relate it to the fields prior to the collision (Eq. (2.9)) we invoke a physical ‘matching
condition’ that requires Yang-Mills equations to be regular in the limit ⌧ !0 . In doing so,
the following relations are obtained:
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which act as boundary conditions of the ⌧ -evolution.

3 The EMT correlator in the classical approximation

Using Eq. (2.10) along with the boundary conditions of Eq. (2.12) we obtain the following
expression for the EMT at ⌧ =0
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where tµ⌫ ⌘diag(1, 1, 1, �1) and ✏
0

(x?) is the energy density at proper time ⌧ =0

+ in a point
x? of the transverse plane. A remarkable aspect of this tensor is the maximum pressure
anisotropy denoted by the negative longitudinal direction. This makes it very different to
the characteristic EMT of an ideal fluid, where all the components of the pressure would be
equal and positive. The negative pressure leads to the deceleration of colliding nuclei, while
the remaining components force the system to expand in the transverse directions. This
is problematic for a smooth matching to quasi-ideal hydrodynamics, which is the theory
expected to describe the evolution of the fireball after ⌧ ⇠Q�1

s

.
However, prior to the interpretation of this object we must compute its average over
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As the trace in this expression is performed over color space, in order to compute it we
need to expand the color structure of our fields:
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(3.2)
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Figure 1. Space-time diagram of the collision of two relativistic heavy ion nuclei. The two diagonal
lines represent the trajectory of the nuclei. The points below them (quadrant 0) represent a region
where the projectiles have not yet arrived. By choosing the gauge fields to vanish in the remote
past, in this region we have Aµ

= 0. As the quadrants 1 and 2 represent regions where only one
of the nuclei has arrived, the gauge fields there are described by the Yang-Mills equations with a
single source. However, in the quadrant 3 we need to take into account the two sources.

inner surface of the light-cone, ⌧ = 0

+ (this is, at some infinitesimal positive proper time
after the collision), as in this region it is possible to find an analytical expression of the
gauge fields. In order to do so, it is useful to divide the space-time into four quadrants
as indicated in Fig. 1. The MV model provides the appropriate framework to calculate
the gauge fields characterizing each nuclei before the collision (quadrants 1 and 2). These
fields define the boundary conditions for the solution in the future light-cone (quadrant 3).
Taking into account that for ⌧ < 0 the nuclei are located in causally disconnected regions
of space-time, we can compute each gauge field independently. Let’s take, for instance, a
nucleus moving in the positive x3 direction (which we indicate with the label 1). By solving
Eq. (2.1) in the light-cone gauge (see [6] for a detailed resolution), we obtain:
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which is a non-abelian Weizsäcker-Williams field. Here ⇢̃(x�, x?) is the color charge density
in the covariant gauge4 and U(x�, x?) is the Wilson line: a SU(N

c

) element that represents
the effect of the classical gluon field over the fast valence partons in the eikonal approxima-
tion, i.e. a rotation in color space. U(x�, x?) is defined as a path-ordered exponential:
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Calculation of the energy-momentum tensor

[Dµ, F
µ⌫ ] = J⌫

1 + J⌫
2 [1, 2] Single nucleus solution

A

±
1 = 0

A

i
1 = ✓(x�)
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�1
dz

�
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†
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�
, x?)
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�
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�
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Z
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�
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)

[3] Forward light cone ⌧= 0+
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±
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A

i =↵
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i
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⇥
↵

i
1(x?),↵

i
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⇤

• We can obtain the 
early-time energy-
momentum tensor as: 

Tµ⌫ =
1

4
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↵
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j
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k
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b
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hTµ⌫(x?)i = h✏0i tµ⌫

Building block of 
the calculation
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• We momentarily take two different transverse positions:
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hTµ⌫(x?)i = h✏0i tµ⌫
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Luckily, in this case Wilson lines and (external) color source densities factorize
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• In the MV model the factor               
     yields a logarithmic UV divergence:

• Here we have introduced a momentum scale characterizing each nucleus:
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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hTµ⌫(x?)T
�⇢(y?)i = h✏(x?)✏(y?)i tµ⌫ t�⇢

• The tough guy: adjoint Wilson line quadrupole [Kovner & Wiedemann ’01]
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• The building block:
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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Correlator of n Wilson lines and m external sources

Where: Gm�1
(1,...,j�1,{j},j+1,...,m) ⌘ h⇢1...⇢j�1⇢j+1...⇢mi

Hj,n
({1,...,J1�1},J1,{J1+1,...,J2�1},J2,{J2+1,...}...{Jj�1},Jj ,{Jj+1,...,m}) ⌘ h⇢J1⇢J2 ...⇢JjU1...Unic

Fm,n(b�, a�)
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X
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Based on [Fillion-Gourdeau & Jeon ’09]
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Detail on “connected” correlators



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  44

Hm,n(b�, a�|{b}, {a}) = H1,n(b�, c�1 |{b}, {↵1})
"
m�2Y

p=1

H1,n(c�p , c
�
p+1|{↵p}, {↵p+1})

#
H1,n(c�m�1, a

�|{↵m�1}, {a}))

b1

b2

bn

(↵1)1

(↵1)2

(↵1)n

b� c�1

(↵p)1

(↵p)2

(↵p)n

(↵p+1)1

(↵p+1)2

(↵p+1)n

(...)

(↵m�1)1

(↵m�1)2

(↵m�1)n

a1

a2

an

c�p c�p+1 c�m�1 a�

⇢c1 ⇢c2 ⇢cp+1 ⇢cp+2 ⇢cm

(...)}

Detail on “connected” correlators

b1

b2

bn

a1

a2

an

=

b� a�

b1

b2

bn

a1

a2

an

b� a�

b1

b2

bn

a1

a2

an

b� a�

+ + (...) +

b1

b2

bn

a1

a2

an

b� a�

⇢c ⇢c ⇢c ⇢c

b0

b0

b0

H1,n(b�, a�|{b}, {a})i = gµ2(b�)
nX

j=1

@i
yL(xj? � y?)f

c bjb
0
Fn(b�, a�|{�}{a})|�j=b0



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  45

Hm,n(b�, a�|{b}, {a}) = H1,n(b�, c�1 |{b}, {↵1})
"
m�2Y

p=1

H1,n(c�p , c
�
p+1|{↵p}, {↵p+1})

#
H1,n(c�m�1, a

�|{↵m�1}, {a}))

b1

b2

bn

(↵1)1

(↵1)2

(↵1)n

b� c�1

(↵p)1

(↵p)2

(↵p)n

(↵p+1)1

(↵p+1)2

(↵p+1)n

(...)

(↵m�1)1

(↵m�1)2

(↵m�1)n

a1

a2

an

c�p c�p+1 c�m�1 a�

⇢c1 ⇢c2 ⇢cp+1 ⇢cp+2 ⇢cm

(...)}

Detail on “connected” correlators

b1

b2

bn

a1

a2

an

=

b� a�

b1

b2

bn

a1

a2

an

b� a�

b1

b2

bn

a1

a2

an

b� a�

+ + (...) +

b1

b2

bn

a1

a2

an

b� a�

⇢c ⇢c ⇢c ⇢c

b0

b0

b0

H1,n(b�, a�|{b}, {a})i = gµ2(b�)
nX

j=1

@i
yL(xj? � y?)f

c bjb
0
Fn(b�, a�|{�}{a})|�j=b0



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  46

Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

NOTATION:

⇢ ⌘ @⇢̃

r2
?

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Disconnected terms:
Z 1

�1
dz

�
dw

�
dz

�0
dw

�0
D
⇢̃

i,e

x

⇢̃

k,f

x

⇢̃

i

0
,e

0

y

⇢̃

k

0
,f

0

y

ED
U

ea(z�, x?)U
fc(w�

, x?)U
e

0
a

0
(z�0

, y?)U
f

0
c

0
(w�0

, y?)
E

h⇢a(x�
, x?)⇢

b(y�, y?)i = µ

2(x�)�ab�(x� � y

�)�(2)(x? � y?)

REMINDER:
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Disconnected terms:
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(Wick’s theorem)
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Disconnected terms:
3 terms
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:

Disconnected terms:
3 terms

= g2@i
u@

j
u0L(u? � u0

?)

Z 1

�1
dz�

Z z�

�1
dw�

Z w�

�1
dw�0µ2(z�)µ2(w�)µ2(w�0)

⇥C(2)
adj(z

�, w�;u?, u
0
?)

⇣h
@k
v (L(v?� u0

?)�L(v?� u?))C
(3)
adj(w

�, w�0;u?, u
0
?, v?)

⇥@l
v0
�
fAeDfCBeL(v0? � u?)+fACefDBeL(v0? � u0

?) + fABefeCDL(v0? � v?)
�

⇥QABCD
abcd (w�0;u?, u

0
?, v?, v

0
?)

⇤
+


l  ! k
c  ! d
v?  ! v0?

�◆l ! k
c ! d

v?  ! v0?

With                        and                       : u? = v? ⌘ x? u0
? = v0? ⌘ y?

=2g2@i

x

@

j

y

L(x? � y?)

Z 1

�1
dz

�
Z

z

�

�1
dw

�
Z

w

�

�1
dw

�0
µ

2(z�)µ2(w�)µ2(w�0)

⇥C

(2)
adj(z

�
, w

�;x?, y?)@
k

x

(L(x?� x?)�L(x?� y?))C
(3)
adj(w

�
, w

�0;x?, y?, x?)

⇥@

l

y

(L(y?� y?)�L(y?� x?)) f
ACe

f

BDe

Q

ABCD

abcd

(w�0;x?, y?, x?, y?) !!!

/ �

ee0
�

ff 0
hUea(x?)U

fc(y?)U
e0a0

(x?)U
f 0c0(y?)i

Z 1

�1
dz�dz�0dw�dw�0

D
⇢̃i,a

0

u ⇢̃j,b
0

u0

ED
⇢̃k,c

0

v ⇢̃l,d
0

v0 Ua0a(z�, u?)U
b0b(z�0, u0

?)U
c0c(w�, v?)U

d0d(w�0, v0?)
E

c



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  52

Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:

Disconnected terms:
3 terms 4 terms
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:
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3 terms 4 terms
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:

Disconnected terms:
3 terms 4 terms
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:

Disconnected terms:
3 terms 4 terms
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic h⇢4U4ic

Connected terms:

Disconnected terms:
3 terms 4 terms
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• These terms contain specific projections in color space of the correlator of 
four Wilson lines in the adjoint representation. 

• We will calculate them via a discretization of space in the      -direction:x

�
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Wilson line correlators 
• Discretization of Wilson line: U(x�

, x?)ij = (Un(x�
n , x?)U

n�1(x�
n�1, x?). . . U

1(x�
1 , x?))ij
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Based on [Kovner & Wiedemann ’01]
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Wilson line correlators 

• We expand one of the n factors to order      :g2
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Wilson line correlators 

• We expand one of the n factors to order      :g2
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• We iterate the process:

Correlator of 2 Wilson lines in the fundamental representation

We will neglect terms of order          or higher(�x

�)2
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Wilson line correlators 

• We expand one of the n factors to order      :g2
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• We iterate the process:

Correlator of 2 Wilson lines in the fundamental representation
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Correlator of 2 Wilson lines in the fundamental representation

Wilson line correlators 

• We expand one of the n factors to order      :g2
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• We iterate the process:

• Reexponentiation: 
We assume that the neglected higher order 
terms add up to an exponential expression:
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Correlator of 4 Wilson lines in the adjoint representation



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  63

Correlator of 4 Wilson lines in the adjoint representation
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u1 = �ea�gc u2 = �ca�ge u3 = �ga�ec

w1 = deamdgcm w2 = dcamdgem w3 = dgamdecm

z1 = deamfgcm z2 = dcamfgem z3 = dgamfecm
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Correlator of 4 Wilson lines in the adjoint representation

• We express the previous lines as a matrix equation:

Uaceg
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• In this base,                 can be written as                                       with                                  
of order         .

T a0c0e0g0
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using the following color vector basis:
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Correlator of 4 Wilson lines in the adjoint representation

• We express the previous lines as a matrix equation:
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using the following color vector basis:
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• Iterating the expansion process we get:
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with:

and thus:

and:

Correlator of 4 Wilson lines in the adjoint representation

Rd = Rb �Ra
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.

• Reexponentiation: we need to diagonalize     . We get (using Mathematica):M̄
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and thus:
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Correlator of 4 Wilson lines in the adjoint representation
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Correlator of 4 Wilson lines in the adjoint representation
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Correlator of 4 Wilson lines in the adjoint representation
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• The first projection corresponds to the trivial propagation of an eigenvector by                  :
exp{ ¯Md}
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Correlator of 4 Wilson lines in the adjoint representation
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• The second projection is remarkably more difficult:
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Correlator of 4 Wilson lines in the adjoint representation
• After propagation we obtain:
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A remarkably complicated contribution.
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Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:

h⇢4U4i = h⇢4ihU4i+ h⇢2ih⇢2U4ic + h⇢4U4ich⇢4ihU4i h⇢2ih⇢2U4ic
3 terms 4 terms

• This expression can be written in terms of the following functions:

Connected terms:

Disconnected terms:

C

ij;kl
ab;cd(x?, y?, x?, y?)= f

ace

f

bde

@

i

x

@

j

y

L(x?� y?)@
k

x

�(x? � y?)@
l

y

�(y? � x?)

⇥
✓

4

�3
g

4
N

3
c

�
✓
�̄

2(b?)

2�N
c

+
4

�3
g

4
N

3
c

+
2�̄(b?)

�2
g

2
N

2
c

◆
C

(2)
adj(x?, y?)

◆

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D

ik;i0k0

ac;a0c0(x?, x?, y?, y?)=
1

4
�

ik
�

i0k0�
@

2
L(0?)

�2
�

ac
�

a0c0
�̄

2(b?)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D

ij;kl
ab;cd(x?, y?, x?, y?)= 2 @i

x

@

j

y

L(x?� y?)@
k

x

@

l

y

L(x?� y?)

Z 1

�1
dz

�
Z

z

�

�1
dw

�
�(z�, b?)�(w

�
, b?)

⇥�

AC

�

BD

⌦
U

Aa(x?)U
Bc(x?)U

Cb(y?)U
Dd(y?)

↵
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h↵4i =
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma  73

Correlator of 4 Wilson lines and 4 external sources

• Applying the previous rules we can decompose this correlator as:
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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- The color structure of this object is frustratingly complex. Even with all parts 
analytically calculated, the contraction of the color indices demands a 
computational treatment (via FeynCalc or FORM)
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• For the 2-point correlator of        : prepare for trouble and make it doubleTµ⌫
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• The tough guy: adjoint Wilson line quadrupole [Kovner & Wiedemann ’01]
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Cov[✏0](x?, y?) = h✏0(x?)✏0(y?)i � h✏0(x?)ih✏0(y?)i
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where the dependencies have been omitted for readability. The covariance of the full EMT
is simply obtained from the previous expression as
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The factors A(r?) and B(r?) were introduced in Eq. (4.14). Explicit expressions for them
in the general case are given in Appendix A and in Eqs. (4.42), (4.43) below for the specific
case of the original MV model. Also, to make our final result more compact we have defined:
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For simplicity, in the previous expressions we also defined the following momentum scale:
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Pocket formulae
• Omitting for the moment the issues with the r->0 divergencies (GBW-model)
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• Omitting (for the moment) the issues with logarithmic divergencies (GBW model):

Usual suppression factor 
characteristic of non-trivial 
color correlators
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Remarkably slow decay!
Power law:
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Comparison with the ‘Glasma Graph’ approximation 
• Glasma Graph approximation [Lappi & Schlichting 2018, Muller & Schaefer 2012]. Assume 

Gaussian distribution of the produced gluon fields: 

29

of this limit results from a combination of terms included in the first two orders of the
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-expansion presented above, Eq. (4.27) and Eq. (4.28):
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Note that this power-law tail is a non-trivial feature of our general result (shown in appendix
D) that is also displayed in the particular case of the MV model. In the opposite limit,
r!0, the covariance tends to:
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4.2 The glasma graph approximation

An alternative approach to this calculation is proposed in [5], where it is assumed that
the four-point correlation functions of the gluon fields can be factorized into products of
two-point correlation functions such that:
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This Wick theorem-like decomposition is based on the glasma graph approximation, which
combines Gaussian statistics (as featured in the MV model) with the assumption that the
valence quarks interact with the classical field by exchanging only two gluons. This results
in a factorization of double parton distributions into all possible products of single parton
distributions, which yields great simplification in the context of the calculation of di-hadron
correlators [...]. In the same spirit, Eq. (4.29) proposes a similar approach to the calculation
of the EMT two-point correlator, which is expressed in terms of the building block defined
for the single EMT correlator in Eq. (3.5). We compare the normalized covariance from our
result (in the MV model and with Q

s 1

=Q
s 2

=1 GeV) with the one computed according to
the decomposition defined in Eq. (4.29). As can be seen in Fig. 5, although both results agree
exactly in the small dipole size limit r ! 0, in the rest of the spectrum our computation
yields a harder curve. Another remarkable difference is that, while the glasma graph-
inspired result yields a rapidly vanishing exponential tail in the limit r ! 1, we obtain
a much slower power-law convergence. This potentially implies much different results and
physical interpretations for any observable built from this quantity.
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• Agreement with full result in the r->0 limit. Strong discrepancies in the r-> ∞ limit 
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Figure 5. LEFT: Comparison of normalized covariance of energy density ✏0 against r in the MV
model (blue full curve) and the glasma graph-inspired approximation (red dashed curve). Here
we also show the asymptotic behavior in the large dipole limit (green dot-dashed curve). RIGHT:
Ratio of full MV and glasma graph result.

5 Discussion and Outlook

A Operations involving the 2-D Laplacian Green’s function

Throughout the computation of the covariance of Tµ⌫

0

we encounter several nontrivial cal-
culations involving the Green’s function for the 2-dimensional Laplace operator G(x?�y?).
For instance, when computing the correlator of two gluon fields (Eq. (3.5)), we find:
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This expression includes two undetermined functions, h(b?) and f(x?�y?), introduced in
the 2-point correlator (Eq. (2.6)) in order to generalize the MV model. However, we do not
take these functions as completely general. For h(b?), in addition to overall good analytical
properties, we assume a slowly varying behavior in lengths smaller than the inverse of a
mass scale m�1:

|h(b?)| � m�1|@ih(b?)| � m�2|@i@jh(b?)| � ..., (A.2)

where we take m as the infrared regulator of our color glass condensate. We require that:
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Q
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where R
A

is the nuclear radius. Thus, the interaction distances of interest in our calculation
obey r = |x?�y?| ⌧ m�1. This requirement, as well as the assumed behavior for h(b?),
yield a significant simplification to Eq. (A.1). To see this, we expand h (b0?) around b? =

(x?+ y?)/2:

h(b0?) = h(b?) + (b0? � b?)

i@ih(b?) + ... (A.4)
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Glasma flux tubes

• The initial chromo-E⃗ and B⃗ fields form longitudinal

“flux tubes” extending between the projectiles:

• Correlation length in the transverse plane: ∆r⊥ ∼ Q
−1
s

• Correlation length in rapidity: ∆η ∼ α−1
s

• The flux tubes fill up the entire volume
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Note that this power-law tail is a non-trivial feature of our general result (shown in appendix
D) that is also displayed in the particular case of the MV model. In the opposite limit,
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4.2 The glasma graph approximation

An alternative approach to this calculation is proposed in [5], where it is assumed that
the four-point correlation functions of the gluon fields can be factorized into products of
two-point correlation functions such that:
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This Wick theorem-like decomposition is based on the glasma graph approximation, which
combines Gaussian statistics (as featured in the MV model) with the assumption that the
valence quarks interact with the classical field by exchanging only two gluons. This results
in a factorization of double parton distributions into all possible products of single parton
distributions, which yields great simplification in the context of the calculation of di-hadron
correlators [...]. In the same spirit, Eq. (4.29) proposes a similar approach to the calculation
of the EMT two-point correlator, which is expressed in terms of the building block defined
for the single EMT correlator in Eq. (3.5). We compare the normalized covariance from our
result (in the MV model and with Q

s 1

=Q
s 2

=1 GeV) with the one computed according to
the decomposition defined in Eq. (4.29). As can be seen in Fig. 5, although both results agree
exactly in the small dipole size limit r ! 0, in the rest of the spectrum our computation
yields a harder curve. Another remarkable difference is that, while the glasma graph-
inspired result yields a rapidly vanishing exponential tail in the limit r ! 1, we obtain
a much slower power-law convergence. This potentially implies much different results and
physical interpretations for any observable built from this quantity.
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Figure 5. LEFT: Comparison of normalized covariance of energy density ✏0 against r in the MV
model (blue full curve) and the glasma graph-inspired approximation (red dashed curve). Here
we also show the asymptotic behavior in the large dipole limit (green dot-dashed curve). RIGHT:
Ratio of full MV and glasma graph result.

5 Discussion and Outlook

A Operations involving the 2-D Laplacian Green’s function

Throughout the computation of the covariance of Tµ⌫

0

we encounter several nontrivial cal-
culations involving the Green’s function for the 2-dimensional Laplace operator G(x?�y?).
For instance, when computing the correlator of two gluon fields (Eq. (3.5)), we find:

1

r2

x

1

r2

y

(h(b?)f(x?�y?)) =

Z

dz2?du2

?G(z?�x?)G(u?�y?)h

✓

z? + u?

2

◆

f(z?�u?). (A.1)

This expression includes two undetermined functions, h(b?) and f(x?�y?), introduced in
the 2-point correlator (Eq. (2.6)) in order to generalize the MV model. However, we do not
take these functions as completely general. For h(b?), in addition to overall good analytical
properties, we assume a slowly varying behavior in lengths smaller than the inverse of a
mass scale m�1:

|h(b?)| � m�1|@ih(b?)| � m�2|@i@jh(b?)| � ..., (A.2)

where we take m as the infrared regulator of our color glass condensate. We require that:
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where R
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is the nuclear radius. Thus, the interaction distances of interest in our calculation
obey r = |x?�y?| ⌧ m�1. This requirement, as well as the assumed behavior for h(b?),
yield a significant simplification to Eq. (A.1). To see this, we expand h (b0?) around b? =

(x?+ y?)/2:

h(b0?) = h(b?) + (b0? � b?)
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Glasma flux tubes

• The initial chromo-E⃗ and B⃗ fields form longitudinal

“flux tubes” extending between the projectiles:

• Correlation length in the transverse plane: ∆r⊥ ∼ Q
−1
s

• Correlation length in rapidity: ∆η ∼ α−1
s

• The flux tubes fill up the entire volume
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• This slowly decaying 
behavior could potentially 
have an impact in both 
physical interpretations and 
numerical results for any 
observable built from this 
quantity.



Glasma calculation of energy-momentum tensor
correlations at early times

Pablo Guerrero Rodriguez

December 15, 2017

Pablo Guerrero Rodriguez (UGR) Glasma hTµ⌫
x

T

µ⌫
y

i calculation at ⌧ = 0

+

December 15, 2017 1 / 13Rodríguez /82January 24, 2019Initial correlations of the EMT of Glasma

An application: eccentricity fluctuations
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• In the picture proposed by Blaizot et al. ([Blaizot, Broniowski & Ollitrault ’14]),       fluctuations can be 
characterized in terms of n-point correlators of the energy density distribution by assuming 
that, for a given impact parameter we have:

"n
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• To leading order in             , we have the following expression for the mean squared 
eccentricities:

�✏(x?)
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FIG. 1. Eccentricity fluctuations as function of impact parameter in 5.02 TeV Pb+Pb collisions. The dotted lines are obtained
from the TRENTo model tuned to LHC data. The solid line in panel (a) and the shaded bands in panels (b), (c), and (d) come
instead from evaluation of Eqs. (14). The shaded bands represent a variation in the parameter Qs0.

where b is the impact parameter of the collision, and
"2{2}2(b) = "̄

2(b) + �

2(b).
These are our final expressions. They are compact,

easy to evaluate, and give information about the initial-
state geometry of heavy-ion systems from first-principles
in high-energy QCD. The only parameters entering in
these expression are well-defined physical quantities: The
shape parameters of the nuclear charge density, a and R,
and the saturation scale of the nuclei, Qs0.

Now, with Eqs. (14) at hand, it is natural to ask
whether their evaluation enables one to match calcula-
tions of "̄, �2, and "3{2} in a state-of-the-art MC model
of nucleus-nucleus collisions.

In Fig. 1 we present, as dotted lines, results for ec-
centricity fluctuations as function of impact parame-
ter in Pb+Pb collisions at

p
s = 5 TeV given by the

TRENTo model [8], a parametric model of initial condi-
tions for heavy-ion collisions which is very successful in
phenomenological applications. In the figure, we used the
parametrization of TRENTo proposed in Ref. [26] that
enables one to accurately reproduce the multiplicity dis-
tributions and the cumulants of vn fluctuations measured
at the LHC.

The solid line in Fig. 1(a), and the shaded bands in the
other panels, represent instead the results obtained eval-
uating Eqs. (14). Agreement with the TRENTo calcula-
tion is found to be excellent for all impact parameters,
with a Qs0 of order 3 GeV.

The result in panel (a) implies that the mean almond

geometry of the density profile in the TRENTo model
matches that given by our 1-point function. This is not
a surprise. Indeed, the chosen TRENTo model belongs to
that class of MCmodels where energy density is produced
in the transverse plane proportionally TA(~x)TB(~x), which
is reminiscent of Eq. (9).
Our results in panels (b) and (d), are, on the other

hand, much more striking. They indicate that the
amount of eccentricity fluctuations generated by the fluc-
tuating position of nucleons, which is the main source
of "n fluctuations in TRENTo, can be entirely given by
QCD interactions in our CGC picture, and this occurs
for a very reasonable value of Qs0. We shall come back
further on this point in the next section.

UNDERSTANDING EXPERIMENTAL DATA

Let us direct, then, our attention to experimental data.
We shall make use the aforementioned linear scaling,
vn = n"n, to match our results on "n fluctuations to
data on vn fluctuations collected in Pb+Pb collisions atp
sNN = 5.02 TeV by the ALICE Collaboration at CERN

[27], and in Au+Au collisions at
p
sNN = 200 GeV by

the STAR Collaboration at RHIC [28]. We shall neglect
the mild variation of n with centrality. In simulations,
one typically observes a decrease in n above 20% cen-
trality [29]. This e↵ect is driven by viscous corrections,
that we can not include in our calculation. Therefore, we
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• We have performed an exact analytical calculation of the covariance of the 
energy momentum tensor of the Glasma at             , in the framework of the 
Color Glass Condensate. 

We find remarkably long-range correlations in comparison to naive 
expectations and previous calculations (such as the one performed in the 
Glasma Graph approximation). 
The modifications introduced in the MV model will prove useful in subsequent 
phenomenological applications of our results. 

• This work presents a wide variety of applications and potential follow-up   
follow-up projects:  

Computation of time evolution of our result towards thermalization time                   
jjjjjjjjjjjjjjjjjjk, where it can serve as input for hydro QGP simulations. 

Analytical calculation of eccentricity fluctuations (directly related to 
experimentally measured anisotropic flow coefficients). 
Computation of dilute-dense limit, appropriate for p-A processes.
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Outlook. What’s next??

• We have performed an exact analytical calculation of the covariance of the 
energy momentum tensor of the Glasma at             . What’s next??. 

• Calculate the time evolution up to  

• Hydro applications: Eccentricity fluctuations, mode decomposition… 

• Transport properties of the off-equilibrium medium? 
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