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Electric Charge of the nucleus:

A well defined nuclear isospin group SU(2)T exists, as given a
nucleus with isospin T there exist Isobaric Analog States in nuclei
with Tz = −T ,−T + 1,−T + 2, ...+ T values, where

Tz =
(Z − N)

2
; in general T = |Tz |

The electric charge of the nucleus with mass number A is given as,

Q = Tz +
A

2
= Tz +

Z + N

2

Taking isospin of individual nucleon as tz = +
−

1
2 , the nuclear

isospin could be anything within the range Z−N
2 ≤ T ≤ Z+N

2 .
However not understood why isopsin T takes the lowest value.
• All the models of the nucleus have FAILED to predict the
above phenomenological nuclear charge expression.
•• Here we prove it within Skyrme-Wess-Zumino model.



Electric charge in the Standard Model (SM)
• The Gell-Mann-Nishijima relation for ”strong” group
SU(2)⊗ U(1) was suggested in 1953 as, Q = T3 + Y

2
(hypercharge Y = B + S, is generator of the U(1) group).
• The three quarks as fundamental representation of SU(3) came
much later to Gell-Mann (and independently to Zweig) in 1964.
In SU(3) T3 and Y are related as being generators of it. Thus in
QUARK MODEL electric charge is properly quantized.
• Glashow in studying the weak interaction in 1961, incorporated
electric charge in a larger electro-weak group SU(2)W ⊗ U(1)W ,
where the subscript W refers a different groups defining the Weak
and Electromagnetic interactions, in a partially unified manner.
• Glashow in 1961, just copied the Gell-Mann-Nishijima definition
for his electro-weak (EW) group electric charge as

Q = T3
W +

YW

2
(1)

Here YW called weak-hypercharge and is put in by hand.
• Hence electro-weak model electric charge NOT quantized.



• Glashow in 1961 had NO idea of Spontaneous Symmetry
Breaking by the Englert-Brout-Higgs mechanism, which came
much later in 1964. In EW group in 1969 (Salam and Weinberg).
• Now the Standard Model SU(3)c ⊗ SU(2)L ⊗ U(1)YW

is
extension of the above electro-weak group SU(2)L ⊗ U(1)YW

. .
• Standard Model is the most successful model of particle physics.
• However the above definitions of the electric charge are carried
over in toto to the Standard Model. Thus:
• Electric charge NOT quantized and arbitrary in the SM
This is consided a major WEAKNESS of the Standard Model

• IMPORTANT: this unquantized charge in the Standard Model:
•• Already exists prior to any Spontaneous Symmetry Beaking
(SSB) through Englert-Brout-Higgs (EBH) field. ( Only masses are
generated by the SSB through EBH field in the SM ).

•• It is immune or independent of the strong-colour group SU(3)c .

•• Fixed and rigid values 2/3 and -1/3 (no colour dependence)

•• Anomalies play no role other than being trivially satisfied
by the above pre-fixed values of the hypercharge in the SM.



Quantized Charge Standard Model (QCSM)
• We have to go beyond the above SM to get quantized charges.
• We take the same generation structure as that in the SM and the
same Englert-Brout-Higgs (EBH) field as an SU(2)L group doublet,

φ =

(
φ+

φ0

)
(2)

•• However, major differences with respect to the above SM are:
• We start with the complete group structure as
SU(Nc)⊗ SU(2)L ⊗ U(1)YW

where Nc = 3.
• We do not have pre-defined electric charge.
• We take the most general definition of the electric charge in
terms of generators of the above group structure
• First we study the effects of SSB through the above EBH field,
• Next the role of anomaly cancellations.
• To ensure that all massless matter particles acquire mass through
Yukawa couplings.
• Is all this rich enough to provide charge qunatization in this
model structure? • Below we show that indeed it does!



The first generation fermions are assigned to the following
representations for the group SU(Nc )⊗ SU(2)L ⊗ U(1)YW

.

qL =

(
u
d

)
L

, (Nc , 2,Yq); uR , (Nc , 1,Yu); dR , (Nc , 1,Yd )

lR =

(
νe

e

)
L

, (1, 2,Yl ); eR , (1, 1,Ye) (3)

• Five unknown hypercharges above plus the unknown Yφ (six).
For SU(2)L ⊗ U(1)YW

define the electric charge operator in the
most general way in terms of the diagonal generators of the groups,

Q = T3 + b Y (4)

• In SU(2)L ⊗ U(1)YW
, symmetry has three massless generators

W1,W2,W3 of SU(2)L and U(1)Y . SSB gave mass to W± and Z 0

gauge particles while ensuring zero mass for photons γ.
• Thus U(1)em is the exact consequent symmetry in the process
SU(2)L ⊗ U(1)YW

→ U(1)em.



• The EBH doublet field as above
(

φ+

φ0

)
• Let the T3 = −1

2 corresponding to the EBH field develop a
nonzero vacuum expectation value < φ >0. As per the EBH
mechanism for SSB, to ensure that one of the four generators
(W1W2W3,X ) is thereby left unbroken (meaning that what we
ensure a massless photon as a generator of the U(1)em group), we
demand:

Q < φ >0= 0 (5)

For the Q operator above,

Tφ
3 + b < φ0 >= 0 (6)

• This fixes the unknown b and the ELECTRIC CHARGE is:

Q = T3 + (
1

2Yφ
)Y (7)

•• Note that Yφ exists in the denominator of the expression
for the electric charge.



ANOMALIES: For theory to be renormalisable, we have to ensure
that all the anomalies neutralise each other for all the particles
known, For each generation cancellation of anomalies brings in the
requirement for the satisfaction of the following three constraints:

(a)TrY [SU(NC )]2 = 0 which yields 2Yq = Yu + Yd (8)

(b)TrY [SU(2)L]2 = 0 which gives 22Yl + Nc [22Yq] = 0 (9)

and thus

Yq = − Yl

Nc
(10)

(c) Tr [Y 3] = 0 (11)

giving

2Nc Y 3
q − Nc Y 3

u − NcY 3
d + 2Y 3

l − Y 3
e = 0 (12)

We still need to have terms for Yu,Yd ,Ye , in addition to Yq.



• Before SSB the matter particles are massless. We have to make
them massive through this process of SBB by Yukawa couplings

L = −φ†q̄LuR + φqLd̄R + φeLēR (13)

• On demanding gauge invariance the above yields,

Yu = Yq + Yφ; Yd = Yq − Yφ; Ye = Yl − Yφ (14)

• Now substituting Yq and Yu,Yd ,Ye from above one obtains:

(Yl + Yφ)3 = 0 (15)

The equation is reduced to two unknowns Yl and Yφ giving,

Yl = −Yφ. Putting this above gives, Yq =
Yφ

Nc
. These yield,

Yu = Yφ(
1

Nc
+ 1) (16)

And similarly for Yd and Ye . Finally, we get,



Quantized electric charges in the Quantized Charge Standard
Model

Q(u) =
1

2
(1 +

1

Nc
); Q(d) =

1

2
(−1 +

1

Nc
)

Q(νe) = 0; Q(e) = −1 (17)

•• Note that though U(1)em does not know of colour, the
electric charges are actually dependent upon colour itself.

• The fact that the electric charge of the quark has colour
dependence built into itself is a significant new result for the
Quantized Charge Standard Model.

• However this is in direct conflict with the charges obtained in the
Standard Model. These charges were always Q(u) = 2

3 and
Q(d) = −1

3 (i.e. indepndent of colour).

• In fact, below we show that the colour dependent charges of
the Quantized Charge Standard Model are the correct ones,
while the static charges Q(u) = 2

3 and Q(d) = −1
3 of the

Standard Model are the wrong charges.



The study of QCD in large Nc limit: While the number of
quarks in SU(Nc) scale as ∼ Nc , the number of gluons scale as
∼ (N2

c − 1). So for large Nc , gluons will dominate over quarks.
Also the field theory of SU(Nc) for large Nc reduces to a theory of
weekly interacting mesons. Thus this theory connects to the
Skyrme model where baryons arise as topological structures in a
Lagrangian composed of scalar mesons only.
• In this QCD, baryon has a finite size and has a mass going as:

M(baryon) ∼ Nc (18)

• Baryons are composed of Nc number of quarks. Composite
baryons to be fermions Nc is an odd number like Nc = 1, 3, 5...

Nc = 2k + 1, (19)

• Now assume that the proton is built up of (k + 1) number of
u-quarks and k number of d-quarks, and vice-versa for neutron.
• Now Witten et.al ( Adkins, Nappi and Witten, Nucl. Phys. B228
(1983)228) took quark charges to be the same for any arbitrary Nc

(i.e. independent of colour), Qu = 2/3 and Qd = −1/3



• Why is proton made up of 2 u-quarks and 1 d-quark for for
Nc = 3 ? Because Nc = 2k + 1 and k=1 for 3-colours. So prorton
is made up of (k+1) u-quark and k d-quark. and k is colour
dependent!. So proton charge is colour dependent too.
• Thus in their model the proton and neutron charges are,

Qp = (k + 1)
2

3
+ k

(
−1

3

)
=

(
k + 2

3

)
=

Nc + 3

6

Qn = k
2

3
+ (k + 1) (−1

3
) =

(
k − 1

3

)
=

Nc − 3

6

Now for Nc = 3 these gave apparently correct charges Qp = +1
and Qn = 0 - but actually colour dependent.

• Also for arbitrary Nc , these are not even integral. For Nc = 5,
Qp = 4/3, Qn = +1/3 these charges actually blow up as Nc →∞.

• This is an unsatisfactory behaviour of static charges of the
SM and in the work of Witten et. al. for QCD with any Nc

(including 3), the colour dependence of proton charge is
catastrophic.



• Now Witten et. al had unfortunately neglected the fundamental
Coulomb self-energy term contribution to the baryon masses.
But this should add as a QED contribution. And thus the QCD
plus QED contributions to baryon mass are,

M(proton) ∼ Nc + C

(
Nc +3

6

)2

R
(20)

where C is a constant and R is the finite size of proton. Now the
baryon mass is blowing as Nc

2 due to the QED part.
• This is messing up the whole analysis based on
self-consistent QCD only - true for three-colours as well.
Thus here QCD plus QED tells us that there are no stable large
number of colour baryons. This is thus what the conventional SM
is telling us.

• This is disastrous for the model of Witten et.al..

• Thus the definition of electric charge in the Standrd Model
is inconsistent with the structure of QCD.



• Next our result of colour-dependent electric charges in Quantized

Charge Standard Model, Qu = 1
2

(
1 + 1

Nc

)
, Qd = 1

2

(
−1 + 1

Nc

)
• Now proton and neutron charges in the SU(NC ) model are

Qp = (k + 1)
1

2

(
1 +

1

Nc

)
+ k

1

2

(
−1 +

1

Nc

)
= 1 (21)

Qn = k
1

2

(
1 +

1

Nc

)
+ (k + 1)

1

2

(
−1 +

1

Nc

)
= 0 (22)

• Thus Qp = 1 , Qn = 0 for arbitrary Nc - it is independent of Nc .
• Hence the Coulomb self-energy term of the proton remains finite.
• Thus the colour-dependent electric charge of the QCSM
are the proper charges for quarks and proton.

• This is because in QCSM M(proton) ∼ Nc . And this is the
correct understanding of the relationship between the
constituent quarks and the current quarks in QCD.

•Hence electric charges in the
QCSM are consistent with QCD
while those in the SM are NOT.



Topological Skyrme model:
Let U(x) is an element of the group SU(2)F ,

U(x)SU(2) = exp((iτ aφa/fπ), (a = 1, 2, 3)

define Lµ = U†∂µU (23)

The the Skyrme Lagrangian is given as,

LS =
fπ

2

4
Tr(LµLµ) +

1

32e2
Tr [Lµ, Lν ]2

with topological current Wµ =
1

24π2
εµναβTr [LνLαLβ] (24)

Independet of eqn of motion, this topological current is conserved,
∂µWµ = 0; giving a conserved topological charge q =

∫
W0d3x .

The solitonic structure is obtained on making Skyrme ansatz as,

Uc (x)SU(2) = exp((i/fπθ(r)r̂ aτ a), (a = 1, 2, 3) (25)

This Uc (x) is called the Skyrmion. But on quantization, the two
flavour model Skyrmion has a well known boson-fermion ambiguity.



This is rectified by going to three flavours SU(3)F case,

U(x)SU(3) = exp[
iλaφa(x)

fπ
] (a = 1, 2..., 8) (26)

with φa the pseudoscalar octet of π, K and η mesons. But this has
a spurious symmetry, not present in QCD. This is rectified by
adding an anomaly term - the Wess-Zumino anomaly.

Skyrme-Wess-Zumino Model: In this model we supplement
above Skyrme lagrangian with a Wess-Zumino effective action

ΓWZ =
−i

240π2

∫
Σ

d5xεµναβγTr [LµLνLαLβLγ ] (27)

on surface Σ. Thus with this anomaly term, the effective action is.

Seff =
f 2
π

4

∫
d4x Tr [LµLµ] + n ΓWZ (28)

The winding number n is an integer n ∈ Z . The effective action is,

Seff =
f 2
π

4

∫
d4x Tr [∂µU∂µU†] + n ΓWZ (29)



Taking Q as charge operator, under a local electro-magnetic gauge
transformation h(x) = exp(iθ(x)Q) with small θ, one finds

ΓWZ → ΓWZ −
∫

d4x∂µxJµ(x) (30)

whee Jµ is the Noether current arising from the WZ term. This
coupling to the photon field is like,

Jµ =
1

48π2
εµναβTr [Q(LνLαLβ − RνRαRβ)] (31)

where Lµ = U†∂µU, Rµ = U∂µU†. With the electromagnetic field
Aµ present, the gauge invariant form of effective action is,

ˆSeff =
f 2
π

4

∫
d4x Tr [LµLµ] + n ˆΓWZ (32)



This means that when replacing the LHS by ˆΓWZ , then the RHS
has two new terms involving FµνFµν . This allows us to interpret
Jµ with the current carried by quarks. With the charge operator
Q, Jµ is found to be ISOSCALAR. To obtain the baryon
current, one replaces Q by 1

Nc
( where Nc is the number of colours

in SU(Nc) - QCD for arbitrary number of colours), which is the
baryon charge carried by each quark making up the baryon. For
total antisymmetry, Nc number of quarks are needed to make up a
baryon. Then nJµ → JB

µ gives,

nJB
µ (x) =

1

48π2

(
n

Nc

)
εµναβTr [(LνLαLβ − RνRαRβ)]

=
1

24π2
εµναβTr [LνLαLβ] (33)

This is the same as the topological current of Skyrme. Thus the
gauged WZ term gives rise to Jµ(x) which in turn gives the baryon
charge. Thus though the WZ term ΓWZ is zero for two-flavour
case, but Jµ(x) still contibutes to the two-flavour case.



Next we embed the SU(2) Skyrme ansatz into U(x)SU(3) as follows
for the SU(3) Skyrmion,

Uc (x)SU(2) → Uc (x)SU(3) =

 Uc (x)SU(2)

1

 (34)

Next we insert the identity,

U(~r , t)SU(3) = A(t)U(~r)
SU(3)
c A−1(t) A ∈ SU(3)F (35)

where A is the collective coordinate. Note that U(~r , t) is invariant
under,

A→ Ae iYα(t) (36)

where

Y =
1

3

 1 0 0
0 1 0
0 0 −2

 (37)



The quantum dof manifest themselves in the WZ term as,

LWZ = −1

2
Nc B(Uc)tr(YA−1A)

gauge − invariance → LWZ → LWZ +
1

3
Nc B(Uc)α̇ (38)

In quantized theory A and Y are operators-from Noether’s theorem

Ŷ Ψ =
1

3
Nc BΨ

giving the right − hypercharge YR =
1

3
Nc B (39)

where B and Nc are integers. Note that this right-hypercharge was
dictated by having defined SU(2) embedding in SU(3). With B =
1 and Nc = 3 one gets YR = 1. This identifies the nucleon
hypercharge with the body-fixed hypercharge YR . Ultimately one
obtains a tower of irreducible represenatations: (8,1/2), (10,3/2),
10,1/2), 27,3/2), .... of which the lowest octet and decuptet
are identified with the observed low energy baryons. Hence
we get all the low dimensional fermions as in the quark model.



Next study the significance of the fact, that the Wess-Zumino
term provides only isoscalar electric charge. Hence look at
the structure of the electric charge in the SU(2)F SWZ
model. Define the electric charge operator in SU(2) as,

Q =

(
q1 0
0 q2

)
(40)

It induces the following transformation,

U(x)→ e iε0ΛQU(x)e−iε0ΛQ = e
iε0Λτ3(q1−q2)

2 U(x)e
−iε0Λτ3(q1−q2)

2 (41)

ε0 is the em coupling constant. The Noether current is,

Jem
µ

ε0
=

iF 2
π

8
Tr Lµ(Q − U†QU)− i

8ε2
0

Tr [Lν ,Q − U†QU][Lµ, Lν ]

(42)
We obtain the gauge theory by replacing

∂µU → DµU = ∂µU − iε0Λµ[Q,U] (43)



Next to get constraints on charges,

Jem
µ = −iε0(q1 − q2)(π−∂µπ+ − π+∂µπ−) + ..

from pion charges (q1 − q2) = 1 (44)

Next the charges of baryons N and ∆ with B=1 charge,

Q =

∫
d4x Jem

0 (~x , t) = ε0Lα TrταQ (45)

Q = ε0(q1 − q2)L3 Giving Q = ε0L3 (46)

L3 is the third component of the isospiun operator, we get,

Q(proton) = +
1

2
and Q(neutron) = −1

2
(47)

• This is in disagreement with experiment. Thus the Skyrme
Lagrangian fails to provide correct electric charges to proton and
neutron. As such this may be taken to mean that the Skyrme
model is wrong.



However one way to save the Skyrme model is to note that actually
it is not providing charge of individual proton snd neutron but is
providing ISOVECTOR charge Qp − Qn = 1 of the nucleon.
• So what is quantized in the Skyrme model is not proton
and neutron charges individually but the isovector charge of
the whole nucleon N = ( p

n ).

This point of view will be supported by the fact that as we shall
see below the Wess-Zumino term in the complete
Skyrme-Wess-Zumino model, shall give pure quantized
isoscalar charge of the nucleon N = ( p

n ).

• This is completely different from what the Standard model and
the Quark Model predict, which is independent electric charges of
proton and neutron as per Gell-Mann-Nishijima expression:
Q = T3 + Y

2 . In Skyrme-Wess-Zumino model it is quantized
Isovector and isoscalar charges of the whole nucleon N = ( p

n ).
Thus Skyrme-Wess-Zumino model representation is different
from that of the Standard Model and Quark Model
representation.



• One should not be surprised by the basic difference of correct
representations in the quark model and the Skyrme-Wess-Zumino
model: the first one is based on the Lie algebra and the second
one the Lie group.

• Thus the quark charges are determined by the diagonal
genetrators of the Lie algebra; for example, Gell-Mann-Nishijima
kind of charges.

• However quantum mechanically permitted states like
X = a|u > +b|d > are ruled out in Lie algebra by some putative
superselection rule.

• But these are permitted by the full Lie group.

Thus the 2-flavour Skrmion-hedgehog (eqn. (25)) having
SU(2)isopspin ⊗ SU(2)spin symmetry, develops a further K-spin
invariance with K=I+J. Thus with I=J=1/2, in the special frame
K = I + J → 0, it is equivalent to the Skyrme-Wess-Zumino model
in the large colour limit as,



ψ(0) =
1√
2

(]u > ⊗| ↑> −|d > ⊗| ↓>) (48)

This is constructed to be K-spin singlet: Kψ(0) = (I + J)ψ(0) = 0.
We call this the ”hedgehog quark” state. The symmetric N-fold
tensor product

|0 >= ψ(0) ⊗ ψ(0) ⊗ ψ(0)....ψ(0) (49)

This is quark model analogue of the Skyrmion ( but do not forget
the difference - in the quark model this is a product of individual
single quark states ). For antisymmetry this symmetric state is
multiplied by totally antisymmetrci state in NC -colour space.

• Thus Skyrme-Wess-Zumino model representation is
EXPECTED to be different from that of the Standard Model
and Quark Model representation.



The equivalence between the Skyrme model and the hedgehog
quark model is well established.

• Here we add a strong supporting evidence in favour of our
Quantized Charge Standard Model.

In QCSM we had obtained quark charges as,
Q(u) = 1

2 (1 + 1
Nc

); Q(d) = 1
2 (−1 + 1

Nc
)

For NC →∞ these reduce to Q(u) = 1
2 , Q(d) = −1

2 , which are
charges of proton and neutron respectively, in the Skyrme model
(without the Wess-Zumino term).

• Thus indeed the two models are fully equivalent to each
other - but only in the QCSM.



In our Skyrme-Wess-Zumino model we have the additional
WZ term. With the WZ term, again let the field U be transformed
by an electric charge operator Q as, U(x)→ e iΛε0QU(x)e−iΛε0Q ,
Making Λ = Λ(x) a local transformation the Noether current is

Jµ
em(x) = jµ

em(x) + jµ
WZ (x) (50)

where the first one is the standard Skyrme term and the second is
the Wess-Zumino term

jµ
WZ (x) =

ε0Nc

48π2
εµνλσTrV νV λV σ(Q + U†QU) (51)

Remember that even though the WZ term vanishes for two
flavours, its resulting contribution to electric charge does not. This
term was of course missing in the original version of the Skyrme
Lagrangian.
One finally obtains,

jµ
WZ (x) =

ε0

2
(q1 + q2)NcJµ(x) (52)



The WZ term correction to the electric charge is therefore,

ε0

2
(q1 + q2)Nc

∫
J0(x)d3x giving

ε0

2
(q1 + q2)Nc B(Uc ) (53)

Remember the right hypercharge YR = 1, and subsequently B=1
for Nc = 3. Note also the baryon in the Skyrme model with B=1
has three quarks. We thus obtain the charges of N and ∆ if,

q1 + q2 =
1

3
(54)

With earlier SKyrme term of q1 − q2 = 1 we obtain the charges as,

q1 =
2

3
, q2 = −1

3
(55)

Amazing - fractional quark charges in SU(2)F itself. This is
opposite to what happens in the SU(3)F quark model. There the
smaller SU(2)-isospin group, one gets no fractional charges, and
one has integral charges for nucleon N = ( p

n ). Only in higher
group SU(3)F , one gets fractional charges for quarks. This is a
major diffrence between SWZ model and Quark Model.



However most important to note that for the SU(2) case, the
Skyrme Lagranguian (without the Wess-Zumino term) gave us
pure isovector charges for proton and neutron. And next ,the
Wess-Zumino term, is now giving us pure isoscalar charge. Then
the correct quantized quark charges are obtained only after
including both the original Skyrme lagrangian plus the
Wess-Zumino anomaly term.
Rememeber above, the baryon number B was related to charge Q
because as the electric charge in the Wess-Zumino term was pure
isoscalar. This is what we have found here for two flavours,
•Next as Qp = q1 + q1 + q2 ; Qn = q1 + q2 + q2, hence necessarily,
the main result for nucleon charge in Skyrme-Wess-Zumino model:

Qp − Qn = 1 (isovector); Qp + Qn = 1 (isoscalar) (56)

• Again note that here no Gell-Mann-Nishijima expression of
quark model for electric charge of proton and neutron, but
quantized isovector and isoscalar charges of the nucleon.



Using Z=1 for proton and N=1 for neutron the charges are

Q(p) =

(
Z = 1

2

)
isovector

+

(
Z = 1

2

)
isoscalar

Q(n) = −
(

N = 1

2

)
isovector

+

(
N = 1

2

)
isoscalar

(57)

Hence as per these skyrmions, this model gives right away the
charge of a nucleus for arbitrary number of Z and N as,

Q =
Z − N

2
+

Z + N

2
= T3 +

A

2
(58)

This well known charge of the nucleus is obtained here, as nucleus
is treated as made up of Z-protonic skyrmions and N-neutronic
skyrmions. Note that we have obtained the fundamental nuclear
charge equation directly in terms of the atomic mass number A, as
a direct and basic result of the Skyrmion in the
Skyrme-Wess-Zumino model. To belabour the point, this cannot
be done for pure Skyrme model without the addition of the
Wess-Zumino anomaly term. This is the proper representation
of the Nucleon in the nucleus as per the SWZ model.



Next, in going to SU(3)F , a the Noether current is,

Jµ
em(x) = jµ

em(x) + jµ
WZ (x) (59)

first one is the standard Skyrme term and second the WZ term

jµ
WZ (x) =

Nc

48π2
εµνλσTrLνLλLσ(Q + U†QU) (60)

As the charge operator can be simultaneously diagonalized along
with the third component of isospin and hypercharge, we write it

as, Q =

 q1 0 0
0 q2 0
0 0 q3

. The electric charge of pseudoscalar

octet mesons demand, q1 − q2 = 1, q2 = q3. Hence one obtains

Q = (q2 +
1

3
)13x3 +

1

2
λ3 +

1

2
√

3
λ8 (61)

Finally the total electric charge is,

Q =
1

2
L3 +

1

2
√

3
L8 + (q2 +

1

3
)Nc B(Uc ) (62)



The last term vanishes with down quark charge q2 = −1
3 , and one

is left with the Gell-Mann-Nishijima expression of charge as

Q = t3 +
Y

2
(63)

This gives the electric charges of all the members of the baryon
octet, conventionally supporting octet as lowest representation.
• But this is precisely what we do not want! As we saw above, the
SU(2) nucleon charges are given in the Skyrme-Wess-Zumino
model as isoscalar and isovector charges. Those are the properly
quantized charges. Thus no Gell-Mann-Nishijima electric charges
and SU(3)F should be consistent with separately quantized
isovector and isoscalar charges. Out of all the members of the
octet representation, the only one which has this property is Λ.
•Thus the SU(3) skyrmion is not octet or decuptet, or any

member of the infinite ladder, but the spin half fermion S =
(

p
n
Λ

)
• Thus the SWZ model is demanding revival of the long-ago
discarded SAKATON of SU(3)



• So why is the well-accepted spin-half octet representation
of the SWZ model WRONG and the CORRECT result forced
upon us is that of a Sakaton?

Answer: We saw above, that if QED is IGNORED (as done by
Witten et. al) QCD in NC →∞, as for NC = 3, gives inconstent
result for the structure of baryons.

•Hence QCD is consistent only when QED is fully and
properly incorporated with it.

• We note that the octet representation of the SWZ model,
arises when QED was being ignored. Later QED was
incorporated, but incorrectly (charge of 2-flavour Skyrme model
was interpreted wrongly). Only with proper and correct
interpretation of the global nature of these groups that QED forced
the proper interpretation of the representataion of the SWZ model.



Original Sakata Model: Sakata had extended the group SU(2)I

to SU(2)I × U(1)Y , and had taken Λ as a representation of the

U(1) group. Thus it was natural to take S =
(

p
n
Λ

)
as the

fundamental representation of a larger SU(3)F group. It is called
Sakaton in anology with Nucleon of the isospin group.
•Note that the charges in Sakaton are all integral: 1,0,0
respectively.
•The Sakata Model predicted the mesons correctly as composites:
3× 3̄ = 1 + 8. However it failed to describe the baryons as
3× 3× 3̄ = 3 + 3 + 6 + 15.
•Also as both n and Λ are neutral members of the fundamental
triplet in Sakata model, they should have the same magnetic
moment, µΛ = µn. This fails to match the expariment where,
µΛ = −0.613 and µn = −1.913 in units of e~

2mpc , where mass is
that of proton.
•Thus the fundamental triplet Sakaton was rejected.



However in our Skyrme-Wess-Zumino model with minimal
symmetry breaking, the masses are:
ms = m0 , and (mu = md ) = mo + aY . With ’a’ as negative in
magnitute, ms > (mu = md ).

• Hence magnetic moments of our skyrmionic Sakaton,

S =
(

p
n
Λ

)
are succssfully obtained as,

Baryons SWZ model experiment

p (4µu−µd )
3 2.793

n (4µd−µu)
3 −1.913

Λ µs −0.614

(64)

• Hence the SWZ model prediction of Sakaton
as Skyrmion is good



Hypernuclei

Physically as of now, one had assumed that hypernuclei reflect the
presence of hyperons, arising in the spin 1/2 octet, in the nucleus.

•However, this picture is unable to explain as to why the
hypernuclei observed experimentally upto now, are predominantly
made up of Λ’s only - fortyone have a single Λ present, three have
two-Λ and only one has a Σ meson?

•Our model here shows that actually the hypernuclei are a
manifestation of the presence of Sakatons in a nucleus. Hence it
predicts that strangeness in nuclei should arise from the Sakatons.

•Thus the puzzling presence of only the Λ’s in hypernuclei is
actually a confirmation of our Sakaton model arising from
the Skrme-Wess-Zumino model.



A Very Heavy Scalar Meson

•Thus what we have shown is that Sakatons are physically as
relevant as the quarks are in particle physics.

•But Sakatons are different from quarks in as much as they arise in
the topological Skyrme model. Hence these are Skyrmions.

•Therefore the Skyrme model is not just one of the large number
of phenomenological models of the hadrons, arising from some
kind of an approximation of QCD.

• Our analysis here has shown that the Sakatons are as basic
and as fundamental as the fractionally charged quarks are to
QCD.

•Hence the prediction of a very heavy scalar meson which arises in
the Topological Skyrme model, should be accorded a serious
sonsideration as a genuine physical entity.


