Fate of in-medium heavy quarks via a Lindblad equation

Davide De Boni

Frankfurt, 25 September 2017

Contents

1 Quark-gluon plasma and its signatures

2 Abelian model and open quantum systems

3 Lindblad equation for the heavy quarks

4 Numerical results

DDB, JHEP08 (2017) 064, 1705.03567 Blaizot, DDB, Faccioli, Garberoglio, Nuc. Phys. A 946(2016) 49, 1503.03857

QCD phase diagram

- Potential gets screened at high $T \Rightarrow$ Dissociation
 - studied via Schrödinger equation
- Potential develops an imaginary part \Rightarrow Dissociation
 - This comes from Landau damping (here gluo-dissociation is not considered)
 - Schrödinger eqn not appropriate when deviation from unitary evolution is large

- Potential gets screened at high $T \Rightarrow$ Dissociation
 - studied via Schrödinger equation
- Potential develops an imaginary part \Rightarrow Dissociation
 - This comes from Landau damping (here gluo-dissociation is not considered)
 - Schrödinger eqn not appropriate when deviation from unitary evolution is large
- High mobility of heavy quarks in the QGP \Rightarrow Regeneration \rightarrow Need for open-quantum-system treatment
 - Schrödinger approach not enough

- Potential gets screened at high $T \Rightarrow$ Dissociation
 - studied via Schrödinger equation
- Potential develops an imaginary part \Rightarrow Dissociation
 - This comes from Landau damping (here gluo-dissociation is not considered)
 - Schrödinger eqn not appropriate when deviation from unitary evolution is large
- High mobility of heavy quarks in the QGP \Rightarrow Regeneration \rightarrow Need for open-quantum-system treatment
 - Schrödinger approach not enough

Goal: To provide a unified framework for studying both processes:

- starting off from the underlying gauge theory
- controlling the real-time dynamics of the heavy quarks in the plasma

The model

We consider

 an Abelian plasma made of relativistic light fermions (quarks and antiquarks) in thermal equilibrium

The model

We consider

- an Abelian plasma made of relativistic light fermions (quarks and antiquarks) in thermal equilibrium
- N heavy quarks and antiquarks propagating out of equilibrium in the plasma
 - non relativistic heavy particles ($v \ll c = 1$)
 - \Rightarrow we can neglect magnetic forces acting on them
 - \Rightarrow their number is fixed

The model

We consider

- an Abelian plasma made of relativistic light fermions (quarks and antiquarks) in thermal equilibrium
- N heavy quarks and antiquarks propagating out of equilibrium in the plasma
 - non relativistic heavy particles ($v \ll c = 1$)
 - \Rightarrow we can neglect magnetic forces acting on them
 - \Rightarrow their number is fixed
- Scales setting: (light quarks) $m \ll T \ll M$ (heavy quarks)

- Heavy particles are treated non-relativistically using *first quantization*
- Light particles of the plasma are treated within *thermal field theory*

- Heavy particles are treated non-relativistically using *first quantization*
- Light particles of the plasma are treated within *thermal field theory*

Using the Coulomb gauge, the Hamiltonian of the system reads

$$H_{\text{tot}} = \frac{1}{2M} \sum_{i=1}^{N} \left(\mathbf{p}_{i}^{2} + \overline{\mathbf{p}}_{i}^{2} \right) + \int d\mathbf{x} \ \overline{\psi}(\mathbf{x}) \ \left(-i\gamma^{i}\partial_{i} + m \right) \ \psi(\mathbf{x}) + \frac{1}{2} \int \int d\mathbf{x} \ d\mathbf{y} \ j_{\text{tot}}^{0}(\mathbf{x}) \frac{1}{4 \pi |\mathbf{x} - \mathbf{y}|} j_{\text{tot}}^{0}(\mathbf{y})$$

Coulomb interactions

- Heavy particles are treated non-relativistically using *first quantization*
- Light particles of the plasma are treated within *thermal field theory*

Using the Coulomb gauge, the Hamiltonian of the system reads

$$\mathcal{H}_{\text{tot}} = \frac{1}{2M} \sum_{i=1}^{N} \left(\mathbf{p}_{i}^{2} + \overline{\mathbf{p}}_{i}^{2} \right) + \int d\mathbf{x} \ \overline{\psi}(\mathbf{x}) \ \left(-i\gamma^{i}\partial_{i} + m \right) \ \psi(\mathbf{x}) + \\ + \underbrace{\frac{1}{2} \iint d\mathbf{x} d\mathbf{y} \ j_{\text{tot}}^{0}(\mathbf{x}) \frac{1}{4 \pi |\mathbf{x} - \mathbf{y}|} j_{\text{tot}}^{0}(\mathbf{y})}_{\text{Coulomb interactions}} \\ \underbrace{j_{\text{tot}}^{0}(\mathbf{x}) = g \sum_{i=1}^{N} \left(\delta(\mathbf{x} - \mathbf{q}_{i}) - \delta(\mathbf{x} - \overline{\mathbf{q}}_{i}) \right) + g \overline{\psi}(\mathbf{x}) \gamma^{0}\psi(\mathbf{x})}_{\text{Guinn for a constraint of the set of$$

Open quantum systems

"Schrödinger" equation for closed quantum system (heavy particles + plasma)

$$i\hbar \frac{d\rho_{\text{tot}}}{dt}(t) = [H_{\text{tot}}, \rho_{\text{tot}}(t)] \qquad H_{\text{tot}} = H \otimes \mathbb{I}_{\text{env}} + \mathbb{I} \otimes H_{\text{env}} + H_{\text{int}}$$

+ $\rho_{\rm tot}$ is the density operator of the total (closed) system

•
$$ho(t) = |\psi(t)
angle \langle \psi(t)|$$
 for a pure state

Master equation for open quantum system (heavy particles)

$$\begin{split} \mathrm{i}\hbar \, \frac{d\rho}{dt}(t) &= \mathrm{Tr}_{\mathrm{env}} \left\{ [H_{\mathrm{tot}}, \rho_{\mathrm{tot}}(t)] \right\} \\ &= \left[H, \rho(t) \right] + \mathrm{Tr}_{\mathrm{env}} \left\{ [\mathbb{I} \otimes H_{\mathrm{env}} + H_{\mathrm{int}}, \rho_{\mathrm{tot}}(t)] \right\} \\ &\equiv \left[H, \rho(t) \right] + \mathrm{i} \, \mathcal{D}\rho(t) \end{split}$$

$$ho \equiv \mathrm{Tr}_{\mathrm{env}}
ho_{\mathrm{tot}}$$

Lindblad equation

Most general master equation in the Markovian limit (negligible memory effects)

$$\dot{
ho} = -rac{\mathrm{i}}{\hbar}[H,
ho] + rac{1}{2\hbar}\sum_{\mu}\left([L_{\mu}
ho,L_{\mu}^{\dagger}] + [L_{\mu},
ho L_{\mu}^{\dagger}]
ight)$$

 $L_{\mu}, L_{\mu}^{\dagger}$ are the Lindblad operators

Path integral from Trotter decomposition

 $\langle q|\hat{
ho}(t+\Delta t)|q'
angle = \langle q|\hat{
ho}(t)|q'
angle - rac{\mathrm{i}}{\hbar} \langle q|[\hat{H},\hat{
ho}(t)]|q'
angle + \mathsf{Lindbladian terms}$ $\Rightarrow
ho(t,q,q') = \int \mathrm{d}q_0 \int \mathrm{d}q'_0 P(q,q',t|q_0,q'_0,t_0)
ho(t_0,q_0,q'_0)$

Path integral

$$P(q, q', t | q_0, q'_0, t_0) = \int_{(q_0, t_0)}^{(q, t)} \mathcal{D}q \mathcal{D}p \int_{(q'_0, t_0)}^{(q', t)} \mathcal{D}q' \mathcal{D}p' \exp\left[\frac{i}{\hbar} S[q, p; q', p']\right]$$

$$egin{aligned} S[q, p; q', p'] &= & \int_{t_0}^t \mathrm{d} au \left[\dot{q}p - \mathcal{H}_{ ext{eff}}(q, p) - \dot{q}'p' + \mathcal{H}_{ ext{eff}}^*(q', p')
ight. \ & -\mathrm{i}\sum_\mu \mathcal{L}_\mu(q, p)\mathcal{L}_\mu^*(q', p')
ight] \end{aligned}$$

 $H_{
m eff} = H - rac{\mathrm{i}}{2} \sum_{\mu} L_{\mu}^{\dagger} L_{\mu}$

Markovian approximation:

Low frequency expansion of the gluon (photon) correlation function

$$\Delta(\omega) \approx \Delta(\omega = 0) + \omega \Delta'(\omega = 0)$$
$$\Delta(t_x - t_y) \approx \delta(t_x - t_y) \Delta(\omega = 0) + i \frac{d}{dt_x} \delta(t_x - t_y) \Delta'(\omega = 0)$$

Other approximations:

- Perturbative expansion up to order g^2
- Hard Thermal Loop calculation of the photon self-energy

Low frequency expansion of the gluon (photon) correlation function

$$\Delta(\omega) \approx \Delta(\omega = 0) + \omega \,\Delta'(\omega = 0)$$
$$\Delta(t_x - t_y) \approx \delta(t_x - t_y) \Delta(\omega = 0) + i \frac{\mathrm{d}}{\mathrm{d}t_x} \delta(t_x - t_y) \Delta'(\omega = 0)$$

Other approximations:

- Perturbative expansion up to order g^2
- Hard Thermal Loop calculation of the photon self-energy

The real (*V*) and imaginary (*W*) parts of the potential come from this correlation functions at $\omega = 0$

$$\mathcal{W}(\mathbf{r}) = -\Delta^{ ext{R}}(\omega=\mathbf{0},\mathbf{r}) \qquad \mathcal{W}(\mathbf{r}) = -\Delta^{<}(\omega=\mathbf{0},\mathbf{r})$$

Lindblad eqn for a single heavy quark $\mathbf{r} = \frac{1}{2}(\mathbf{q}+\mathbf{q}')\,,\qquad \mathbf{y} = \mathbf{q}-\mathbf{q}'$

- $W(\mathbf{r})$ is the imaginary part of the interquark potential

- The Lindblad matrix elements depend only on W

The (irreversible) interaction between the system and the plasma is determined by $W(\mathbf{r})$, which has a characteristic correlation length $l_{\rm env} \sim \frac{1}{qT}$ (screening from Landau damping)

• $l_{env} \gg \lambda_{sys} \Rightarrow$ Reversible (Schrödinger) dynamics No quantum decoherence

- $l_{env} \gg \lambda_{sys} \Rightarrow$ Reversible (Schrödinger) dynamics No quantum decoherence
- $l_{env} \gtrsim \lambda_{sys} \Rightarrow$ Open-system dynamics Langevin (classical) dynamics after a decoherence time

- $l_{env} \gg \lambda_{sys} \Rightarrow$ Reversible (Schrödinger) dynamics No quantum decoherence
- $l_{\rm env} \gtrsim \lambda_{\rm sys} \Rightarrow$ Open-system dynamics Langevin (classical) dynamics after a decoherence time
- + $I_{
 m env} \lesssim \lambda_{
 m sys} \Rightarrow$ Medium as a bound-state sieve

- $l_{env} \gg \lambda_{sys} \Rightarrow$ Reversible (Schrödinger) dynamics No quantum decoherence
- $l_{\rm env} \gtrsim \lambda_{\rm sys} \Rightarrow$ Open-system dynamics Langevin (classical) dynamics after a decoherence time
- + $\mathit{I}_{
 m env} \lesssim \lambda_{
 m sys} \Rightarrow$ Medium as a bound-state sieve
- $l_{\rm env} \ll \lambda_{\rm sys} \Rightarrow$ Medium heavily perturbs the system All bound states decay at the same rate

Fokker-Planck and Langevin equations Wigner function

$$ho(t,\mathbf{r},\mathbf{p}) = \int \mathrm{d}\mathbf{y} \,
ho(t,\mathbf{r},\mathbf{y}) \mathrm{e}^{-rac{\mathrm{i}}{\hbar}\mathbf{p}\cdot\mathbf{y}}$$

Fokker-Planck equation for one heavy quark (semiclassical limit):

$$\left[\partial_t + \frac{\mathbf{p}}{M} \cdot \partial_{\mathbf{r}} - \partial_{\mathbf{r}} V_{\text{ext}}(\mathbf{r}) \cdot \partial_{\mathbf{p}}\right] \rho(t, \mathbf{r}, \mathbf{p}) = \gamma \left[MT \nabla_{\mathbf{p}}^2 + \partial_{\mathbf{p}} \cdot \mathbf{p}\right] \rho(t, \mathbf{r}, \mathbf{p})$$

Fokker-Planck and Langevin equations Wigner function

$$ho(t,\mathbf{r},\mathbf{p}) = \int \mathrm{d}\mathbf{y} \,
ho(t,\mathbf{r},\mathbf{y}) \mathrm{e}^{-rac{\mathrm{i}}{\hbar}\mathbf{p}\cdot\mathbf{y}}$$

Fokker-Planck equation for one heavy quark (semiclassical limit):

$$\left[\partial_t + \frac{\mathbf{p}}{M} \cdot \partial_{\mathbf{r}} - \partial_{\mathbf{r}} V_{\text{ext}}(\mathbf{r}) \cdot \partial_{\mathbf{p}}\right] \rho(t, \mathbf{r}, \mathbf{p}) = \gamma \left[MT \nabla_{\mathbf{p}}^2 + \partial_{\mathbf{p}} \cdot \mathbf{p}\right] \rho(t, \mathbf{r}, \mathbf{p})$$

Corresponding Langevin equation for one heavy quark:

 $M\ddot{\mathbf{r}} + M\gamma\dot{\mathbf{r}} + \nabla_{\mathbf{r}}V_{\text{ext}}(\mathbf{r}) = \eta(\mathbf{r},t) \qquad \gamma \sim W''(\mathbf{r}=0)$

(γ is space-depent in the many-quark case) Noise vector corresponds to a stochastic force

$$\langle \eta(\mathbf{r},t) \rangle = \mathbf{0}, \qquad \langle \eta_i(\mathbf{r},t)\eta_j(\mathbf{r},t') \rangle = 2M\gamma T \delta_{ij}\delta(t-t')$$

Langevin dynamics

- High temperature \leftrightarrow melted $qar{q}$ pairs

- Low temperature $\leftrightarrow q ar q$ pairs strongly bound

- Medium temperature $\leftrightarrow qar{q}$ pairs faintly bound

Langevin dynamics

Pros

Cons

- Cheap simulations of many $q \bar{q}$ pairs
- Easy to study pair dissociation and formation

- Initial conditions are *classical*, hence the bound states are not quantum
- Dynamics is correct only in the semiclassical limit

Lindblad eqn for a $q\bar{q}$ pair (CoM frame)

$$\mathbf{r} = \frac{1}{2}(\mathbf{q} + \mathbf{q}'), \qquad \mathbf{y} = \frac{1}{2}(\mathbf{q} - \mathbf{q}')$$

$$\frac{\partial \rho(t, \mathbf{r}, \mathbf{y})}{\partial t} = \begin{pmatrix} \underbrace{i\hbar}{M}\frac{\partial}{\partial \mathbf{r}} \cdot \frac{\partial}{\partial \mathbf{y}} - \frac{i}{\hbar}(V(\mathbf{r} + \mathbf{y}/2) - V(\mathbf{r} - \mathbf{y}/2)) \\ \underbrace{-\frac{g^2}{\hbar}(2W(\mathbf{y}) - 2W(\mathbf{r}) + W(\mathbf{r} + \mathbf{y}) + W(\mathbf{r} - \mathbf{y}) - 2W(0))}_{\text{diffusion, decoherence}}$$

$$-\underbrace{\frac{g^2\hbar}{2MT}}_{\text{diffusion, decoherence}} \left(\frac{\partial W(\mathbf{y})}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{y}} - \frac{\partial W(\mathbf{r})}{\partial \mathbf{r}} \cdot \frac{\partial}{\partial \mathbf{r}} - \frac{\partial^2 W(\mathbf{r})}{\partial \mathbf{r}^2} \right)_{\text{dissipation}} \rho(t, \mathbf{r}, \mathbf{y}) \underbrace{\mathbf{v}}_{\text{dissipation}} \rho(t, \mathbf{r}, \mathbf{y}) = \frac{\partial W(\mathbf{r})}{\partial \mathbf{r}^2} + \frac{\partial$$

Quantities of interest

- Probability of having the state $|\psi
angle$ at time t

 $P(\psi, t | \psi_0, t_0) = \int \mathrm{d}q \int \mathrm{d}q' \psi(q') \psi^*(q) \rho(t, q, q')$

- Linear entropy (proxy of thermal entropy $m{\mathcal{S}}=- ext{Tr}\left[
ho\ln
ho
ight]$)

$$S_{L} = \mathrm{Tr}\rho - \mathrm{Tr}\rho^{2} = 1 - \mathrm{Tr}\rho^{2}$$

Quantities of interest

- Probability of having the state $|\psi
angle$ at time t

 $P(\psi, t | \psi_0, t_0) = \int \mathrm{d}q \int \mathrm{d}q' \psi(q') \psi^*(q) \rho(t, q, q')$

- Linear entropy (proxy of thermal entropy ${\cal S}=-{
m Tr}\left[
ho\ln
ho
ight]$)

$$\mathcal{S}_{_L} = \mathrm{Tr}
ho - \mathrm{Tr}
ho^2 = 1 - \mathrm{Tr}
ho^2$$

Pure states $\overline{
ho} = \rho^2 \Rightarrow S_L = 0$ Non-pure states $ho \neq \rho^2 \Rightarrow 0 < S_L \leq 1$

Numerical results for a $q\bar{q}$ pair in 1D

Pöschl-Teller potential:

$$V(x) = -rac{\omega}{2}j(j+1) ext{sech}^2 \left[\sqrt{rac{M\,\omega}{2\hbar^2}}x
ight] \qquad j = 2 ext{ (bound states)}$$
 $W(x) = -rac{T}{2} \exp\left[-rac{1}{2}\left(rac{x}{l_{ ext{env}}}
ight)^2
ight] \qquad l_{ ext{env}} \sim rac{1}{gT}$

Starting off with the ground state

 $\lambda_{
m sys} = 0.16\,
m fm$

Ground state melts with $P=1-P_0-P_1\sim 10\%$ after $\Delta t=5$ fm/c when $l_{\rm env}=0.25$ fm

A = b A @ b A \equiv b A \equi

Starting off with the ground state

 $\lambda_{
m sys} = 0.16$ fm

The smaller $I_{\rm env}$, the more rapidly the linear entropy initially increases

< = > < = > < = >

Starting off with the excited state

 $\lambda_{
m sys} = 0.38$ fm

Excited state melts with $P=1-P_0-P_1\sim 30\%$ after $\Delta t=5$ fm/c when $I_{
m env}=0.25$ fm

A = b A @ b A \equiv b A \equiv b

Starting off with the excited state

 $\lambda_{
m sys} = 0.38$ fm

Notice that the linear entropy does not increase monotonically like the thermal entropy

Starting off with a thermal scattering state

Starting off with a thermal scattering state

$$\psi_{
m scatt}(\mathbf{x}) \sim e^{-rac{1}{2}\left(rac{\mathbf{x}}{\delta}
ight)^2 + rac{\mathrm{i}}{\hbar}\mathbf{x}\,\mathbf{
ho}} \qquad \delta = \sqrt{2\langle\hat{\mathbf{x}}^2
angle} = \sqrt{2}\,\lambda_{
m sys}$$

 $\lambda_{
m sys} = 1.77\,{
m fm}^3$

Starting off with a thermal scattering state

$$\psi_{
m scatt}(x) \sim {
m e}^{-rac{1}{2}\left(rac{x}{\delta}
ight)^2 + rac{{
m i}}{\hbar}x
ho} \qquad \delta = \sqrt{2\langle\hat{x}^2
angle} = \sqrt{2}\,\lambda_{
m sys}$$

 $\lambda_{
m sys} =$ 1.77 fm

Time evolution of the density matrix

• $I_{\rm env} \sim \lambda_{\rm sys}$

• $I_{\rm env} < \lambda_{\rm sys}$

• $I_{\rm env} \ll \overline{\lambda_{\rm sys}}$

< ロ ト < 母 ト < 三 ト < 三 ト < 回 ト < 回 ト < 三 ・ つ へ ()・

Mass dependence of recombination Experimental fact: Υ ($b\bar{b}$) recombination \ll J/ Ψ ($c\bar{c}$) recombination

Conclusions and outlook

- A Lindblad equation for a heavy q ar q pair can be derived from the gauge theory
- This equation allows us to study dissociation, recombination and quantum decoherence of bound states
- Solution goes beyond Langevin/Fokker-Planck dynamics

Conclusions and outlook

- A Lindblad equation for a heavy q ar q pair can be derived from the gauge theory
- This equation allows us to study dissociation, recombination and quantum decoherence of bound states
- Solution goes beyond Langevin/Fokker-Planck dynamics Next steps:
- Solve the Lindblad equation in 3D (and for more than 2 particles)
- Is it possible to implement the initial quantum conditions (maybe by weighting somehow the classical paths) in a Langevin equation ?
- Derive the Lindblad equation in QCD

\huge{Thank you}

\end{document}

Backup material

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Keldysh formalism

$$ho_{
m tot}(t) = {
m e}^{-{
m i}\,H_{
m tot}\,t}\,
ho_{
m tot}(0)\,{
m e}^{\,{
m i}\,H_{
m tot}\,t}\,;\qquad
ho_{
m tot}(0) = |{f Q}_0
angle\langle\,{f Q}_0|\otimes {{
m e}^{-eta\,eta_{
m env}}\over Z_{
m env}}$$

Keldysh formalism

• Trotter decomposition brings to

$$P(\mathbf{Q}_{f},t|\mathbf{Q}_{i},0) = \int_{\mathbf{Q}_{i}}^{\mathbf{Q}_{f}} \mathcal{D}\mathbf{Q} \int \mathcal{D}\left(\overline{\psi}\psi\right) e^{\mathrm{i}\,S[\mathbf{Q},\psi,\overline{\psi}]}$$

The action of the system is defined on the Keldysh contour

$$\begin{split} \mathcal{S}[\mathbf{Q},\psi,\overline{\psi}] = & \int_{\mathcal{C}} \mathrm{d}t \left[\frac{M}{2} \sum_{j=1}^{N} \left(\dot{q}_{j}^{2} + \dot{\overline{q}}_{j}^{2} \right) + \int \mathrm{d}\mathbf{x} \, \overline{\psi}(\mathbf{x},t) (\,\mathrm{i}\gamma^{\mu}\partial_{\mu} - m\,)\psi(\mathbf{x},t) \, + \right. \\ & - \left. \frac{1}{2} \, \iint \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} j_{\mathrm{tot}}^{0}(\mathbf{x},t) \frac{1}{4 \, \pi |\mathbf{x} - \mathbf{y}|} j_{\mathrm{tot}}^{0}(\mathbf{y},t) \right] \end{split}$$

Eliminating plasma degrees of freedom

1st step

Hubbard-Stratonovich transformation \longrightarrow Introducing a Coulomb field A_0

$$\exp\left[-\frac{\mathrm{i}}{2}j_{_{\mathrm{tot}}}^{0}\cdot\boldsymbol{K}\cdot\boldsymbol{j}_{_{\mathrm{tot}}}^{0}\right] = \mathcal{N}\int DA_{0} \,\exp\left[\frac{\mathrm{i}}{2}A_{0}\cdot\boldsymbol{K}^{-1}\cdot\boldsymbol{A}_{0} - \mathrm{i}\,\boldsymbol{A}_{0}\cdot\boldsymbol{j}_{_{\mathrm{tot}}}^{0}\right]$$

where

$$\mathcal{K}(\mathbf{x}-\mathbf{y}) = rac{1}{4 \, \pi |\mathbf{x}-\mathbf{y}|} \,; \qquad \mathcal{K}^{-1}(\mathbf{x}-\mathbf{y}) = - \delta(\mathbf{x}-\mathbf{y}) \,
abla^2_{\mathbf{y}}$$

To eliminate the field of the light quarks by performing the Gaussian integral below

$$\begin{split} &\int \mathcal{D}\left(\overline{\psi}\psi\right) \; \exp\left[\mathrm{i} \int_{\mathcal{C}} \mathrm{d}^{4}x \; \overline{\psi}(x) \left(\mathrm{i}\gamma^{\mu}\partial_{\mu} - m - g \gamma^{0} A_{0}(x)\right) \psi(x)\right] = \\ &= \det(\mathrm{i}\gamma^{\mu}\partial_{\mu} - m - g \gamma^{0} A_{0}) = \\ &= \exp\left[\mathrm{Tr} \; \ln\left[\mathrm{i}\gamma^{\mu}\partial_{\mu} - m - g \gamma^{0} A_{0}\right]\right] \end{split}$$

3rd step (first approximation)

Expand

det
$$\left[\mathrm{i}\gamma^\mu\partial_\mu-m-g\,\gamma^0m{A}_0
ight]$$

to second order in $g~(g\ll 1)$ and perform the Gaussian integral over A_0

$$\int \mathcal{D}A_0 \exp\left[-\frac{1}{2}A_0 \cdot \Delta_c^{-1} \cdot A_0 - iA_0 \cdot j^0\right] = \exp\left[\frac{1}{2}j^0 \cdot \Delta_c \cdot j^0\right]$$

where

$$-\Delta_{\mathcal{C}}^{-1}(x-y) = \delta_{\mathcal{C}}(t_x^{\mathcal{C}}-t_y^{\mathcal{C}}) \, \mathcal{K}^{-1}(\mathbf{x}-\mathbf{y}) + \Pi_{00}^{\mathcal{C}}(x-y)$$

 $\Delta_{_{\mathcal{C}}}(x-y) = i \langle \overline{T_{_{\mathcal{C}}}[A_0(x)A_0(y)]} \rangle$

We obtain the Feynman-Vernon influence functional

$$P(\mathbf{Q}_{f},t|\mathbf{Q}_{i},0) = \int_{\mathbf{Q}_{i}}^{\mathbf{Q}_{f}} \mathcal{D}\mathbf{Q} \exp\left[i\left(\Phi[\mathbf{Q}] + \frac{M}{2}\int_{\mathcal{C}_{1}\cup\mathcal{C}_{2}} \int_{j=1}^{N} \left(\dot{\mathbf{q}}_{j}^{2} + \dot{\bar{\mathbf{q}}}_{j}^{2}\right)\right)\right]$$

$$\begin{split} \Phi[\mathbf{Q}] &= \frac{1}{2} \iint_{\mathcal{C}} d^4 x \, d^4 y \, j_0(x) \Delta_c(x-y) j_0(y) \\ &= \frac{1}{2} \int_0^t dt_x \, dt_y \int d\mathbf{x} \, d\mathbf{y} \, (-1)^{a+b} j_a^0(t_x, \mathbf{x}) \Delta_{ab}(t_x - t_y, \mathbf{x} - \mathbf{y}) j_b^0(t_y, \mathbf{y}) \end{split}$$

with

$$j_a^0(t_x, \mathbf{x}) = g \, \sum_{i=1}^N \left(\, \delta(\mathbf{x} - \mathbf{q}_{i,a}) - \delta(\mathbf{x} - ar{\mathbf{q}}_{i,a}) \,
ight)$$

<ロ> <四> <四> <日> <日> <日> <日> <日</p>

Second approximation: low frequency expansion of the gluon correlation function

$$\Delta(\omega) \approx \Delta(\omega = 0) + \omega \Delta'(\omega = 0)$$

 $\Delta(t_x - t_y) \approx \delta(t_x - t_y)\Delta(\omega = 0) + i \frac{d}{dt_x} \delta(t_x - t_y)\Delta'(\omega = 0)$

Performing this expansion up to $o(\omega)$ in $\Phi[\mathbf{Q}] = \Phi_{\alpha\alpha}[\mathbf{Q}] + \Phi_{\bar{\alpha}\bar{\alpha}}[\mathbf{Q}] + \Phi_{\alpha\bar{\alpha}}[\mathbf{Q}]$ and introducing the two real quantities

$$\mathcal{V}(\mathbf{r})\equiv -\Delta^{ ext{R}}(\omega=0,\mathbf{r})$$
 ; $\mathcal{W}(\mathbf{r})=-\Delta^{<}(\omega=0,\mathbf{r})$

where $\Delta^{\textit{R}} = \Delta_{11} - i\,\Delta^{<}$ and $\Delta^{<} = -i\,\Delta_{12}$, we get

$$\begin{split} \Phi_{\alpha\alpha}[\mathbf{Q}] &= \frac{g^2}{2} \sum_{i,j=1}^N \int_{t_i}^{t_j} \mathrm{d}t \left[V(\mathbf{q}_{j,2} - \mathbf{q}_{i,2}) - V(\mathbf{q}_{j,1} - \mathbf{q}_{i,1}) \right. \\ &- \mathrm{i}W(\mathbf{q}_{j,2} - \mathbf{q}_{i,2}) - \mathrm{i}W(\mathbf{q}_{j,1} - \mathbf{q}_{i,1}) + 2 \,\mathrm{i}\,W(\mathbf{q}_{j,1} - \mathbf{q}_{i,2}) \\ &+ \frac{\beta}{2} (\dot{\mathbf{q}}_{i,2} + \dot{\mathbf{q}}_{j,1}) \cdot \frac{\partial}{\partial \mathbf{q}_{i,2}} W(\mathbf{q}_{j,1} - \mathbf{q}_{i,2}) \right] \end{split}$$

and similarly for $\Phi_{\bar{a}\bar{a}}[\mathbf{Q}]$ and $\Phi_{a\bar{a}}[\mathbf{Q}]$

ightarrow the conditional probability depends only on V and W

3rd approximation: Hard thermal loop

Slow heavy particles exchange **soft** gluons, which have momentum $|\mathbf{k}| \leq gT$ and frequency $\omega \leq gT$ (consistency with low frequency approximation and with the expansion of the fermionic determinant up to $o(g^2)$)

Inverse propagators of soft particles are of the **same order** of 1-loop self energies

$$(g T)^2 \sim \Delta_{\mu
u}^{-1}(k \sim g T) \sim \Pi_{\mu
u}(k \sim g T)$$

Gluon self-energy contains the information about collision effects and the screening of the interactions in the plasma

Similarity between HTL 1-loop gluon and photon self-energy

$$\Pi_{\mu\nu}^{ab}(\omega,\mathbf{q}) = \frac{g^2 T^2}{3} \underbrace{\left(N_c + \frac{N_f}{2}\right)}_{\mathbf{q}} \delta^{ab} \int \frac{\mathrm{d}\Omega}{4\pi} \left(\frac{\mathrm{i}\,\omega\,\widehat{K}_{\mu}\widehat{K}_{\nu}}{\mathrm{i}\,\omega + \mathbf{q}\cdot\widehat{\mathbf{k}}} + \delta_{\mu4}\delta_{\nu4}\right)$$
$$\Pi_{\mu\nu}(\omega,\mathbf{q}) = \frac{e^2 T^2}{3} \int \frac{\mathrm{d}\Omega}{4\pi} \left(\frac{\mathrm{i}\,\omega\,\widehat{K}_{\mu}\widehat{K}_{\nu}}{\mathrm{i}\,\omega + \mathbf{q}\cdot\widehat{\mathbf{k}}} + \delta_{\mu4}\delta_{\nu4}\right); \quad \widehat{K} \equiv (\widehat{\mathbf{k}}, -\mathrm{i})$$

We work with a QED plasma, eventually going to QCD by changing the constant in front of the integral

Using the HTL approximation we obtain

$$V(r) = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\mathbf{k}^2 + m_D^2} = \frac{e^{-m_D r}}{4\pi r}$$
$$W(r) = -\int^{\Lambda} \frac{d\mathbf{k}}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{r}} \frac{\pi T m_D^2}{|\mathbf{k}|(\mathbf{k}^2 + m_D^2)^2}$$

where $\Pi_{00}^{_{
m HTL}}(0,{f k})=m_{
m D}^2=rac{4}{3}g^2T^2$

- V(r) is the screening potential between the heavy quarks
- *W*(*r*) originates from the collisions between the light fermions of the plasma and the heavy particles

Indeed $-\frac{g^2 T}{2}W(r=0)$ is the rate of collisions between a heavy quark and the particles of the plasma