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Goal: To provide a unified framework for studying both processes:

* starting off from the underlying gauge theory

* controlling the real-time dynamics of the heavy quarks in the
plasma
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The model

We consider

* an Abelian plasma made of relativistic light fermions (quarks
and antiquarks) in thermal equilibrium

* N heavy quarks and antiquarks propagating out of equilibrium
in the plasma
- non relativistic heavy particles (v < c=1)
= we can neglect magnetic forces acting on them
=> their number is fixed

* Scales setting: (light quarks) m<« T < M  (heavy quarks)
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* Heavy particles are treated non-relativistically using first
quantization

* Light particles of the plasma are treated within thermal field
theory

Using the Coulomb gauge, the Hamiltonian of the system reads
1 N
_ 2 | =2 v g
o = oo Z (92 + pi) - / AXP(X) (~iv/0; + m) Y(x) +

)

Coulomb interactions

heavy quarks+antiquarks

light particles
N ght p

JoX) =g > (3(x —aj) — 6(x — &) + g b (x) 7 %(x)

i=1



Open quantum systems

“Schrédinger” equation for closed quantum system (heavy particles
-+ plasma)

O' o
A t(t) [Hiot, prot(1)] Hot = H® Ieny + I ® Heny + Hine

* prot is the density operator of the total (closed) system

p(t) = (1)) (1(t)] for a pure state

Master equation for open quantum system (heavy particles)

in Z,f( ) = Trenv {[Hiot; prot(£)]}

[H, p(t)] + Treny {[T ® Heny + Hine, proe(t)]}
[H. p(t)] +iDp(t)

P = TrenyProt



Lindblad equation

Most general master equation in the Markovian limit (negligible
memory effects)

i 1
= —[H. o1+ 52 > ([Lups L] + Ly oL}
°w

Woss LL are the Lindblad operators

Path integral from Trotter decomposition

(@lp(t+ADg) = (@1A(0)]¢)— (al[A, A1) g")+Lindbladian terms

t q7 /qu/qu q/7 t‘QOvQE)atO)P(thQOaQEJ)



Path integral

(a,t) (q'.1) i .
P(q.q'. t|qo, 95, to) = Dqu Dq'Dp’ exp[ S[q,p;q,p]}
(qo,%) (g9,t)

t
Slg.p;q.p] = /t dr ldp—Heff(q,p)—iJ’p’Jr L(q, P')
{0)

—iy_ L, p)LZ(q’,p’)]

Het = H— 5>, LL,



Strategy

Gauge theory

Integrate out plasma d.o.f

P(q, q, t|qo, q(’)’ ) = f[’D . er S| Influence functional

jt Markovian limit

Lindblad eqn

Wigner transform Ehrenfest
Semiclassical €qns
/4 limit "\

Fokker-Planck eqn



Markovian approximation:

Low frequency expansion (w/T < 1)
Tenv <K Tsys

Frozen dynamics Interesting dynamics

w~T wL T NP

/Ath1

==

R
==

R



Low frequency expansion of the gluon (photon) correlation function
A(w) ~ A(w =0) + wA'(w=0)
d
X

Other approximations:
* Perturbative expansion up to order g2

* Hard Thermal Loop calculation of the photon self-energy



Low frequency expansion of the gluon (photon) correlation function
A(w) ~ A(w =0) + wA'(w=0)
d
X

Other approximations:
* Perturbative expansion up to order g2

* Hard Thermal Loop calculation of the photon self-energy

The real (V) and imaginary (W) parts of the potential come from
this correlation functions at w = 0

Vir)=-ARw=0,r W) =-A%(w=0,r)



Lindblad eqn for a single heavy quark
1 / /
r=5@+a), y=d-q

- W(r) is the imaginary part of the interquark potential
- The Lindblad matrix elements depend only on W

Schrodinger

Y ﬁ& 3y lh(vext(r+y/2) — Vex(r — y/2))
92 g°h OW(y) 0
— 5 (W) = WO) — o =50 " 5y | A1)

diffusion, decoherence dissipation



Resolution of the system by the plasma

The (irreversible) interaction between the system and the plasma is
determined by W(r), which has a characteristic correlation length
leny ~ % (screening from Landau damping)

Light quarks (plasma) © Heavy quarks @)
leny ~ o7 Asys ~ T
¢---m- - > ¢ = °
o o ° o m
o @) o o
o o
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Resolution of the system by the plasma

leny > Asys = Reversible (Schrédinger) dynamics
No quantum decoherence

leny = Asys = Open-system dynamics
Langevin (classical) dynamics after a decoherence time

leny < Asys = Medium as a bound-state sieve

leny << Asys = Medium heavily perturbs the system
All bound states decay at the same rate



Fokker-Planck and Langevin equations

Wigner function
p(t,r,p) = / dy p(t,r,y)e #PY
Fokker-Planck equation for one heavy quark (semiclassical limit):

[at = % : 8r - arvext(r) : ap] p(t7 I’, p) =7 [MTV’ZJ + ap ’ p p(t’ r’ p)



Fokker-Planck and Langevin equations

Wigner function

p(t,r,p) = / dy p(t,r,y)e #PY

Fokker-Planck equation for one heavy quark (semiclassical limit):

[at = % : ar - arvext(r) : ap] P(t7 r7 p) =7 [MTV’ZJ + ap ’ p p(t’ r’ p)

Corresponding Langevin equation for one heavy quark:
MY + MAr + Vi Vex(r) = n(r, 1) v~ W"(r=0)

(v is space-depent in the many-quark case)
Noise vector corresponds to a stochastic force

<77(r7 t)> =0, <77i(r7 t)nj(rv t/)> = 2M7T5U5(t - t/)



Langevin dynamics

* High temperature <> melted gq pairs

* Low temperature <+ gQq pairs strongly bound

* Medium temperature <> qQq pairs faintly bound
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Pros

* Cheap simulations of many
qq pairs

* Easy to study pair
dissociation and formation

Langevin dynamics

- Initial conditions are classical,
hence the bound states are not
quantum

- Dynamics is correct only in the
semiclassical limit

i
N)
el
)



Lindblad eqn for a qq pair  (CoM frame)

1 / o
r=3@+d), y=35@-d)

Schrédinger

8p(gtr,v) _ ;\Z; . (% _ ih(V(r+y/2) ~ V(r-y/2))

_ghz(zww) —2W(r)+ W(r+y)+ W(r—vy) - 2W(0))

diffusion, decoherence

“omT\ oy oy or or or ) pLLY)

dissipation

9°h <8W(y) o oW o PwW()




Quantities of interest

* Probability of having the state [¢)) at time ¢
P, tlvo, o) = [da[dq'v(q)v"(q)n(t. 9, q)
+ Linear entropy ( proxy of thermal entropy S = —Tr[pIn p] )

S, =Trp—Trp? =1 —Trp?



Quantities of interest

* Probability of having the state [¢)) at time ¢
P, tlvo, o) = [da[dq'v(q)v"(q)n(t. 9, q)
+ Linear entropy ( proxy of thermal entropy S = —Tr[pIn p] )

S, =Trp—Trp? =1 —Trp?

Pure states p=p =& =0
Non-pure states p#£pP=0<S <1



Numerical results for a qq pair in 1D

Péschl-Teller potential:

T
W(x)=——=
() =5
T =0.8 GeV
- B =% [Gev]
= R -~ B,, = —2w[GeV]
#7 [\ —_ V(z) [GeV]
¢ U € fm 3
£4n . o (@) [fm 2]

— 4., (@) [fm 3]




Starting off with the ground state

)\sys =0.16fm

po(a,q') = to(@)¥5(a")
° PO(t) , lenv = 0.74 fm
® Py(t), lenv = 0.25 fm
® Py(t), leny = 0.08 fm

\

\

! A Pi(t), leny = 0.74 fm
\ A Pyi(t), lenv =0.25 fm
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Ground state melts with P =1 — Py — Py ~ 10% after At =5
fm/c when Ly = 0.25 fm



Starting off with the ground state

Ayys = 0.16 fm

po(q,q") = ¢o(9)¥5(a")
leny = 0.74 fm
lenvy = 0.25 fm

lenv = 0.08 fm

The smaller lny , the more rapidly the linear entropy initially
increases



Starting off with the excited state

)\Sys = 0.38fm

po(a,q') = P1(2)¥7 (a")
° PO(t) , lenv = 0.74 fm
® Py(t), lenv = 0.25 fm
® Py(t), leny = 0.08 fm

|

|

|

i A Pi(t), leny = 0.74 fm
} A Pyi(t), lenv =0.25 fm
|

\

‘

\

\

A Pi(t), leny = 0.08 fm

Excited state melts with P =1 — Py — P; ~ 30% after At =5
fm/c when Ly = 0.25 fm



Starting off with the excited state

Agys = 0.38fm

\ po(g,q") = ¢¥1(9)v1(d)
\ lenv = 0.74 fm

lonv = 0.25 fm

‘ lenv = 0.08 fm

Notice that the linear entropy does not increase monotonically like the thermal entropy



Starting off with a thermal scattering state

Pscare(X) ~ e_%(%)z—‘_%”} 6= /2(x2) = V2 Agys

h V2h
Ay = — = ——— =177fm m=1.2GeV
" bm VmT

®lenvy = 3.29 fm
®leny = 1.97 fm
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®leny =0.12 fm
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Starting off with a thermal scattering state

wscatt(x) o~ e‘%(%)z—i-%xp )= \/m = \/é)\SYS

Aleny = 3.29 fm
Aleny = 1.97 fm
Alenv =0.25 fn1
Alepy = 0.12 fm




Time evolution of the density matrix

* kv ~ )\sys

° /env < )\sys

Sl =< )\sys
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manipulate2-sigma=0,5.mp4
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Mass dependence of recombination
Experimental fact: T (bb) recombination < J/W (cC) recombination

A= —V2h N _089fm A= 1.77 fm
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Conclusions and outlook

A Lindblad equation for a heavy qq pair can be derived from
the gauge theory

This equation allows us to study dissociation, recombination
and quantum decoherence of bound states

Solution goes beyond Langevin/Fokker-Planck dynamics
Next steps:

Solve the Lindblad equation in 3D (and for more than 2
particles)

Is it possible to implement the initial quantum conditions
(maybe by weighting somehow the classical paths) in a
Langevin equation ?

Derive the Lindblad equation in QCD



\huge{Thank you}

\end{document }
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Keldysh formalism

—i i — B Heny
pror(t) = e 7ol pgy(0) et Ft; pror(0) = [Qo){ Qo| ® =
it Keldysh contour
m
7i I-II()t t
Cq ¢ 1
0f
o e 1 t  Ret
Cl . ei Hmlt

C3

—iB



Keldysh formalism

* Trotter decomposition brings to

Q p—
P(Qs, 1Q;,0) = / 'pa / D () ¢t SO
Q;

The action of the system is defined on the Keldysh contour

N

S[Q, v, 7] /dt {"z’lz(q, + &) /dxw(x (79, — m)b(x, 1) +

1
) //dx dy]lot 4 ’X y‘ tm(y’ t):|



Eliminating plasma degrees of freedom

15! step

Hubbard-Stratonovich transformation

— Introducing a Coulomb field A

exp [_1/;3.;(.];3] :/\//DAO exp [;AO-K_1 Ay —iAy- 2

1

= Ty _y) — _ _ 2
— 47T’X—y‘ o K (X y) (S(X y) vy

K(x—y)



2" step

To eliminate the field of the light quarks by performing the
Gaussian integral below

[P @) e i 4500 (10, — m ~ 9°A0(x) w0 =

= det(iy"9, — m — g1 A) =

= exp {Tr In [iwa# —m-— gfyOAOH



3™ step (first approximation)

Expand

det |iy"0, — m— g*yOAo]

to second order in g (g < 1) and perform the Gaussian integral
over Ap

/DAO exp [—;AO-AC1 Ao —iAg -jo} = exp [;jO-AC -jo]

where

A (x—y) = St — ) KT (x—y) + 5 (x —y)

Acx=y) = (T [A(x)A(y)])



We obtain the Feynman-Vernon influence functional

(cb[o] 4 / dt i (a2 +a,2)>]

C1UCy j—1

P(Q;. 1|Q;, 0) /DQ exp

0@ = . 5/ / d*x dy jo(X) A (x — Y)io(¥)

= /dtxdty /dxdy )20 (1, X) A (b — by, X — Y)i (8, Y)

with
N

(%) =g Y (6(X = aia) = 5(X — Gia))

i=1



Second approximation: low frequency expansion of the gluon
correlation function

A(w) ~ A(w=0) + wA'(w=10)

Aty — t,) ~ 3(tx — t,)A(w = 0) + i%é(tx — 1) (w = 0)
X



Performing this expansion up to o(w) in
?[Q] = ¢,,[Q] + ¢, [Q] + ¢ [Q]

and introducing the two real quantities
V()= -ARw=0,r); W(r) = —A<(w =0,r)

where AR = Ayy —iA< and A< = —iAqp, we get

N t
ool = 3 [ at[Viaz ~aia) ~ Vi — i)
ij=171

—iW(dj2 — di2) —iW(a;1 — gi1) +2i W(Q;1 — q;2)

I\J\Q

(Qi2+4;1) - W(a;1 —qi2)

;2
and similarly for CDOO[Q] and d)oa[Q]
— the conditional probability depends only on V and W



3" approximation: Hard thermal loop
Slow heavy particles exchange soft gluons, which have momentum
|k| < gT and frequency w < gT
(consistency with low frequency approximation and with the
expansion of the fermionic determinant up to o(g?))

Inverse propagators of soft particles are of the same order of
1-loop self energies

(T2~ A (k~gT)~Nu(k~gT)




Gluon self-energy contains the information about collision effects

and the screening of the interactions in the plasma

Similarity between HTL 1-loop gluon and photon self-energy

=4
b g°T? Ne\ o [dQ [ 1w RMRV
N (w,q) = 3 (Nc + 2>5 /47T oG lol% + 0,404

272 [dQ [ iwK,K, S
I_I,U«I/(Waq)_ 3 4n (W—F(SM(;IA ;. K= (k, —i)

We work with a QED plasma, eventually going to QCD by changing
the constant in front of the integral



Using the HTL approximation we obtain
dk ik-r —mpr
(273 k2 +m5 r
. i dk eik~l’ v T m%
2m)3"  |k|(k? + m3)?

W(r) =

where I'IggL(O, k)=m3 = %gz T2
« V(r) is the screening potential between the heavy quarks

« W(r) originates from the collisions between the light fermions
of the plasma and the heavy particles

2
Indeed _gTT W(r = 0) is the rate of collisions between a heavy quark and the particles of

the plasma
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