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• (Long) Introduction 
—quarks and gluons in strong B 

• Calculation of Conductivity and Results 

• Possible Phenomenological Implications 
(Very Brief, more like future works) 

• Summary and future perspective



Introduction
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Strong magnetic field (B) may be generated 
in heavy ion collision due to Ampere’s law.

B
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At thermalization time (~0.5 fm), there still may be strong B.

Heavy ion collision may give a chance to investigate QCD 
matter at finite temperature in strong magnetic field.

lifetime: ~0.3fm 

   ~ 100  [MeV]
strength:
p
eB

(Comparable with T)
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FIG. 3. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.6 fm (η = 0.086). Left panel: t0 = 0.2 fm; right panel: t0 = 0.5 fm. Solid,

dashed, and dotted lines stand for B, Binit, and Bval.

Figure 3 is similar to Fig. 2 except that z = 0.6 fm,
unlocking the “valence” contribution. Being independent of
the initial value of the magnetic field at t0, the valence
contribution rapidly increases to its maximal value, which can
be determined from (34) [16]. It then decreases at larger t and
becomes smaller than Binit. Sharp lines seen in Fig. 3 indicate
that the transition dynamics near t = t0 is not fully captured
by the diffusion approximation.

The energy dependence of the magnetic field between
RHIC and Large Hadron Collider (LHC) energies can be
seen in Fig. 4. Binit grows approximately proportional to the
collision energy γ , whereas Bval is energy independent. Thus,
at the LHC the magnetic field induced by valence charges is
negligible.

So far I considered only the case of constant electrical
conductivity. In practice, however electrical conductivity is
time dependent. To see the impact of σ time dependence on
the time evolution of magnetic field I consider two models.
In model A I assume that the QGP emerges instantly at
t = t0 with σ = 5.8 MeV and then cools down as it expands
according to the Bjorken scenario [17]. Namely, expansion is
supposed to be isentropic, nV = const, where n is the particle
number density and V is plasma volume. Since n ∼ T 3 and

at early times expansion is one-dimensional, V ∼ t , it follows
that T ∝ t−1/3. Since σ (t) ∝ T , I conclude that σ (t) ∼ t−1/3.
Thus a reasonable model for time dependence of electrical
conductivity is

σ (t) = σ

2−1/3(1 + t/t0)1/3
, model A. (41)

Another possibility is that the QGP does not appear as a
thermal medium right away at t = t0, rather it takes time τ
until the conductivity reaches its equilibrium value σ . This
can be described as

σ (t) = σ (1 − e−t/τ ), model B. (42)

I set conservatively τ = 1 fm. Note that I cannot let σ (t)
vanish at t = t0 because that would violate the diffusion
approximation that leads to (20). However, (42) insures that
σ (t0) ≪ σ .

In Fig. 5 I contrast the two models. A similar calculation
at constant conductivity is shown in the left panel of Fig. 4.
I observe that time dependence (41) (model A) significantly
reduces the magnetic field at later times. As far as model B is
concerned, time dependence (42) affects mostly Bval because
it directly depends on σ (t), whereas Binit depends only on

0 2 4 6 8 10
t!fm"

10#4

0.001

0.010

0.100

eB$mπ
2

0 2 4 6 8 10
t!fm"

10#4

0.001

0.010

0.100

1

eB$mπ
2

FIG. 4. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.2 fm, t0 = 0.2 fm. Solid, dashed, and dotted lines stand for B, Binit, and Bval.

Left panel: γ = 100 (RHIC); right panel: γ = 2000 (LHC).
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Left panel: γ = 100 (RHIC); right panel: γ = 2000 (LHC).
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FIG. 4. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.2 fm, t0 = 0.2 fm. Solid, dashed, and dotted lines stand for B, Binit, and Bval.

Left panel: γ = 100 (RHIC); right panel: γ = 2000 (LHC).
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How the system behaves when 
the energy scale of B is much 
larger than the typical energy 

scale of the system?

(√eB>>T, m, ΛQCD…)



Quark in Strong B
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One-particle state of quark in magnetic field

Classical: Cyclotron motion due to Lorentz force
B

+



Quark in Strong B

7

Quantum: Landau Quantization B

En =

s

(pz)2 +m2 + 2eB

✓
n+

1

2

◆

The gap (~√eB) is generated by 
zero-point oscillation.

E

√eB

Longitudinal: Plane wave 
Transverse: Gaussian

+
pz

1p
eB



Quark in Strong B
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For spin-1/2 particle, we have Zeeman effect:

En =

s

(pz)2 +m2 + 2eB

✓
n+

1

2
⌥1

2

◆

When n=0 (LLL), gap is small (m~1MeV). 
When n>0, gap is large (~√eB~100MeV)

B +
s

E

n=0

n=1



Lowest Landau Level (LLL) Approximation
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In heavy-ion collision, this condition may be marginally realized (T~√eB~100MeV). 
But in Weyl semi-metal, it is already realized (T~1meV, √eB~10eV).

When the typical energy of particle (T) is much smaller than gap (√eB),  
the higher LL does not contribute (~exp(-√eB/T)),  
so we can focus on the LLL.

En =
p

(pz)2 +m2

B +
s

pz

Confined in one direction fermion, 
no spin degrees of freedom.



Gluon in Strong B
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Gluon does not have charge, so it does not feel B 
in the zeroth approximation.

Massless boson in (3+1)D

B



Gluon in Strong B
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Coupling with (1+1)D quarks generates gluon mass. 
(Schwinger mass generation)

K. Fukushima, Phys. Rev. D 83, 111501 (2011).

, ,

⇠ g2eB

Landau degeneracy

Color factor

Schwinger 
mass

M2 ⌘ 1

2
⇥ g2

⇡

X

f

|eB|
2⇡

B

1p
eB

(surface density) 
~(average distance)-2~eB



Motivation to Discuss Electrical Conductivity
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Electrical conductivity is 
phenomenologically important because E

J

J=σE

• Input parameter of magnetohydrodynamics 
(transport coefficient) 

• May increase lifetime of B (Lenz’s law)
B
∂tB<0

E, jr⇥E = �@tB

When σ is large
@tE = r⇥B� j



6 a

a

r

r
a

a

r

r

k

FIG.2:ThecurrentcorrelatorGµ⌫f
aarr(k,k,l,l)atone-loop

level.Thesolidlinerepresentsquarkpropagator.

2 Cut

FIG.3:Thequarkself-energyatone-looplevel(leftpanel)
andthematrixelementofthe1to2scattering(rightpanel),
whichcorrespondstotheimaginarypartoftheself-energy.
Thecurlylinerepresentsgluonpropagator.

1.mf�Mcase

Westartwiththecasethatthecurrentquarkmassis
muchlargerthanthegluonscreeningmass,m

f

�M.
Inthiscase,thecurrentquarkmassregulatesallthe
infraredsingularitiesaswillbefoundlater,sowecan
safelyneglectthegluonself-energy:

⇢

D

(k)=(2⇡)sgn(k0)�(k2).(3.11)

Byusingthisequationandthespectralfunctionoffree
quark,Eq.(3.5),Eq.(3.10)becomes
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(3.12)

wherewehaveperformedtheintegrationsforl2?andl

3by
usingthetwodeltafunctions.Becausethedistribution
functionsgivetheultravioletcuto↵atthescaleTinl

0in-

tegration,|k?+l?|2=2[m2

f

+✏

L

k

l

0�sk

3

q

(l0)2�m

2

f

]<⇠
T

2⌧eBaslongas|k3|isoftheorderormuchsmaller
thanT.Therefore,wehaveapproximatedtheformfactor
asunity.Wenotethats=sgn(l3),sosshowsthedirec-
tionofthemovementoftheanti-quarkwhosemomentum

isl

3.Theintegrationrangeisshowntobel

0

>m

f

in
AppendixB,sowearriveattheexpression1
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Thedistributionfunctionfactorcanberewrittenas
n

F

(1+n

B

)+n

B

(1�n

F

),whichshowsthatthephysical
processthatyieldsthedampingrateaboveisthepairan-
nihilationofthequarkandtheanti-quarkanditsinverse
process,whichisdrawnintherightpanelofFig.3.

Aswewillseelater,thedominantcontributiontothe
electricalconductivitycomesfromthequarkwhosemo-
mentumisoforderT.Thus,wefocusonthecasethat
|k3|⇠T.Inthiscase,Eq.(3.13)canbeevaluatedatthe
leading-logorder2as
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wherewehaveused
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dl

0

/

q

(l0)2�m
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=

ln
⇣

l

0+
q

(l0)2�m

2
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⌘

andthefactthatthedomi-

nantcontributioncomesfromtheenergyregionl

0⌧T.
Weseethattheenergyofthequarkis✏L

k

⇠Tandthat
oftheanti-quarkisl

0⌧T,whichmakesthegluon
energy✏

L

k

+l

0⇠T.

2.mf⌧Mcase

Next,weconsidertheoppositecase,m
f

⌧M.Inthis
case,weneedtotakeintoaccountthegluonscreening
mass:

⇢

D

(k)=(2⇡)sgn(k0)�(k2�M

2),(3.15)

where

M

2⌘1

2
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|B
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|
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.(3.16)

Herewenotethatthedispersionrelationabovehasa
nonnegligiblecorrectionwhenk

<⇠m

f

[16].Nevertheless,
suchlowmomentumregionisfoundtobeirrelevantin
thecurrentcalculationbecausethegluonenergyis✏L

k

+

1ThetermcontainingnFwasalreadygiveninRef.[40].
2Leading-logapproximationmeansthat,weregardln(✏�1),where

✏isasmallquantity,asalargenumberandapproximate
ln(✏�1)+O(1)'ln(✏�1).Inthecurrentcase,✏ismf/T.
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Possible Scattering Process for Conductivity

B=0
1 to 2 scattering is kinematically forbidden;  

one massless particle can not decay to 
two massless particles

strong B
Gluon is effectively massive in (1+1)D

Decay of a gluon into two quarks 
becomes kinematically possible.

E =
q
p2z + p2? +M2



Chirality in (1+1)D

14

Spin is always up.

When m=0, the direction of pz 
determines chirality.

B +
s

pz

χ=+1

B +
s

pz

χ=-1



Chirality in (1+1)D
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B

+

χ=+1+1=2

Chirality is conserved at m=0:

1 to 2 scattering is forbidden at m=0.

-

χ=0



Motivation to Discuss Electrical Conductivity
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Electrical conductivity is also theoretically interesting: 
the scattering process is very different from that in B=0.

• Because the kinematics is non-standard (1+1 D for 
quark, 3+1D for gluon), the 1 to 2 scattering is the 
leading process, instead of 2 to 2. 

• At m=0, the 1 to 2 process is forbidden due to chirality 
conservation. Thus, we need to include finite m effect 
to have non-divergent conductivity.

6a

a

r

r
a

a

r

r

k

FIG. 2: The current correlator Gµ⌫f
aarr(k, k, l, l) at one-loop

level. The solid line represents quark propagator.

2Cut

FIG. 3: The quark self-energy at one-loop level (left panel)
and the matrix element of the 1 to 2 scattering (right panel),
which corresponds to the imaginary part of the self-energy.
The curly line represents gluon propagator.

1. mf � M case

We start with the case that the current quark mass is
much larger than the gluon screening mass, m

f

� M .
In this case, the current quark mass regulates all the
infrared singularities as will be found later, so we can
safely neglect the gluon self-energy:

⇢

D

(k) = (2⇡)sgn(k0)�(k2). (3.11)

By using this equation and the spectral function of free
quark, Eq. (3.5), Eq. (3.10) becomes
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where we have performed the integrations for l2? and l

3 by
using the two delta functions. Because the distribution
functions give the ultraviolet cuto↵ at the scale T in l

0 in-

tegration, |k?+ l?|2 = 2[m2

f
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k

l

0�sk

3
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2 ⌧ eB as long as |k3| is of the order or much smaller
than T . Therefore, we have approximated the form factor
as unity. We note that s = sgn(l3), so s shows the direc-
tion of the movement of the anti-quark whose momentum

is l

3. The integration range is shown to be l
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> m

f

in
Appendix B, so we arrive at the expression1
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The distribution function factor can be rewritten as
n

F

(1+n

B

)+n

B

(1�n

F

), which shows that the physical
process that yields the damping rate above is the pair an-
nihilation of the quark and the anti-quark and its inverse
process, which is drawn in the right panel of Fig. 3.
As we will see later, the dominant contribution to the

electrical conductivity comes from the quark whose mo-
mentum is of order T . Thus, we focus on the case that
|k3| ⇠ T . In this case, Eq. (3.13) can be evaluated at the
leading-log order2 as
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where we have used
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and the fact that the domi-

nant contribution comes from the energy region l

0 ⌧ T .
We see that the energy of the quark is ✏L

k

⇠ T and that
of the anti-quark is l

0 ⌧ T , which makes the gluon
energy ✏

L

k

+ l

0 ⇠ T .

2. mf ⌧ M case

Next, we consider the opposite case, m
f

⌧ M . In this
case, we need to take into account the gluon screening
mass:

⇢

D

(k) = (2⇡)sgn(k0)�(k2 �M

2), (3.15)

where

M

2 ⌘ 1

2
· g

2

⇡

X

f

|B
f

|
2⇡

. (3.16)

Here we note that the dispersion relation above has a
nonnegligible correction when k

<⇠ m

f

[16]. Nevertheless,
such low momentum region is found to be irrelevant in
the current calculation because the gluon energy is ✏L

k

+

1 The term containing nF was already given in Ref. [40].
2 Leading-log approximation means that, we regard ln(✏�1), where
✏ is a small quantity, as a large number and approximate
ln(✏�1) +O(1) ' ln(✏�1). In the current case, ✏ is mf/T .
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E

Energy gap of higher LL

Typical energy of quark and gluonT

p
eB

<<
<<

m Chirality flipping amplitude
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For ordering of m and M, we consider the both cases. 
(m<<M and m>>M)

<<

E

T

p
eB

<<
<<

m

M

<<

E

T

p
eB

<<
<<

M

m

(M~g√eB)
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Electrical Conductivity

Conductivity at weak B (√eB<<T)
ji=σijEjB=0

E

�ij =

2

4
�0 0 0
0 �0 0
0 0 �0

3

5

j

D. S., Phys. Rev. D, 90, 034018 (2014).

σ0 is independent from B. (σ0~e2T/g4) 
σ1 is linear in B. (σ1~e3Bµ/g8T2)

j = �0E j = �1E⇥B

linear in B

E

j

B

・○
�ij =

2

4
�0 �1 0
�1 �0 0
0 0 �0

3

5-
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Electrical Conductivity

Quarks are confined in the direction of B, 
so there is no current in other directions.

2

the magnetic field at the leading order in weak-coupling
theories, so that they move in the three dimensions.
Thus, we need to consider the transport process with the
fermions moving in one dimension and the bosons moving
in three dimensions. This is an intriguing system which
is quite di↵erent from both the usual (3+1)-dimensional
theory, and the (1+1)-dimensional theory where there is
no dynamical gluonic degrees of freedom and the fermions
su↵er the confinement. In fact, the e↵ect of the strong
magnetic field opens novel 1-to-2 scattering processes (see
Refs. [25, 26] for the study at T = 0), which were forbid-
den by the kinematic reason when B = 0. In addition,
in the massless limit (m

f

= 0), the chirality conservation
forbids the scattering process [27], so that the conductiv-
ity, which diverges without scatterings, is expected to be
very sensitive to m

f

even when the mass is quite small.
It makes a striking contrast to the computations of the
transport coe�cients without a magnetic field [28–32],
where we could safely neglect the current quark mass at
the high temperature T � m

f

. While the conductiv-
ity in weak magnetic fields has been evaluated by lattice
QCD [6], AdS/CFT correspondence [7], and the Boltz-
mann equation [8–11], this strong-field regime has not
been explored.

We will evaluate the electrical conductivity in strong
magnetic field at finite temperature and vanishing chem-
ical potential. As discussed shortly, we use the lowest
Landau level (LLL) approximation, and our calculation
is performed at the leading-log accuracy. It is known
that the transport coe�cients, including the electrical
conductivity, can be consistently obtained from the ki-
netic equation [32] and the diagrammatic method [28–
31]. However, in the presence of the magnetic field, the
ordinary kinetic equation will not be directly applicable
due to the quantum nature of the Landau levels, and one
needs to elaborate the construction of kinetic equation.
In an accompanying paper [33], one can find the formu-
lation of an e↵ective kinetic equation and the evaluation
of the conductivity beyond leading-log accuracy. In this
paper, starting out from quantum field theory, we show
that a consistent conclusion is drawn by using the dia-
grammatic method, and briefly discuss an equivalence to
the kinetic equation in Appendix D.

This paper is organized as follows: In the next section,
we introduce how to evaluate the electrical conductivity
in the real time formalism. By performing one-loop or-
der analysis, we obtain the expression of the conductivity
written in terms of the quark damping rate, and explic-
itly evaluate the damping rate generated by the 1-to-2
scatterings in Sec. III. Section IV is devoted to explain-
ing the features of the result for the conductivity. In
Sec. V, we discuss the resummation of the ladder dia-
grams. We briefly discuss possible implications of our
results for the heavy ion collision experiments in Sec. VI.
In Sec. VII, we summarize this paper and give a few con-
cluding remarks. In the four Appendices, we discuss the
gauge-fixing independence of our result, the integration
range with respect to the energy of the scattering particle

in the 1-to-2 scattering process, consistency of our dia-
grammatic scheme to the Ward-Takahashi identity, and
the equivalence of our scheme to the approach with ki-
netic equation, respectively.
Prior to going into explicit computations, we would

like to discuss the characteristic energy scales involved in
the problem, and specify our hierarchy assumed through-
out this paper. In the analysis below, a few characteris-
tic energy scales appear: The largest energy scale,

p
eB,

is due to the magnetic field. Because we work in the
strong magnetic field regime, we assume that it is much
larger than the temperature,

p
eB � T . This condi-

tion justifies the usage of the LLL approximation, i.e.,
neglect of the higher Landau levels. We also have the
current quark mass (m

f

). In most calculation at QGP
phase, this quantity has been neglected because it is of
order ⇠ 1MeV while T ⇠ 100MeV. When infrared di-
vergence appears, it was regulated by thermal masses of
quarks and gluons. However, in the LLL approximation,
we cannot neglect m

f

because the scattering processes
are forbidden if m

f

= 0 due to the chirality conserva-
tion [27], as we will discuss later. On the other hand, the
gluon also dynamically gets a screening mass (M), which
is of order g

p
eB (g: QCD coupling constant) [16, 34].

Because we are interested in the case that finite-T e↵ect
is significant, we consider the case of m

f

,M ⌧ T , where
the quarks and gluons are thermally well excited. Sum-
marizing, we work in the regime m

f

,M ⌧ T ⌧ p
eB.

As for the ordering of m
f

and M , we consider both of
the cases: m

f

� M and m

f

⌧ M .

II. ELECTRICAL CONDUCTIVITY IN REAL
TIME FORMALISM

In this section, we introduce how to evaluate the elec-
trical conductivity in the real time formalism. We be-
gin with formal introduction of the electrical conductiv-
ity. Consider the situation that, the system is initially
at equilibrium whose temperature is T in magnetic field
B, and then external electric field E disturbs the sys-
tem and induces electromagnetic current jµ. Due to the
linear response theory, the retarded current correlator

⇧

Rµ⌫(x) ⌘ i✓(x0)h[jµ(x), j⌫(0)]i, (2.1)

determines the induced current in the momentum space:

j

µ(p) = �⇧

Rµ⌫(p)A
⌫

(p), (2.2)

where A

⌫

is a vector potential that creates E. When E
is homogenous in space, we have p = 0 and E = i!A,
and thus ji(!) = ⇧

Rij(!)Ej(!)/(i!). By taking ! ! 0
limit, we have j

i = �

ij

E

j , where we have introduced the
conductivity tensor,

�

ij ⌘ lim
!!0

⇧

Rij(!)

i!

. (2.3)

σ33 is finite, other components are zero. 
(Very different from weak B case)

�ij =

2

4
0 0 0
0 0 0
0 0 �33

3

5

B
+

E j

Strong B (LLL)
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B E

Thermal equilibrium 
in strong B

j

Linear response 
against E

14

By multiplying Eq. (5.5) with p

µ

, we get

p

µ

�

µ(k) = /p+ g

2

C

F

Z

l

�

↵

[SR(l
L

)� S

A(l
L

)]�
�
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↵�

D

(k � l)

⇥ �

n

F

(�l

0) + n

B

(k0 � l

0)
�

[Rf (k? � l?)]
2

,

(C3)

where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes

ig

2

C

F

Z

l

�

↵

(/l
L

+m

f

)P
+

⇢

S

(l
L
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�
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↵�

D

(k � l)

⇥ �

n

F

(�l

0) + n

B

(k0 � l

0)
�

[Rf (k? � l?)]
2

,

(C4)

which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:

[@
T

+ v

3

@

Z

+ eq

f

E

3(T, Z)@
k

3 ]nf (k3, T, Z) = C[n],
(D1)

where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏

L

k

/(@k3) = k

3

/✏

L

k

,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
as nf (k3, T, Z) = n

F

(✏L
k

) + �n

f (k3, T, Z). Then, the lin-
earized version of Eq. (D1) reads

eq

f

E

3(T, Z)�v3n
F

(✏L
k

)[1� n

F

(✏L
k

)] = C[�nf (k3, T, Z)],
(D2)

Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as

j

3(T, Z) = 2e
X

f

q

f

N

c

|B
f

|
2⇡

Z

dk

3

2⇡
v

3

�n

f (k3, T, Z),

(D3)

where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
C[�nf ] ' �⌧

�1

k

�n

f with ⌧

k

being the relaxation time.
Then, the current reads

j

3 = e

2

X

f

q

2

f

N

c

|B
f

|
2⇡

4�E3

Z 1

0

dk

3

2⇡
(v3)2⌧

k
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F

(✏L
k

)[1� n

F

(✏L
k

)]

= e

2

X

f

q

2

f

N
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|B
f

|
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2
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�E

3

Z 1

mf

dk

0

v

3

⌧

k
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F

(k0)[1� n

F
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(D4)

By using j

3 = �

33

E

3, we get

�

33 = e

2

X

f

q

2

f

N
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|B
f

|
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2
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Z 1

mf

dk
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q

(k0)2 �m
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f

k

0
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k
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F

(k0)[1� n

F

(k0)].
(D5)

By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by

C[n] =
1

2✏L
k

Z

l

⇢

D

(k + l)⇢
S

(l
L

)|M |2[Rf (k? + l?)]
2
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0)[1� n
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� [1 + n

B
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k

+ l)]nf (k3)nf (l3)},
(D6)

where the matrix element is given by

|M |2 = g

2
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F

P

k
µ⌫

(k + l)Tr[(/l
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f

)�µP
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L
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= 4g2C
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2
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The linearized version of Eq. (D6) is

C[�nf ] = �2g2C
F
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D
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f (l3)[n
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(✏L
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+ l

0) + n

F

(✏L
k

)],
(D8)

where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k

�n

f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.

14

By multiplying Eq. (5.5) with p

µ

, we get
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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3 ]nf (k3, T, Z) = C[n],
(D1)

where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏

L

k

/(@k3) = k

3
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k

,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
as nf (k3, T, Z) = n

F

(✏L
k

) + �n

f (k3, T, Z). Then, the lin-
earized version of Eq. (D1) reads
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
C[�nf ] ' �⌧

�1

k
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f with ⌧

k

being the relaxation time.
Then, the current reads
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By using j
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by

C[n] =
1
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where the matrix element is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k

�n

f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.

Slightly non-equilibrium, 
finite j

Evaluation of δnF is necessary.

✏Lk ⌘
p
(k3)2 +m2

=σ33E3j3(T, Z) = 2e
X

f

qfNc
|eqfB|
2⇡

Z
dk3

2⇡
v3�nf (k3, T, Z)
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Evaluate nF with (1+1)D Boltzmann equation

14

By multiplying Eq. (5.5) with p
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏
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,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
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being the relaxation time.
Then, the current reads

j

3 = e

2

X

f

q

2

f

N

c

|B
f

|
2⇡

4�E3

Z 1

0

dk

3

2⇡
(v3)2⌧

k

⇥ n

F

(✏L
k

)[1� n

F

(✏L
k

)]

= e

2

X

f

q

2

f

N

c

|B
f

|
2⇡

2

⇡

�E

3

Z 1

mf

dk

0

v

3

⌧

k

⇥ n

F

(k0)[1� n

F

(k0)].

(D4)

By using j

3 = �
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3, we get
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by
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1

2✏L
k

Z

l

⇢

D

(k + l)⇢
S

(l
L

)|M |2[Rf (k? + l?)]
2

⇥ {n
B

(✏L
k

+ l

0)[1� n

f (k3)][1� n

f (l3)]

� [1 + n

B

(✏L
k

+ l)]nf (k3)nf (l3)},
(D6)

where the matrix element is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k

�n

f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.
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FIG. 2: The current correlator Gµ⌫f
aarr(k, k, l, l) at one-loop

level. The solid line represents quark propagator.

2Cut

FIG. 3: The quark self-energy at one-loop level (left panel)
and the matrix element of the 1 to 2 scattering (right panel),
which corresponds to the imaginary part of the self-energy.
The curly line represents gluon propagator.

1. mf � M case

We start with the case that the current quark mass is
much larger than the gluon screening mass, m

f

� M .
In this case, the current quark mass regulates all the
infrared singularities as will be found later, so we can
safely neglect the gluon self-energy:

⇢

D

(k) = (2⇡)sgn(k0)�(k2). (3.11)

By using this equation and the spectral function of free
quark, Eq. (3.5), Eq. (3.10) becomes
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where we have performed the integrations for l2? and l

3 by
using the two delta functions. Because the distribution
functions give the ultraviolet cuto↵ at the scale T in l

0 in-

tegration, |k?+ l?|2 = 2[m2
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+ ✏
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0�sk
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2 ⌧ eB as long as |k3| is of the order or much smaller
than T . Therefore, we have approximated the form factor
as unity. We note that s = sgn(l3), so s shows the direc-
tion of the movement of the anti-quark whose momentum

is l

3. The integration range is shown to be l

0

> m

f

in
Appendix B, so we arrive at the expression1
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The distribution function factor can be rewritten as
n

F

(1+n

B

)+n

B

(1�n

F

), which shows that the physical
process that yields the damping rate above is the pair an-
nihilation of the quark and the anti-quark and its inverse
process, which is drawn in the right panel of Fig. 3.
As we will see later, the dominant contribution to the

electrical conductivity comes from the quark whose mo-
mentum is of order T . Thus, we focus on the case that
|k3| ⇠ T . In this case, Eq. (3.13) can be evaluated at the
leading-log order2 as
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where we have used
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and the fact that the domi-

nant contribution comes from the energy region l

0 ⌧ T .
We see that the energy of the quark is ✏L

k

⇠ T and that
of the anti-quark is l

0 ⌧ T , which makes the gluon
energy ✏

L

k

+ l

0 ⇠ T .

2. mf ⌧ M case

Next, we consider the opposite case, m
f

⌧ M . In this
case, we need to take into account the gluon screening
mass:
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2), (3.15)
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Here we note that the dispersion relation above has a
nonnegligible correction when k

<⇠ m

f

[16]. Nevertheless,
such low momentum region is found to be irrelevant in
the current calculation because the gluon energy is ✏L

k

+

1 The term containing nF was already given in Ref. [40].
2 Leading-log approximation means that, we regard ln(✏�1), where
✏ is a small quantity, as a large number and approximate
ln(✏�1) +O(1) ' ln(✏�1). In the current case, ✏ is mf/T .
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It shows that f(l0) does not cross the y axis at positive
l

0, so the properties f(m
f

) = m

f

(m
f

+ ✏

L

k

) > 0 and
f(1) = 1 lead us to the result that f(l0) is larger than
zero for positive l

0. For negative l

0, we have the proper-
ties f(�m

f

) = �m

f

(✏L
k

� m

f

) < 0 and f(�1) = �1.
At most only one solution of f = 0 exists in the negative
l

0 region, so the properties above show that f(l0) < 0
for negative l

0. Summarizing these observation and con-
sidering Eq. (B1), we see that the integration range is
l

0

> m

f

.

2. mf ⌧ M case

Next, we evaluate the integration range in the case of
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Its value at a few specific points is f(±1) = ±1
and f(±m
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) = m
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Combining this property and the behaviors above, we see
that the range where f(l0) > 0 is satisfied is

l± < l

0

, (B5)

for s = ±sgn(k3).

b. |k3| > kc case

When |k3| > k

c

, the solution of f(l0) = 0 is l0 = l

+

and
l

0 = l� for s = sgn(k3), and there is no solution for s =
�sgn(k3). Combining this property and the behaviors
above, we see that the range where f(l0) > 0 is satisfied
is
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(B6)

Appendix C: Ward-Takahashi identity

We show that Bethe-Salpeter equation (5.5) that is
used to sum all the ladder diagrams is consistent with
the Ward-Takahashi (WT) identity. The identity for the
vertex function reads [51]

p

µ

�

µ(k + p, k) = [SA(k
L

)]�1 � [SR(k
L

+ p

L

)]�1

, (C1)

where �

µ(k + p, k) is a vertex function where the two
quarks have momenta p+k and k, and p is the momentum
of the photon. This equation reduces to
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at p ! 0.
By multiplying Eq. (5.5) with p
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, we get

p

µ

�

µ(k) = /p+ g

2

C

F

Z

l

�

↵

[SR(l
L

)� S

A(l
L

)]�
�

⇢

↵�

D

(k � l)

⇥ �n
F

(�l

0) + n

B

(k0 � l

0)
�

[Rf (k? � l?)]
2

,

(C3)

where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [35]:
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(D1)

where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T,Z), v3 ⌘ @✏
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/(@k3) = k
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,
and C[n] is the collision integral, whose expression will
be given later.
We linearize the distribution function in terms of E
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1 to 2 collision:
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By multiplying Eq. (5.5) with p
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏
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,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by
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where the matrix element is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k

�n

f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.
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By multiplying Eq. (5.5) with p
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏
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,
and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧
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k
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f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠
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in the diagrammatic calculation.
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where we have used the WT identity (C1) in the right-
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧
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/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by

C[n] =
1

2✏L
k

Z

l

⇢

D

(k + l)⇢
S

(l
L

)|M |2[Rf (k? + l?)]
2

⇥ {n
B

(✏L
k

+ l

0)[1� n

f (k3)][1� n

f (l3)]

� [1 + n

B

(✏L
k

+ l)]nf (k3)nf (l3)},
(D6)

where the matrix element is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k

�n

f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k

3 and
space-time position is (T, Z), v3 ⌘ @✏
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and C[n] is the collision integral, whose expression will
be given later.

We linearize the distribution function in terms of E
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k

= ⌧

�1

k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧

�1

k
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f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.
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where we have used the WT identity (C1) in the right-
hand side. By taking the limit p ! 0, the right-hand side
becomes
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which is found to be equal to �2iIm⌃

R(k
L

) by using
Eq. (3.6). This equation is none other than the WT
identity in the small p limit, Eq. (C2), so we see that
the Bethe-Salpeter equation is consistent with the WT
identity.

Appendix D: Equivalence to linearized Boltzmann
equation

We show that our summation scheme of the quark
damping rate and the ladder diagrams is equivalent to
the linearized Boltzmann equation in this Appendix. We
start with the Boltzmann equation in an electromagnetic
field for the distribution function of the LLL quarks in
the one spatial dimension [33]:
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where n

f (k3, T, Z) is the distribution function for the
quark with flavor index f whose momentum is k
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and C[n] is the collision integral, whose expression will
be given later.
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Here, we consider the case that the electric field is con-
stant and homogeneous, so that �nf does not depend on
T and Z. The induced current is given by the distribu-
tion function as
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where we have taken into account the color, Landau, and
quark/anti-quark degeneracies.

First, we examine the relaxation time approximation,
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By comparing this expression with Eq. (4.1), we see that
the diagrammatic result at the one-loop order agrees with
the result obtained from the Boltzmann equation in the
relaxation time approximation, if we identify ⇠

k
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k

/2.
Let us go beyond the relaxation time approximation,

and evaluate the collision integral. For the 1 to 2 scat-
tering, the collision integral is given by
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The linearized version of Eq. (D6) is
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where we note that �n

f (l3) has a minus sign because
the deviation of the anti-quark distribution function from
equilibrium value has an opposite sign compared with
that of quark. The first term becomes �⌧
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k
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f (k3) in
the relaxation time approximation. By comparing this
expression with Eq. (3.10), we see that it reproduces the
result of ⇠

k

in the diagrammatic calculation.

Solution for δnF with damping rate ξk
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leading-log approximation (ln[T/m]>>1)

matrix element
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FIG. 2: The current correlator Gµ⌫f
aarr(k, k, l, l) at one-loop

level. The solid line represents quark propagator.

2Cut

FIG. 3: The quark self-energy at one-loop level (left panel)
and the matrix element of the 1 to 2 scattering (right panel),
which corresponds to the imaginary part of the self-energy.
The curly line represents gluon propagator.

1. mf � M case

We start with the case that the current quark mass is
much larger than the gluon screening mass, m

f

� M .
In this case, the current quark mass regulates all the
infrared singularities as will be found later, so we can
safely neglect the gluon self-energy:

⇢

D

(k) = (2⇡)sgn(k0)�(k2). (3.11)

By using this equation and the spectral function of free
quark, Eq. (3.5), Eq. (3.10) becomes
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where we have performed the integrations for l2? and l

3 by
using the two delta functions. Because the distribution
functions give the ultraviolet cuto↵ at the scale T in l

0 in-

tegration, |k?+ l?|2 = 2[m2
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+ ✏
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] <⇠
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2 ⌧ eB as long as |k3| is of the order or much smaller
than T . Therefore, we have approximated the form factor
as unity. We note that s = sgn(l3), so s shows the direc-
tion of the movement of the anti-quark whose momentum

is l

3. The integration range is shown to be l

0

> m

f

in
Appendix B, so we arrive at the expression1
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The distribution function factor can be rewritten as
n

F

(1+n

B

)+n

B

(1�n

F

), which shows that the physical
process that yields the damping rate above is the pair an-
nihilation of the quark and the anti-quark and its inverse
process, which is drawn in the right panel of Fig. 3.
As we will see later, the dominant contribution to the

electrical conductivity comes from the quark whose mo-
mentum is of order T . Thus, we focus on the case that
|k3| ⇠ T . In this case, Eq. (3.13) can be evaluated at the
leading-log order2 as
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and the fact that the domi-

nant contribution comes from the energy region l

0 ⌧ T .
We see that the energy of the quark is ✏L

k

⇠ T and that
of the anti-quark is l

0 ⌧ T , which makes the gluon
energy ✏

L

k

+ l

0 ⇠ T .

2. mf ⌧ M case

Next, we consider the opposite case, m
f

⌧ M . In this
case, we need to take into account the gluon screening
mass:
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D

(k) = (2⇡)sgn(k0)�(k2 �M

2), (3.15)

where
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Here we note that the dispersion relation above has a
nonnegligible correction when k

<⇠ m

f

[16]. Nevertheless,
such low momentum region is found to be irrelevant in
the current calculation because the gluon energy is ✏L

k

+

1 The term containing nF was already given in Ref. [40].
2 Leading-log approximation means that, we regard ln(✏�1), where
✏ is a small quantity, as a large number and approximate
ln(✏�1) +O(1) ' ln(✏�1). In the current case, ✏ is mf/T .
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aarr(k, k, l, l) at one-loop

level. The solid line represents quark propagator.
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FIG. 3: The quark self-energy at one-loop level (left panel)
and the matrix element of the 1 to 2 scattering (right panel),
which corresponds to the imaginary part of the self-energy.
The curly line represents gluon propagator.
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We start with the case that the current quark mass is
much larger than the gluon screening mass, m
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In this case, the current quark mass regulates all the
infrared singularities as will be found later, so we can
safely neglect the gluon self-energy:
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D
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3 by
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0 in-

tegration, |k?+ l?|2 = 2[m2

f

+ ✏

L

k

l

0�sk

3

q

(l0)2 �m

2

f

] <⇠
T

2 ⌧ eB as long as |k3| is of the order or much smaller
than T . Therefore, we have approximated the form factor
as unity. We note that s = sgn(l3), so s shows the direc-
tion of the movement of the anti-quark whose momentum
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3. The integration range is shown to be l
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), which shows that the physical
process that yields the damping rate above is the pair an-
nihilation of the quark and the anti-quark and its inverse
process, which is drawn in the right panel of Fig. 3.
As we will see later, the dominant contribution to the

electrical conductivity comes from the quark whose mo-
mentum is of order T . Thus, we focus on the case that
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k

⇠ T and that
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0 ⌧ T , which makes the gluon
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such low momentum region is found to be irrelevant in
the current calculation because the gluon energy is ✏L
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✏ is a small quantity, as a large number and approximate
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FIG.2:ThecurrentcorrelatorGµ⌫f
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FIG.3:Thequarkself-energyatone-looplevel(leftpanel)
andthematrixelementofthe1to2scattering(rightpanel),
whichcorrespondstotheimaginarypartoftheself-energy.
Thecurlylinerepresentsgluonpropagator.

1.mf�Mcase

Westartwiththecasethatthecurrentquarkmassis
muchlargerthanthegluonscreeningmass,m

f

�M.
Inthiscase,thecurrentquarkmassregulatesallthe
infraredsingularitiesaswillbefoundlater,sowecan
safelyneglectthegluonself-energy:

⇢

D

(k)=(2⇡)sgn(k0)�(k2).(3.11)

Byusingthisequationandthespectralfunctionoffree
quark,Eq.(3.5),Eq.(3.10)becomes
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wherewehaveperformedtheintegrationsforl2?andl
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Thedistributionfunctionfactorcanberewrittenas
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),whichshowsthatthephysical
processthatyieldsthedampingrateaboveisthepairan-
nihilationofthequarkandtheanti-quarkanditsinverse
process,whichisdrawnintherightpanelofFig.3.

Aswewillseelater,thedominantcontributiontothe
electricalconductivitycomesfromthequarkwhosemo-
mentumisoforderT.Thus,wefocusonthecasethat
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Herewenotethatthedispersionrelationabovehasa
nonnegligiblecorrectionwhenk
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[16].Nevertheless,
suchlowmomentumregionisfoundtobeirrelevantin
thecurrentcalculationbecausethegluonenergyis✏L
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1ThetermcontainingnFwasalreadygiveninRef.[40].
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(average distance among quarks)~1/T 
→(quark density in 1D)~T

Landau 
degeneracy

Quark damping 
rate

Quark density in 1D

Due to chirality conservation, collision is 
forbidden when m=0. Thus, σ~1/m2. 

Despite T>>m, it is very sensitive to m!!
When M>>m, ln(T/m)→ln(T/M).

�33 = e2
X

f

q2fNc
|eqfB|
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4T

g2CFm2ln(T/m)

B

1p
eB
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Other Term

C[�n] = �2g2CFm2

✏Lk

Z

l
[�nk

F (n
k+l
B + nl

F )� �nl
F (n

k+l
B + nk

F )]

Same for m<<M case.

�nl
F = �eqf

2⇠l
E3@l3nF (✏

L
l ) :odd in l3

(Other term)~
Z

l
(nk+l

B + nk
F )�n

l
F

even in l3

0

Our result (only retaining quark damping rate) 
 is correct.

function of (εLk+εLl)
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Our calculation is based on (unestablished) 
(1+1)D kinetic theory,  

but actually we can reproduce the same 
result by field theory calculation.

 J. -S. Gagnon and S. Jeon, Phys. Rev. D 75, 025014 (2007); 76, 105019 (2007). 

Sum rules on electromagnetic spectral function (longitudinal/transverse)

Daisuke Satow
(Dated: November 9, 2015)

PACS numbers:

I. INTRODUCTION

There are three scales at finite temperature/density:

• Hydro scale (p ≪ Λ)

• Kinetic scale (Λ ≪ p ! T )

• Vacuum scale (p ≫ T )

In the first scale, the hydrodynamics is reliable while the OPE is expected to work in the third scale. We will fully
use these asymptotic behaviors in the UV and IR regions, by using sum rules.
The spectral function in the electromagnetic current sector is relevant to

• electric conductivity

• dilepton production rate

• vector meson spectrum

They are important quantities in the heavy ion collision.

II. CONVENTIONS

The retarded function of momentum reads

GRµν(t,x) ≡ iθ(t)⟨[jµ(t,x), jν(0,0)]⟩, (2.1)

GRµν(ω,p) = i

∫

dt

∫

d3xeiωt−ip·xθ(t)⟨[jµ(t,x), jν(0,0)]⟩. (2.2)

Here jµ ≡ e
∑

f qfψfγ
µψf is the electromagnetic current, where f is the index for the flavor. It can decomposed into

longitudinal and transverse components as

GRµν (ω,p) = Pµν
L (p)GR

L(ω,p) + Pµν
T (p)GR

T (ω,p), (2.3)

where Pµν
L (p) ≡ −gµν + pµpν/p2 − Pµν

T (p) and P ij
T (p) ≡ δij − pipj/|p|2. To obtain sum rule, it is convenient to focus

on the diagonal components. When p ∝ ẑ, we have

GR00(ω,p) =
p2

p2
GR

L(ω,p), (2.4)

GR33(ω,p) =
ω2

p2
GR

L(ω,p), (2.5)

GR11(ω,p) = GR22(ω,p) = GR
T (ω,p), (2.6)

At |p| = 0, GR
L(ω) = GR

T (ω) = GR(ω), so that GRµν(ω,p) = − [gµν − nµnν ]GR(ω), where nµ ≡ (1,0).

f: flavor index, qf: electric charge

2

the magnetic field at the leading order in weak-coupling
theories, so that they move in the three dimensions.
Thus, we need to consider the transport process with the
fermions moving in one dimension and the bosons moving
in three dimensions. This is an intriguing system which
is quite di↵erent from both the usual (3+1)-dimensional
theory, and the (1+1)-dimensional theory where there is
no dynamical gluonic degrees of freedom and the fermions
su↵er the confinement. In fact, the e↵ect of the strong
magnetic field opens novel 1-to-2 scattering processes (see
Refs. [25, 26] for the study at T = 0), which were forbid-
den by the kinematic reason when B = 0. In addition,
in the massless limit (m

f

= 0), the chirality conservation
forbids the scattering process [27], so that the conductiv-
ity, which diverges without scatterings, is expected to be
very sensitive to m

f

even when the mass is quite small.
It makes a striking contrast to the computations of the
transport coe�cients without a magnetic field [28–32],
where we could safely neglect the current quark mass at
the high temperature T � m

f

. While the conductiv-
ity in weak magnetic fields has been evaluated by lattice
QCD [6], AdS/CFT correspondence [7], and the Boltz-
mann equation [8–11], this strong-field regime has not
been explored.

We will evaluate the electrical conductivity in strong
magnetic field at finite temperature and vanishing chem-
ical potential. As discussed shortly, we use the lowest
Landau level (LLL) approximation, and our calculation
is performed at the leading-log accuracy. It is known
that the transport coe�cients, including the electrical
conductivity, can be consistently obtained from the ki-
netic equation [32] and the diagrammatic method [28–
31]. However, in the presence of the magnetic field, the
ordinary kinetic equation will not be directly applicable
due to the quantum nature of the Landau levels, and one
needs to elaborate the construction of kinetic equation.
In an accompanying paper [33], one can find the formu-
lation of an e↵ective kinetic equation and the evaluation
of the conductivity beyond leading-log accuracy. In this
paper, starting out from quantum field theory, we show
that a consistent conclusion is drawn by using the dia-
grammatic method, and briefly discuss an equivalence to
the kinetic equation in Appendix D.

This paper is organized as follows: In the next section,
we introduce how to evaluate the electrical conductivity
in the real time formalism. By performing one-loop or-
der analysis, we obtain the expression of the conductivity
written in terms of the quark damping rate, and explic-
itly evaluate the damping rate generated by the 1-to-2
scatterings in Sec. III. Section IV is devoted to explain-
ing the features of the result for the conductivity. In
Sec. V, we discuss the resummation of the ladder dia-
grams. We briefly discuss possible implications of our
results for the heavy ion collision experiments in Sec. VI.
In Sec. VII, we summarize this paper and give a few con-
cluding remarks. In the four Appendices, we discuss the
gauge-fixing independence of our result, the integration
range with respect to the energy of the scattering particle

in the 1-to-2 scattering process, consistency of our dia-
grammatic scheme to the Ward-Takahashi identity, and
the equivalence of our scheme to the approach with ki-
netic equation, respectively.
Prior to going into explicit computations, we would

like to discuss the characteristic energy scales involved in
the problem, and specify our hierarchy assumed through-
out this paper. In the analysis below, a few characteris-
tic energy scales appear: The largest energy scale,

p
eB,

is due to the magnetic field. Because we work in the
strong magnetic field regime, we assume that it is much
larger than the temperature,

p
eB � T . This condi-

tion justifies the usage of the LLL approximation, i.e.,
neglect of the higher Landau levels. We also have the
current quark mass (m

f

). In most calculation at QGP
phase, this quantity has been neglected because it is of
order ⇠ 1MeV while T ⇠ 100MeV. When infrared di-
vergence appears, it was regulated by thermal masses of
quarks and gluons. However, in the LLL approximation,
we cannot neglect m

f

because the scattering processes
are forbidden if m

f

= 0 due to the chirality conserva-
tion [27], as we will discuss later. On the other hand, the
gluon also dynamically gets a screening mass (M), which
is of order g

p
eB (g: QCD coupling constant) [16, 34].

Because we are interested in the case that finite-T e↵ect
is significant, we consider the case of m

f

,M ⌧ T , where
the quarks and gluons are thermally well excited. Sum-
marizing, we work in the regime m

f

,M ⌧ T ⌧ p
eB.

As for the ordering of m
f

and M , we consider both of
the cases: m

f

� M and m

f

⌧ M .

II. ELECTRICAL CONDUCTIVITY IN REAL
TIME FORMALISM

In this section, we introduce how to evaluate the elec-
trical conductivity in the real time formalism. We be-
gin with formal introduction of the electrical conductiv-
ity. Consider the situation that, the system is initially
at equilibrium whose temperature is T in magnetic field
B, and then external electric field E disturbs the sys-
tem and induces electromagnetic current jµ. Due to the
linear response theory, the retarded current correlator
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determines the induced current in the momentum space:
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Equivalent Diagrams

Kinetic eq. Field Theory

p
k

E(X)

Connect the ends of lines
k+p

on-shell condition: k2-m2 =2iξkk0, 
p→0 limit

@X ⇠ p

(v · @X + 2⇠k)�n
f = �eqfE

3@kn
f (k)

k=(εLk,k)=εLk(1,v)→ →

1

(k + p)2 �m2 + 2i⇠k+p(k0 + p0)

1

2 (k · p+ 2i⇠kk0)

 J. -P. Blaizot and E. Iancu, Nucl. Phys. B 557, 183 (1999).
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• (Long) Introduction 
—quarks and gluons in strong B 

• Calculation of Conductivity and Results 

• Possible Phenomenological Implications 
(Very Brief, more like future works) 

• Summary and future perspective



Because of m-2 dependence, s contribution is very small.
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1. Order Estimate

Lattice: B. B. Brandt, A. Francis, B. Jaeger and H. B. Meyer, Phys. Rev. D 93, 054510 (2016).
BAMPS: M. Greif, I. Bouras, C. Greiner and Z. Xu, Phys. Rev. D 90, 094014 (2014).

World Record!

√eB<TT<√αseB

M=160MeV>>m

↵s =
g2

4⇡
= 0.3,

mf = 3MeV(u, d), 100MeV(s),

eB = 10m2
⇡ = (440MeV)2.

�33 = e2
X

f

q2fNc
|eqfB|
2⇡

4T

g2CFm2 ln(T/M)
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√eB<T
�33 = e2

X

f

q2fNc
|eqfB|
2⇡

4T

g2CFm2 ln(T/M)

Beyond LLL approximation, there are also spin down particles,  
so the scattering is not suppressed by m2.

σ33 is expected to be smaller at large T,  
so that it smoothly connects with B=0 result.

E

n=0

n=1
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2. Soft Dilepton Production

σ33 is large 

Soft dilepton production is enhanced by B?

p1

p2

12

that the e↵ect of B on the virtual photon is negligible,
we expect that this expression is reliable. This condition
is parametrically, p � e

p
eB, which is the energy scale

of the photon self-energy due to the magnetic field [34].
The current correlator has a form ⇧

µ⌫

12

(p) =

⇧

k
12

(p)Pµ⌫

k (p) for general p at the LLL approxima-

tion [26, 34]. Because we have Eq. (2.4) in |p| = 0 limit,
we have

⇧

k
12

(!,p = 0) = 2T�33

. (6.9)

We also need to assume p ⌧ ⇠

k

⇠ g

2

m

2

f

/T ln(T/M) to
apply this result, in which the collision e↵ect is essentially
important.

Summarizing these expressions, we obtain the result
for the dilepton production rate at p = 0 as

d�

d

4

p

=
↵

12⇡4

!

2

T�

33

, (6.10)

for ! satisfying e

p
eB ⌧ ! ⌧ g

2

m

2

f

/T ln(T/M). Here
we have used g

µ⌫

P

µ⌫

k (p) = �1. This expression shows
that the production rate is proportional to the conduc-
tivity, which is a large value, so it suggests that the pro-
duction of the soft dilepton may be significantly enhanced
by the magnetic field.

We note that there are di↵erence of factor 3 compared
with the expression for B = 0 case [45]. It is because, the
conductivity tensor is isotropic when B = 0 so that there
are three nonzero components (x, y, and z), while it has
only one nonzero component (z), whose direction is along
the magnetic field, in the presence of strong magnetic
field.

VII. SUMMARY AND CONCLUDING
REMARKS

We computed the electrical conductivity of QGP in
magnetic field by using LLL approximation, starting
from quantum field theory by taking into account 1 to 2
scattering process for m

f

� M and m

f

⌧ M cases. We
showed that the one-loop approximation su�ces at the
full leading order for m

f

� M case, and at the leading-
log approximation for m

f

⌧ M case. We found that the
conductivity tensor is nonzero only in (33) component,
and it is quite large value mainly due to small current
quark mass. We also discussed possible implications to
the heavy ion collision experiment, such as the back re-
action of the induced current to the electromagnetic field
and the soft dilepton production rate.

Our result suggests that �

33 is also enhanced by the
large degeneracy-factor of eB/(2⇡), when B is strong
enough. This behavior is in contrast with the results from
the lattice QCD [6] and the Boltzmann equation [10, 11]
for weak B, which suggest that the conductivity is inde-
pendent of B.

Here a few remarks on implications of our result are
in order: As was mentioned in the Introduction, the

electrical conductivity is an important quantity in the
magnetohydrodynamics. Implementation of theoretical
prediction of this quantity, including ours, needs to be
done in the numerical simulation. Also, it was suggested
that the anisotropy of the conductivity tensor yields the
elliptic flow (v

2

) of the photon [46]. Our result shows
very strong anisotropy, so it may have large e↵ect on the
photon v

2

. Another application is directed to the Dirac
semimetal realized in condensed matter experiment [47].
The quasiparticles appearing in this material has prop-
erties of a chiral fermion with the relativistic dispersion
relation. Since the energy scale of the magnetic fields ap-
plied in the experiments are of the order of or larger than
the temperature, which may satisfy our assumption for
the hierarchy, our results will be relevant for this system.
We have not gone beyond the leading-log approxima-

tion, for which one needs to fully evaluate the quark
damping rate and solve the integral equation (5.8) for
m

f

⌧ M case. We also need to consider 2 to 2 scatter-
ing e↵ect at this order4. Also, to explore the intermediate
regime eB ⇠ T , one needs to go beyond the LLL approx-
imation. Finally, analyzing the back reaction from the
induced current to the electric field and the transverse
components of the magnetic field (B1

, B

2) would be an
interesting task. We leave these interesting tasks to a
future work.
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Appendix A: Gauge fixing paremeter invariance

The gluon spectral function generated from Eq. (3.8)
is,

⇢

µ⌫

D

(k) = 2⇡sgn(k0)kµk⌫
"

�(k2
L

)

⇢

1

k2

?
+Re

1

k

2 �⌦k(k)

�

� �(k2)

k2

?
+ (↵� 1)�0(k2)

#

+ [Eq. (3.9)],

(A1)

where we have used Im[(k0 + i✏)2 � k2]�2 =
⇡sgn(k0)�0(k2). We note that they are generated from

4 We thank Ho-Ung Yee for pointing out this fact.

G. D. Moore and J. -M. Robert, hep-ph/0607172.
p=0→

(quark mean 
free path)-1

(photon interaction 
energy w leptons)

e
p
eB ⌧ ! ⌧ g2m2

T
ln

✓
T

M

◆

p

∵(virtual photon emission rate)~nB(ω)ImΠµµ~Tσ33
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3. Back Reaction to EM Fields

B
∂tB<0

E, j

Bad news:  
In LLL approximation, we have no current in 
transverse plane, so Lenz’s law does NOT work! 
The lifetime of B does not increase…



• We calculated electrical conductivity in strong B 
using the LLL approximation, for m<<M and 
m>>M cases. 


• We found that the conductivity is enhanced by 
large B, and small m. The sensitivity to m was 
explained in terms of chirality conservation.
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Landau 
degeneracy Quark damping rate

Quark density in 1D

When M>>m, ln(T/m)→ln(T/M).

�33 = e2
X

f

q2fNc
|eqfB|
2⇡

4T

g2CFm2ln(T/m)
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• Go beyond LLL approximation (more realistic B) 

• Calculate other transport coefficients (viscosity, 
heat conductivity…)
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Back Up
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Electrical Conductivity

B +E

We will introduce a finite quark mass to have a finite longitudinal conductivity with

a background magnetic field. In the massless limit, the axial anomaly tells us that the

axial charge should increase when we apply a longitudinal electric field as

@
t

n
A

=
e2N

c

N
F

2⇡2

E ·B , (1.1)

and the Chiral Magnetic E↵ect [15] current from this axial charge grows linearly in time

J =
e2N

c

N
F

2⇡2

µ
A

B =
e2N

c

N
F

2⇡2�
n
A

B =
e4(N

c

N
F

)2B2

4⇡4�
tE , (1.2)

where � is the charge susceptibility. To have a finite conductivity, we should consider re-

laxation dynamics of the axial charge: either sphaleron transitions or a finite quark mass

[16]. With the relaxation term of � 1

⌧R
n
A

in the right-hand side of (1.1), we have a sta-

tionary solution n
A

= e

2
NcNF
2⇡

2 E ·B⌧
R

, which gives a finite contribution to the longitudinal

conductivity from Chiral Magnetic E↵ect [17],

�
zz

=
e4(N

c

N
F

)2B2

4⇡4�
⌧
R

. (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron tran-

sition rate �
s

by a fluctuation-dissipation relation [18]

1

⌧
R,s

=
(2N

F

)2�
s

2�T
, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order �
s

⇠
↵5

s

log(1/↵
s

)T 4 [19, 20, 21]. We will discuss in section 5 a possible modification of �
s

in the

strong magnetic field, but let us mention here that the result is a further suppression of

�
s

, mainly due to an enhanced Lenz’s law from the increased color conductivity along the

magnetic field direction (while transverse color conductivity remains as �
c

⇠ T (neglecting

any logarithms in power counting)). This weak coupling behavior is di↵erent from the

strong coupling one from AdS/CFT correspondence [22].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

⌧
R,m

⇠ ↵
s

m2

q

/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it

can be shown that the dominant chirality flipping transition rate comes from the small

angle scatterings with soft transverse space like magnetic degrees of freedom [23], that
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Axial anomaly:

We will introduce a finite quark mass to have a finite longitudinal conductivity with

a background magnetic field. In the massless limit, the axial anomaly tells us that the

axial charge should increase when we apply a longitudinal electric field as

@
t

n
A

=
e2N

c

N
F

2⇡2

E ·B , (1.1)

and the Chiral Magnetic E↵ect [15] current from this axial charge grows linearly in time

J =
e2N

c

N
F

2⇡2

µ
A

B =
e2N

c

N
F

2⇡2�
n
A

B =
e4(N

c

N
F

)2B2

4⇡4�
tE , (1.2)

where � is the charge susceptibility. To have a finite conductivity, we should consider re-

laxation dynamics of the axial charge: either sphaleron transitions or a finite quark mass

[16]. With the relaxation term of � 1

⌧R
n
A

in the right-hand side of (1.1), we have a sta-

tionary solution n
A

= e

2
NcNF
2⇡

2 E ·B⌧
R

, which gives a finite contribution to the longitudinal

conductivity from Chiral Magnetic E↵ect [17],

�
zz

=
e4(N

c

N
F

)2B2

4⇡4�
⌧
R

. (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron tran-

sition rate �
s

by a fluctuation-dissipation relation [18]

1

⌧
R,s

=
(2N

F

)2�
s

2�T
, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order �
s

⇠
↵5

s

log(1/↵
s

)T 4 [19, 20, 21]. We will discuss in section 5 a possible modification of �
s

in the

strong magnetic field, but let us mention here that the result is a further suppression of

�
s

, mainly due to an enhanced Lenz’s law from the increased color conductivity along the

magnetic field direction (while transverse color conductivity remains as �
c

⇠ T (neglecting

any logarithms in power counting)). This weak coupling behavior is di↵erent from the

strong coupling one from AdS/CFT correspondence [22].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

⌧
R,m

⇠ ↵
s

m2

q

/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it

can be shown that the dominant chirality flipping transition rate comes from the small

angle scatterings with soft transverse space like magnetic degrees of freedom [23], that

2

Stationary solution:

We will introduce a finite quark mass to have a finite longitudinal conductivity with

a background magnetic field. In the massless limit, the axial anomaly tells us that the

axial charge should increase when we apply a longitudinal electric field as

@
t

n
A

=
e2N

c

N
F

2⇡2

E ·B , (1.1)

and the Chiral Magnetic E↵ect [15] current from this axial charge grows linearly in time

J =
e2N

c

N
F

2⇡2

µ
A

B =
e2N

c

N
F

2⇡2�
n
A

B =
e4(N

c

N
F

)2B2

4⇡4�
tE , (1.2)

where � is the charge susceptibility. To have a finite conductivity, we should consider re-

laxation dynamics of the axial charge: either sphaleron transitions or a finite quark mass

[16]. With the relaxation term of � 1

⌧R
n
A

in the right-hand side of (1.1), we have a sta-

tionary solution n
A

= e

2
NcNF
2⇡

2 E ·B⌧
R

, which gives a finite contribution to the longitudinal

conductivity from Chiral Magnetic E↵ect [17],

�
zz

=
e4(N

c

N
F

)2B2

4⇡4�
⌧
R

. (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron tran-

sition rate �
s

by a fluctuation-dissipation relation [18]

1

⌧
R,s

=
(2N

F

)2�
s

2�T
, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order �
s

⇠
↵5

s

log(1/↵
s

)T 4 [19, 20, 21]. We will discuss in section 5 a possible modification of �
s

in the

strong magnetic field, but let us mention here that the result is a further suppression of

�
s

, mainly due to an enhanced Lenz’s law from the increased color conductivity along the

magnetic field direction (while transverse color conductivity remains as �
c

⇠ T (neglecting

any logarithms in power counting)). This weak coupling behavior is di↵erent from the

strong coupling one from AdS/CFT correspondence [22].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

⌧
R,m

⇠ ↵
s

m2

q

/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it

can be shown that the dominant chirality flipping transition rate comes from the small

angle scatterings with soft transverse space like magnetic degrees of freedom [23], that

2

Chiral magnetic effect:

We will introduce a finite quark mass to have a finite longitudinal conductivity with

a background magnetic field. In the massless limit, the axial anomaly tells us that the

axial charge should increase when we apply a longitudinal electric field as

@
t

n
A

=
e2N

c

N
F

2⇡2

E ·B , (1.1)

and the Chiral Magnetic E↵ect [15] current from this axial charge grows linearly in time

J =
e2N

c

N
F

2⇡2

µ
A

B =
e2N

c

N
F

2⇡2�
n
A

B =
e4(N

c

N
F

)2B2

4⇡4�
tE , (1.2)

where � is the charge susceptibility. To have a finite conductivity, we should consider re-

laxation dynamics of the axial charge: either sphaleron transitions or a finite quark mass

[16]. With the relaxation term of � 1

⌧R
n
A

in the right-hand side of (1.1), we have a sta-

tionary solution n
A

= e

2
NcNF
2⇡

2 E ·B⌧
R

, which gives a finite contribution to the longitudinal

conductivity from Chiral Magnetic E↵ect [17],

�
zz

=
e4(N

c

N
F

)2B2

4⇡4�
⌧
R

. (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron tran-

sition rate �
s

by a fluctuation-dissipation relation [18]

1

⌧
R,s

=
(2N

F

)2�
s

2�T
, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order �
s

⇠
↵5

s

log(1/↵
s

)T 4 [19, 20, 21]. We will discuss in section 5 a possible modification of �
s

in the

strong magnetic field, but let us mention here that the result is a further suppression of

�
s

, mainly due to an enhanced Lenz’s law from the increased color conductivity along the

magnetic field direction (while transverse color conductivity remains as �
c

⇠ T (neglecting

any logarithms in power counting)). This weak coupling behavior is di↵erent from the

strong coupling one from AdS/CFT correspondence [22].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

⌧
R,m

⇠ ↵
s

m2

q

/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it

can be shown that the dominant chirality flipping transition rate comes from the small

angle scatterings with soft transverse space like magnetic degrees of freedom [23], that

2

We will introduce a finite quark mass to have a finite longitudinal conductivity with

a background magnetic field. In the massless limit, the axial anomaly tells us that the

axial charge should increase when we apply a longitudinal electric field as

@
t

n
A

=
e2N

c

N
F

2⇡2

E ·B , (1.1)

and the Chiral Magnetic E↵ect [15] current from this axial charge grows linearly in time

J =
e2N

c

N
F

2⇡2

µ
A

B =
e2N

c

N
F

2⇡2�
n
A

B =
e4(N

c

N
F

)2B2

4⇡4�
tE , (1.2)

where � is the charge susceptibility. To have a finite conductivity, we should consider re-

laxation dynamics of the axial charge: either sphaleron transitions or a finite quark mass

[16]. With the relaxation term of � 1

⌧R
n
A

in the right-hand side of (1.1), we have a sta-

tionary solution n
A

= e

2
NcNF
2⇡

2 E ·B⌧
R

, which gives a finite contribution to the longitudinal

conductivity from Chiral Magnetic E↵ect [17],

�
zz

=
e4(N

c

N
F

)2B2

4⇡4�
⌧
R

. (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron tran-

sition rate �
s

by a fluctuation-dissipation relation [18]

1

⌧
R,s

=
(2N

F

)2�
s

2�T
, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order �
s

⇠
↵5

s

log(1/↵
s

)T 4 [19, 20, 21]. We will discuss in section 5 a possible modification of �
s

in the

strong magnetic field, but let us mention here that the result is a further suppression of

�
s

, mainly due to an enhanced Lenz’s law from the increased color conductivity along the

magnetic field direction (while transverse color conductivity remains as �
c

⇠ T (neglecting

any logarithms in power counting)). This weak coupling behavior is di↵erent from the

strong coupling one from AdS/CFT correspondence [22].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

⌧
R,m

⇠ ↵
s

m2

q

/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it

can be shown that the dominant chirality flipping transition rate comes from the small

angle scatterings with soft transverse space like magnetic degrees of freedom [23], that

2

is, the same one for the leading damping rate of hard particles. This results in a single
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dependence is easy to understand since chirality

flipping amplitude should be proportional to the mass. On the other hand, in the case

with strong magnetic field in our LLL approximation for quarks, since the LLL states

have 1+1 dimensional dispersion relation, it becomes possible for a on-shell gluon to pair

create quark/antiquark pair and vice versa [24, 25, 26]. This 1-to-2 (and 2-to-1) process

rate is only of ↵
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, and becomes dominant over the usual 2-to-2 processes, (under the

assumption ↵
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eB ⌧ m2
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that we will explain later). The resulting chirality flipping rate is

again expected to be ↵
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m2

q

/T . In fact, this is what we compute in this work, confirming

this expectation by an explicit computation⇤ (see our section 4).
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where the first 1/(2⇡) is the 1+1 dimensional charge susceptibility, and (eB/2⇡) is the
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Our computation with the explicit result (4.43) indeed confirms this expectation, up to a

logarithmic correction of 1/ log(T/m
q

).

We will provide a full result of �
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for an arbitrary value of m
q

/T in complete leading

order in ↵
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, under the assumed hierarchy ↵
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with a dimensionless function �
L

(m
q

/T ) given by (4.45).

⇤ Two of us (K.H. and D.S.) also evaluate the conductivity in a complementary paper [27], by using
diagrammatic method instead of the kinetic approach.
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Hall current

Collision-dominant case —Boltzmann equation

E
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Ohmic current

exists even when µ=0.

cancels when µ=0.
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Compute electrical 
conductivity in strong B 

limit!
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E

Energy gap of higher LL

Typical energy of quark and gluonT

p
eB

<<
<<

m Chirality flipping amplitude

We also assume that the gluon screening mass (M~g√eB) is much 
smaller than T, so that the gluon is thermally excited.


