

# Is there a low $p_T$ anomaly in the pion momentum spectrum at LHC?

Pasi Huovinen Uniwersytet Wrocławski

**Transport meeting** 

June 16, 2014, Institut für Theoretische Physik, Frankfurt

in collaboration with P. M. Lo, M. Marczenko, K. Redlich, and C. Sasaki

#### Charged hadron $p_T$ spectrum at LHC





#### **PCE150:**

fit to  $\pi$ , K, p yields no fit to spectrum

#### Charged hadron $p_T$ spectrum at LHC





#### **PCE150:** fit to $\pi$ , K, p yields no fit to spectrum

#### **PCE175**:

no fit to yields fits the spectrum

**CH**. Niemi

#### **Pion** $p_T$ spectrum at LHC



**C**H. Niemi

- need more resonances
- yield proportional to Boltzmann factor

$$N \propto \exp\left(-\frac{m}{T}\right)$$

- need more resonances
- yield proportional to Boltzmann factor

$$N \propto \exp\left(-\frac{m}{T}\right)$$

• resonance mass?

- need more resonances
- yield proportional to Boltzmann factor

$$N \propto \exp\left(-\frac{m}{T}\right)$$

- resonance mass?
- usually no width, i.e. resonances have their pole mass

#### effect of Breit-Wigner width on number density:

$$n = \int d^{3}\mathbf{p} f(p)$$
  
$$\Rightarrow n = \int d^{3}\mathbf{p} \int dm^{2} \frac{d\rho}{dm^{2}} f(p,m)$$

where

$$\frac{\mathrm{d}\rho}{\mathrm{d}m^2} = \frac{1}{N} \frac{m_R \Gamma}{(m^2 - m_R^2)^2 + m_R^2 \Gamma^2},$$

with normalisation

$$N = \int_{m_0}^{\infty} \mathrm{d}m^2 \frac{m_R \Gamma}{(m^2 - m_R^2)^2 + m_R^2 \Gamma^2},$$

For 
$$\rho^0 \, m_R = 775.26 \, {\rm MeV}$$
 and  $\Gamma = 147.8 \, {\rm MeV}$ 

 $\rho$ -density



**Breit-Wigner** 



dN/dm

**Breit-Wigner** 



## Mass dependent width

$$\frac{\mathrm{d}\rho}{\mathrm{d}m^2} = \frac{1}{N} \frac{m_R \Gamma(m)}{(m^2 - m_R^2)^2 + m_R^2 \Gamma(m)^2},$$

with width

$$\Gamma(m) = \frac{1}{2} \frac{p_{\rm CMS}^3 r_0^2}{1 + p_{\rm CMS}^2 r_0^2}$$

where  $r_0 = 6.3 \text{ GeV}^{-1}$ 

**Breit-Wigner** 



 $\rho$ -density



#### relativistic Breit-Wigner

$$\frac{d\rho}{dm^2} = \frac{1}{N} \frac{m_R \,\Gamma(m)}{(m^2 - m_R^2)^2 + m_R^2 \Gamma(m)^2}$$

or:

$$\frac{\mathrm{d}\rho}{\mathrm{d}m^2} = \frac{1}{N} \frac{m\,\Gamma(m)}{(m^2 - m_R^2)^2 + m^2\Gamma(m)^2}$$

#### relativistic Breit-Wigner

$$\frac{d\rho}{dm^2} = \frac{1}{N} \frac{m_R \,\Gamma(m)}{(m^2 - m_R^2)^2 + m_R^2 \Gamma(m)^2}$$

or:

$$\frac{\mathrm{d}\rho}{\mathrm{d}m^2} = \frac{1}{N} \frac{m\,\Gamma(m)}{(m^2 - m_R^2)^2 + m^2\Gamma(m)^2}$$

But if  $\Gamma(m) \propto m$  at large m,

$$N = \int_{m_0}^{\infty} \mathrm{d}m^2 \frac{m\,\Gamma(m)}{(m^2 - m_R^2)^2 + m^2\Gamma(m)^2} = \mathbf{x}$$

**Particle Data Group about**  $\rho$ :

...the line shape does not correspond to a relativistic Breit-Wigner function...but requires some additional shape parameter

## Garbage in, garbage out



**Dashen-Ma-Berstein theorem:** If interactions mediated by *narrow* resonances, properties of interacting hadron gas are those of noninteracting hadron-resonance gas  $\Rightarrow$  Hadron resonance gas model

**Dashen-Ma-Berstein theorem:** If interactions mediated by *narrow* resonances, properties of interacting hadron gas are those of noninteracting hadron-resonance gas  $\Rightarrow$  Hadron resonance gas model

**Dashen-Ma-Berstein:** S-matrix formulation of statistical mechanics:

⇒ Second virial coefficient can be evaluated in terms of scattering phase shift (as far as interaction is manifested in elastic scattering)

 $\Rightarrow$  relativistic Beth-Uhlenbeck form

## **Beth-Uhlenbeck**

• effects of interactions expressed in terms of scattering phase shifts

$$n = \int \mathrm{d}^3 \mathbf{p} \int \mathrm{d}m \frac{\mathrm{d}\rho}{\mathrm{d}m} f(p,m)$$

 $d\rho$ 



$$\delta(m) = \arctan \frac{-2\alpha}{3} \frac{p_{\text{CMS}}^3}{m(m^2 - \hat{m}_r^2)}$$

where  $\alpha = 2.64526$  $\hat{m}_r = 0.741395$ 

with



P. Huovinen @ ITP, June 16, 2016





 $\rho$ -density



#### **Pions from** $\rho$ decays



• static source,  $T = 155 \,\mathrm{MeV}$ 

#### Thermal pions + pions from $\rho$ decays



• static source, 
$$T = 155 \,\mathrm{MeV}$$

#### Thermal pions + pions from $\rho$ decays



• static source, 
$$T = 155 \,\mathrm{MeV}$$

## blast-wave parametrisation



- boost invariant & cylidricly symmetric
- $\bullet$  decoupling at constant  $\tau$ , i.e. volume emission
- transverse velocity v = v(r)

$$E\frac{\mathrm{d}N}{\mathrm{d}p^3} = \frac{g\tau m_T}{2\pi^2} \int_0^R r \,\mathrm{d}r \int_{m_{\mathrm{th}}}^\infty \mathrm{d}m \frac{\mathrm{d}\rho}{\mathrm{d}m} \sum_{n=1}^\infty (\mp 1)^{n+1} I_0\left(n\frac{p_T\gamma_r(r)v_r(r)}{T}\right) K_1\left(n\frac{m_T\gamma_r(r)}{T}\right)$$

 $\tau=13.7\,\mathrm{fm}$  ,  $R=10\,\mathrm{fm}$  ,  $v_{max}=0.78$ 

#### **Pions from blast wave**



- all resonances up to 2 GeV
- Beth-Uhlenbeck for rhos
- zero width for everything else

#### **Pions from blast wave**



- all resonances up to 2 GeV
- Beth-Uhlenbeck for rhos
- zero width for everything else



• so far only rho mesons

- so far only rho mesons
- Beth-Uhlenbeck applicable to elastic scatterings only!

- so far only rho mesons
- Beth-Uhlenbeck applicable to elastic scatterings only!
- $\rho$ ,  $K^*(892)$ ,  $f_0(980)$ ,  $\Delta(1232)$ ,  $K_0^*(1430)$ 
  - data exists

- so far only rho mesons
- Beth-Uhlenbeck applicable to elastic scatterings only!
- $\rho$ ,  $K^*(892)$ ,  $f_0(980)$ ,  $\Delta(1232)$ ,  $K_0^*(1430)$ 
  - data exists
- $\Lambda(1405)$ ,  $\Xi(1530)$  applicable
  - no data

- so far only rho mesons
- Beth-Uhlenbeck applicable to elastic scatterings only!
- $\rho$ ,  $K^*(892)$ ,  $f_0(980)$ ,  $\Delta(1232)$ ,  $K_0^*(1430)$ 
  - data exists
- $\Lambda(1405)$ ,  $\Xi(1530)$  applicable
  - no data
- and everything else?

• So is there anomaly. . . ?

- So is there anomaly. . . ?
  - Probably not

- So is there anomaly. . . ?
  - Probably not
- Resonance widths affect yields and distributions

- So is there anomaly. . . ?
  - Probably not
- Resonance widths affect yields and distributions
- Better treatment of resonances needed