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Pomeron in QCD

_____ <l - - -- BFKL ladder (Q° >> Alcp)

Seen in data on \ =

Two important questions:

d lnF2

dInl/x

dIn F,/d(In 1/x)

What is a relation between Soft and Hard Pomerons?

How the scattering theory gets unitarized?

Possible answer:

Reggeon Field Theory in QCD
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cas ~ 0.3 — 0.5 (Hard Pomeron)
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Pomeron interaction vertices in QCD; parton density saturation effects



RFT - History

60° V. Gribov: RFT with supercritical bare Pomeron s®, A > 0.

70° BFKL (Balitsky, Fadin, Kuraev, Lipatov) ladder - Hard Pomeron, s©“s
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80 BKP (Bartels, Kwiecinski, Praszalowicz), GLR (L. Gribov, Levin, Ryskin)

90° 3P Vertex (Bartels, Wusthoff, M. Braun), Lipatov‘s action, Mueller‘s dipole model,
B-JIMWLK (Balitsky, Jalilian Marian, lancu, McLerran, Leonidov, Kovner).

since 2005 (A. Kovner and M.L.) JIMWLK+, KLWMIJ, Dense-Dilute Duality (DDD),

Self-Duality of RFT , Pomeron loops, and much more



Some Major Questions

How does the unitarity of QCD get manifested in high energy scattering amplitudes?
How do gluon densities grow with energy? Do they saturate? Scales?

What are applicability limits of factorization theorems?

What are final states in collisions of dense objects (jets, multiplicities, correlations)?
How to compute total cross sections?

How to get thermalization in high energy collisions of very dense objects (nuclei)?



HERA - EIC - LHeC

DIS vs. Hadron-Hadron
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Dilute regime: dp ~ p — p ~ e°Y BFKL s = explY]

small x

Evolution is generated by boost. Accelerated (color) charged particles radiate
Fast particles emit softer ones

High energy limit = soft gluon emission approximation

Exponential growth of gluon densities leads to unitarity violation.

At high densities the growth should be slowed down due to non-linear effects.

Transition to a non-linear regime is characterized by emergence of a new scale
Qs, known as saturation scale.

Qs > Aqcp and perturbative methods are applicable.
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Resolution Power (GeV?)

Physics is more perturbative.

Classical background fields are strong

Atomic number enhancement

.JIJ ||.

Q2 ~ A1/3

S

motivation for EIC

Color Glass Condensate
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Saturation occures when the parton density becomes of the order 1/a.
This high density of (color) charges produces strong (non-abelian) classical fields,
the Color Glass Condensate.

The situation is somewhat similar to non-linear QED in high intensity lasers.



Inside Color Glass Condensate (CGC)

Dense regime: (1) Hadron is almost black
(2) Emission probability is independent of density

(3) “Bleaching of color”

Random walk p ~ VY



Most of HERA DIS data are well described
by the CGC/Saturation physics.

This is particularly true

in the low x / low Q regime, where

DGLAP fails.

CGC at work

Gotsman, Levin, Lublinsky, Maor (2002)
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High Energy Scattering

Target (o' = p ; k= > A) Projectile (p” = p™; kT > A)
(T — — |P)

S-matrix:
S(Y) = (T(P| S(p", p") |P)T)

or, more generally, any observable O(p®, pP)

(O)y = (T(P| O(p, p°) [P)T)

The question we pose is how these averages change with increase in energy of the process



Projectile averaged operators:

(P| O(p", p") IP) = /Dpp O(p', p") WE[p"]
Boosting projectile IP)y — |P)y+sy = Qy |P)
evolve with rapidity as H™T 5 the RFT Hamiltonian
d(P|O|P)

~ - /Dpp O(p, p) H™ PP, 5/6p"] WE[p]

or in other words

dWP
dY

_ _ [gRFT wp

Spectrum of HRFT defines the energy dependence of the average.



Dense/Dilute limit

KLWMI1J RFT JIMWLK RFT
H = H H = HYF(

(p — 0); p — 00)

JIMWLK - lJalilian Marian, lancu, McLerran, Leonidov, Kovner (1997-2002)

KLWMIJ - A. Kovner and M.L., Phys.Rev.D71:085004, 2005

Evolution with Pomeron Loops (model):

RFT JIMWLK 7 KLWMIJ
HYT ~ H ( H (

p — o) "+ p — 0)



High energy evolution of light cone wave function

k+ l'IJ/\ Boost k+ lIJA’
hard | — 5 -_—
(valence) —— K kT e —
p  —— R —
—_— A ——= A -
A bo0—0——— . A boomm e e
soft |  ~ """ T
modes  ----- T

Hard particles with £© > A scatter off the target. In the eikonal approximation, the
scattering amplitude is independent of k. Hard (valence) modes are described by the
valence density p(x ).

Soft modes are not many. They do not contribute much to the scattering amplitude.

The boost opens a window above A with the width ~ d§y. The window is populated
by soft modes, which became hard after the boost. These newly created hard modes do
scatter off the target.

In the dilute limit p ~ 1; gluon emission ~ a5 p

In the dense limit p ~ 1/, we have a; p ~ 1, and the number of gluons in the window
can be very large.



Once evolution of the hadronic wave function (£2) is computed, we can deduce evolution
of an arbitrary observable O(p)

The evolution of the expectation value

d (P|O|P P|QLO 5p] Qv |P) — (P|O[p]|P
(P|O| >: lim (P| v lp + 6p] Qv [P) — (P|O]p]| >:_/Dpw[p]HRFTO[p]
dY Y5Y, Y — Y

Charge density due to newly produced gluon

Y A

5700 = [, kYl 20 Thoaf (kT x)

Dual Wilson line (charge density shift operator)

RU() = |Pexp(T 5pf(x)}] , R O[] = Op + T



KLWMIJ Hamiltonian (dilute limit)

Linear evolution means jp o p?
Emission amplitude is given by the
p\'j Weizsaker-Williams field

o b0 = o [

Gluon coherent field operator in the dilute limit

Y A

e dk+
. o . 2 a
Qv(p — 0) = Cy = Exp {1 /d zb; (z) Yo p ml/2]kt+|1/2

al(k",7) + ai“‘(k*,z))]}

The operator C dresses the valence charges by a cloud of the WW gluons

T o 0) = BN 55 = b0 - R b



HON = 2 [t Qi) Qi) > 0

The "amplitudes” Q' (z) are defined as

Q@) = [ax 2[R e — 5

The generators of the right/left color rotations

33 (x) = —tr{R(x) T (X)}, 73 (x) = —tr{TaR(x)

Q[R] Q[R]




Eikonal scattering approximation

N out

Eikonal scattering is a color rotation
Eikonal factor does not depend on rapidity

B OO0 R O
A A A A A A A

In the light cone gauge (A" = 0) the large target field component is A~ = o'.

S(x) = P exp{i/dx+ Taa?(x,x+)} : A = p' (YM)

in) = |z,b); out) = |z,a); jout) = S |in)



JIMWLK Hamiltonian (dense limit)

In the dense regime: Q(p ~ 1/as) = CB B is a Bogolyubov operator

B = exp[A(p)(a® + a'") + -]

B defines quasiparticles above the WW background

o] = fofie] 0= ene

P
( P
0 . . 0 Eikonal scattering matrix for
O, i i 0a projectile‘s gluon
JIMWLK $roqoorond ab
Co S¥%(z) = Pe:cp{iat(z)}

<T‘ I I I I ‘T>
— - Aiad¢ QA ¢ S I



DDD - Dense Dilute Duality

O 0) = o, [ ORI g1 RGP )

linear emission + multiple rescatterings

— )7 — v ) S
p/IMWLK _ S/ (z — x)i(z — y); 1 — S(g)12
P) = ) a—xra—y) et o )
non-linear emission 4+ double gluon exchange
DDD transformation:
i — i : i — ip S 5 R PIMWLK | ppKLWML
dp Ye!




Self-Duality of High Energy Evolution

e Lorentz Invariance (LI)

e Eikonal Approximation (EA)

e Projectile - Target Democracy (PTD)

Self-Duality

H" (i ,6/6a) = HY(§/6p, ip)

= t-channel unitarity?




KLWMIJ (JIMWLK) vs BFKL

JIMWLK/KLWMIJ has non-negative spectrum (Unitarity!)
BFKL has a negative eigenvalue (Unitarity is violated!)

BFKL is a limit of JIMWLK/KLWMIJ?!

Initial wave packet localized at the origin
(dilute regime p ~ 0) can be expanded in \/-/\\/
both KLWMIJ and BFKL eigenfunctions. 7 N

BFKL eigenfunctions are non-normalizable

At small times (rapidities) the evolutions are similar but at late times BFKL drives the
system towards unitarity violation.



Reggeon Field Theory in QCD — Summary

Hamiltonian (2+1) dimensional interacting non-local field theory.

The basic " quantum Reggeon field” is the unitary matrix R (S).

Symmetry: DDD, Self-duality

Two zero energy degenerate vacua (“Yang” and “Yin"),
DDD is spontaneously broken.

Spectrum of excitations is twice degenerate
(gluons and “holes”)

More symmetries: SUv(N), Zs; 2-d Conformal invariance?

BFKL Pomeron is a tachyon

Phenomenology (LHC, HERA, RHIC, TeVatron, EIC, LHeC, ILC)



There are Postdoc Fellowships at the BGU




Projecting KLWMIJ onto singlets

Hyxiwwmiy defines a 241 dimensional non-local QFT of unitary matrix R, but not a QFT
of Reggeons. Reggeons are physical scattering amplitudes - color singlets.

Is it possible to project Hkxrwniy onto color singlets and derive the RFT ?

First step is to choose effective degrees of freedom and make sure to preserve symmetries

SUL(N) x SUgr(N) — effective degrees of freedom must be scalars.
Charge conjugation Z5: R(x) — R*(x)

Time reversal (Signature) Z,: R(x) — Rf(x)

Natural condition: in the linearized regime (R =1 — T%...) we shell reduce to BKP.

In a sense, we study the low energy limit of high energy QCD.



There is infinite number of independent color singlets, but there is a natural hierarchy
Dipole:  d(x,y) = &=Tr[R(x)R/(y)]
Qudrupole: Q(x,y,u,v) = NicTr[R(x) Ri(y) R(u) RT(v)]
Naturally decomposes into
Pomeron: - C, T even P(1,2) = 1[2 — d(1,2) — d(2,1)]
Odderon: - C, T odd O(1,2) = 3[d(1,2) — d(2,1)]

B-Reggeon: C,T even, perturbatively orthogonal to P

1
Bi234 = 1 4 — Q1234 —Qa123— Q3214 — Q2143]—[P12+ P1a+ Pas + P3y — P13 — Pay]

Other 'ONs

C-Reggeon odd, T even: Ci234 = % Q1234+ Q4123 — Q3214 — Qa.1.43]
+
T odds: Dl,z’g,4 = % Q1,234 — Qq1,23] £ % (Q3,2,1,4 — Q2,1,4,3]

And higher multipoles



Hyxrwwymrg = Hp + Ho+ Hp + Ho+ Hp + - - -

Qs (x _ y)2 T
Hp = — {Pa:z Pz _Px _szpz O:L'zOz P }
’ R e e e R

HO:_&S / (w_y)Q {[Oﬂﬁz‘|‘ozy_OOCy_OQCZPZ?J_PQEZOZy]OJr
2T x,Y,% (x T Z)2 (y T Z)2 | | | | | | | .
(67
Hp = 2 /xyuvz { [ — [Mzy: + Muw: — Lawvyz] Bayuwo + 4L£B,’U,u,v5szy“z] chyuv
_2Lx,y,u,v;z [vapuy+0xv0uy] Blyuv_QPa:zPyz [QLx,y,u,v;zB;yuv_ (Lx,u,y,v;z+Laz,v,y,u;z> B;r:uyfu]
T T T
_4P$2Pyu |:2L$,y,$,U;ZB:L’yuv T anyamau;sz’y’Uu} o 4B(EyU,ZPZ’UL.’E,U,u,’U;szyu,U

TYUZz TYUU

_4D+ C)Z’UIJJI:,’U,U,U;,ZBJr }



All vertices allowed by the symmetries

At leading N. all of them have the nature of splitting: one Reggeon going into two

&

prPP', ooP'; pPoO'; PPB';, BPB', cPC!

AAAAKLK KK

B O D-

At subleading IN. one gets also merging vertices



QCD Lagrangian

QCD

1 —
L :ZG/WGMV + w(’bﬁ - QA_m)¢

The field strength

G = 9" AV —

a

Equations of motion:

Maxwell equation:

8, G" = gJ";

Dirac equation

v abc v
0 AZ T gf AgAc

J: — TL’YVTCL'(,D . fachZ,uAéL

(iv" D, — m)y = 0



Light Cone

LC time =zt = (t + 2)/V2 T = (t — 2)/V2

LC gauge .
- A"+ 4% =0

+ _
4 =5

The Gauss law constraint
0,G'" = gJT"
is solved for the A~ field

— (8N A, + 019, AL = gJf

_ o g n
A = —A J

Same story with quarks



Light Cone Hamiltonian

. . : i i L o+ oot gd
Canonical variables: A, II'" = -4 G™ =0"A

Light Cone Hamiltonian:

HC — /dm_d2:m [Hi 9" A" — L] — Hp + Hy

The electric and magnetic parts

1 dk™

Hp = — d*x T (kT,2) T (—k™,
b= [ o d T (K 2)
1 dk+ 2 a —+ a —+
Hy = 1 (27r)dx Gij(k , ) Gij(—k , )
The chromoelectric field
I (k") = 7 A~ = — 9" A® + %Jj



We split the modes into hard and soft: The hard modes act as an external current
g = &§(x7) p® for the soft modes. J© = j* + g A A + (quark current)

k™ l'IJ/\ Boost k™ l'IJ/\’
hard | ———— —
(valea::ce) N kt - gt a0y — } P
modes | — ——— S
o | ——— N —
) /\ __________
— A——= A — A
A rTTooooo - /N S
LC LC LC LC C
H" = H "+ H“; HY |Uy) = E|Wa); H" W,/ = E'|U,/)

|W,) is a vacuum of the soft modes A.

HYY = Hy + 6H” + g AAA + ... SH? ~ gpA



Quantization

< dkt 1 - g~
Al(x™,x :/ al(kT.x)e T 4Tk x) e
@ = [ %{ (k750 (k" )

[a?(W, k), a?*(pﬂp)} = (2m)° 6" 6;;6°(k — p)

The free part of the LCH

dk™ d°k, k2
= [ L L et kL) al (kT k)
ktso 27 (2m)22kT

The vacuum of the LCH is simply the Fock space vacuum of the operators a

aq|0>:O§ Eo = 0

The one particle state

1
(27)3/2

|k, a,i) = ai'(k*, k) |0) B, =k~ =



Perturbation Theory

dkt d&’k, gk,
SHY = —/ ' 1t k) p%(—k “kt, — k1) p%(k
o T e Lo (s k) (kL) + al 1) P

The first order perturbation theory

(1] 6H" |0)
E;

|m=mm—2]w 016) =1 — B

This Hamiltonian creates only one particle state from the vacuum

gk;

P _ + . P —
(1 gluon|dH"|0) = (ki,k",a,i|6H"|0) = 47302 [+ |3/

5P (k1)

We can write the soft gluon vacuum state to the first order in the coupling as

10) = Csy |0); (W) = Csy |Wy)



The Coherent operator having the form

Csy = Exp z/d x b; () / 7 |k+\1/2 [a?(kJ“’x) + a;,fa(kJr’:B)}
iy

The “classical” field b; is the Weizsaker-Williams field of the color charge density p“

bi(k) = g _,:Qki p'(—k); b; (z) = % /d2y% P () -



NLO

e NLO: ¢° + normalization up ¢*

(4| 6H |0)  (i|oH |5) (j| 6H |0)

0) = B|0>+ZI>[ 5t BB +

L (oH0) (G0 H 0)* (2E; — E;)  (i|8H |j) (j| 6H |k) (k| 5H |0)

2E} E ki Ej Ej,



Beyond JIMWLK: JIMW LK+

JIMW LK
H +

A. Kovner and M.L., JHEP 0503:001,2005

Coherent emission of a single gluon

Dib] b = pt

p
b is non-linear in p¥ = p, > 1
O o0 o o o 0
oa da da da d6a ~ oa
. _ . 0 : ‘
/sz 1 — S(2)] b FEIN

0
roamoroae by, ]
a a aa
JIMWLK+



Semi-inclusive reactions

The wave function coming into the collision region at time ¢t = 0

[Win) = Ly [p, 0a) .

The system emerges from the collision region with the wave function

[ Wout) = S Qy 0, 0a) -

The system keeps evolving after the collision to the asymptotic time ¢ — 400, at which
point the measurement of an observable O is made

(Opr = (2L 1 —8Hay & Q 1 -8y )er



Single inclusive gluon production

Og(K)

The observable

Og ~ al*(k)a] (k)

dN
kdy (o(k))pr

o(k) = / R E ) Fa —2) {p(x)[ST (1) — ST][S(R1) — S(2)]p(a) |

Here ( )
ey XYk
=¥ =Gy



Yin and Yang

Yang (white) vacuum:  H*"WM 1y ang) = 0
| Yang) = 6(p); 5" Yang) = 6" |Yang);
Yin (black) vacuum:  H/'/MYWEE 1 yin ) = 0
|Yin) = 1; (Yin|S®@)|Yin) = 0;
DDD transforms | Yin ) into | Yang)
HY" " vin) = H"" |Yang) = 0

wYa,ng:O
° Iyang) = 0
srR' M T
0 .
— |Yin) = 0
oS



Vacuum is doubly degenerate: DDD is spontaneously broken

There are two degenerate towers of excited states:

“GLUONS” - live above Yang
gn = R(z1)--- R(zn)|Yang)
S = 1 at all points in the transverse plane except x, - - - =,
“HOLES” - live above Yin
h, = S(x1)---S(x,)|Yin)

S = 0 at all points in the transverse plane except x, - - - =,



Projectile averaged S-matrix:

=%y, (r) = (PISGH ") [P) = [ DoP 8(, ") Wh_y, "
S(Y) = [ Do By 0] WYl
dS . t «P t RFT[ t /s ¢ T [ ¢
~ Dp 2Y—YO[P] H™ "[p", 6/6p7] WYO[P]
dY
HYT |0) = w | W) By = e Y W)

P P T T «
2y = Y| i) W, = Z’Yi ( ¥ |



P * — w: Y
S(Y) = > 4 v e

Unitarity <= w; > 0; w(BFKL) < 0



RFT beyond JIMWLK/KLWMIJ

HYT = %[b—B]RT(l —1-L)(1 —-2)R(1 —2)(1 —1—L)[b — b

b = b|p] is the WW field of the incoming state
b = R'b[Rp] isthe WW field of the outgoing state

Projectors:

| = 99 , — DilbliD[b];

52 ~ " Db

Expanding in either small p or small §/5p we reproduce KLWMIJ and JIMWLK.



Denote soft glue creation and annihilation operators as a and al.

Hqop = H(p, a, a')
Hadron wave function in the soft gluon Fock space

|\IJ>Y0 :|U> — |:0>valence %Y |0a>soft

The evolved wave function

[T)y = Qv(p, a) [¥)y;
or equivalently

Q'H Q = Hyagona

The major challenge is to find 2 that does the job



