Towards Reggeon Field Theory in QCD

Michael Lublinsky

Ben-Gurion University of the Negev

Beer Sheva, Israel

Perturbation Theory,
DIS, Partons, DGLAP,
Hard phenomena: jets

Perturbative QGP, Quark Gluon Plasma

$$\nwarrow \ \mathbf{Q^2} \ o \ \infty$$

$$\nearrow$$
 T \rightarrow ∞

$$\not / \ m \ \to \ 0$$

$$\searrow$$
 s \rightarrow ∞

 χ – Lagrangians

RFT: All Collider experiments, Cosmic rays, ultra relativistic neutrinos

Confinement, String Theory

Pomeron in QCD

BFKL ladder ($m Q^2 >> \Lambda^2_{QCD}$)

$$\sigma \sim \sum (\mathbf{c} \, \alpha_{\mathrm{s}})^{\mathrm{n}} \, \ln^{\mathrm{n}} \, \mathrm{s} \sim \, \mathrm{s}^{\mathrm{c} \, \alpha_{\mathrm{s}}}$$

$$c \, lpha_{
m s} \, \simeq \, 0.3 \, - \, 0.5$$
 (Hard Pomeron)

Seen in data on $\lambda = \frac{\mathrm{d}\, \ln \mathrm{F_2}}{\mathrm{d}\, \ln 1/\mathrm{x}}$

Two important questions:

What is a relation between Soft and Hard Pomerons?

How the scattering theory gets unitarized?

Possible answer: Reggeon Field Theory in QCD

Pomeron interaction vertices in QCD; parton density saturation effects

RFT - **History**

- 60' V. Gribov: RFT with supercritical bare Pomeron s^{Δ} , $\Delta > 0$.
- 70' BFKL (Balitsky, Fadin, Kuraev, Lipatov) ladder Hard Pomeron, $s^{c \alpha_s}$

- 80' BKP (Bartels, Kwiecinski, Praszalowicz), GLR (L. Gribov, Levin, Ryskin)
- 90' 3P Vertex (Bartels, Wusthoff, M. Braun), Lipatov's action, Mueller's dipole model, B-JIMWLK (Balitsky, Jalilian Marian, Iancu, McLerran, Leonidov, Kovner).
- since 2005 (A. Kovner and M.L.) JIMWLK+, KLWMIJ, Dense-Dilute Duality (DDD), Self-Duality of RFT, Pomeron loops, and much more

Some Major Questions

- How does the unitarity of QCD get manifested in high energy scattering amplitudes?
- How do gluon densities grow with energy? Do they saturate? Scales?
- What are applicability limits of factorization theorems?
- What are final states in collisions of dense objects (jets, multiplicities, correlations)?
- How to compute total cross sections?
- How to get thermalization in high energy collisions of very dense objects (nuclei)?

DIS vs. Hadron-Hadron

HERA - EIC - LHeC

$$\rho \sim 1/\alpha_{s}$$
dense
$$\rho \sim 1/\alpha_{s}$$

$$\rho \sim 1/\alpha_{s}$$

$$\rho \sim 1/\alpha_{dense}$$

$$\rightarrow$$

Dilute regime: $\delta \rho \sim \rho \rightarrow \rho \simeq \mathrm{e}^{\mathrm{c} \, Y}$ BFKL $s = \exp[Y] = 1/x$

Evolution is generated by boost. Accelerated (color) charged particles radiate

Fast particles emit softer ones

High energy limit = soft gluon emission approximation

Exponential growth of gluon densities leads to unitarity violation.

At high densities the growth should be slowed down due to non-linear effects.

Transition to a non-linear regime is characterized by emergence of a new scale Q_s , known as saturation scale.

 $Q_{\rm s} \gg \Lambda_{\rm QCD}$ and perturbative methods are applicable.

Physics is more perturbative.

Classical background fields are strong

Atomic number enhancement

$$Q_s^2 \sim A^{1/3}$$

motivation for EIC

Saturation occures when the parton density becomes of the order $1/\alpha_{\rm s}$. This high density of (color) charges produces strong (non-abelian) classical fields, the Color Glass Condensate.

The situation is somewhat similar to non-linear QED in high intensity lasers.

Inside Color Glass Condensate (CGC)

Dense regime:

- (1) Hadron is almost black
- (2) Emission probability is independent of density
- (3) "Bleaching of color"

Random walk

$$ho \sim \sqrt{\mathbf{Y}}$$

CGC at work

Gotsman, Levin, Lublinsky, Maor (2002)

Most of HERA DIS data are well described by the CGC/Saturation physics. This is particularly true in the low \mathbf{x} / low \mathbf{Q} regime, where DGLAP fails.

High Energy Scattering

S-matrix:

$$\mathbf{S}(\mathbf{Y}) = \langle \mathbf{T} \langle \mathbf{P} | \hat{\mathbf{S}}(\rho^{t}, \rho^{p}) | \mathbf{P} \rangle \mathbf{T} \rangle$$

or, more generally, any observable $\hat{\mathcal{O}}(\rho^t,\,\rho^p)$

$$\langle \hat{\mathcal{O}} \rangle_{\mathbf{Y}} = \langle \mathbf{T} \langle \mathbf{P} | \hat{\mathcal{O}}(\rho^{t}, \rho^{p}) | \mathbf{P} \rangle \mathbf{T} \rangle$$

The question we pose is how these averages change with increase in energy of the process

Projectile averaged operators:

$$\langle \, \mathbf{P} | \, \hat{\mathcal{O}}(\rho^{\mathrm{t}}, \, \rho^{\mathrm{p}}) \, \, | \mathbf{P}
angle \, = \, \int \, \mathbf{D}
ho^{\mathrm{p}} \, \, \hat{\mathcal{O}}(\rho^{\mathrm{t}}, \, \rho^{\mathrm{p}}) \, \, \mathbf{W}_{\mathrm{Y}}^{\mathrm{p}}[\rho^{\mathrm{p}}]$$

Boosting projectile
$$|\mathbf{P}
angle_{\mathbf{Y}} \; o \; |\mathbf{P}
angle_{\mathbf{Y}+\,\delta\mathbf{Y}} \; = \; \Omega_{\mathbf{Y}}\,|\mathbf{P}
angle$$

evolve with rapidity as

$$\mathbf{H}^{\mathbf{RFT}} \rightarrow \mathbf{the} \ \mathbf{RFT} \ \mathbf{Hamiltonian}$$

$$rac{\mathbf{d} \langle \mathbf{P} | \hat{\mathcal{O}} | \mathbf{P}
angle}{\mathbf{d} \mathbf{Y}} \ = \ - \ \int \mathbf{D}
ho^{\mathbf{p}} \ \hat{\mathcal{O}}(
ho^{\mathbf{t}}, \
ho^{\mathbf{p}}) \ \mathbf{H}^{\mathbf{RFT}} [oldsymbol{
ho}^{\mathbf{p}}, \ \delta/\delta
ho^{\mathbf{p}}] \ \mathbf{W}^{\mathbf{p}}_{\mathbf{Y}} [
ho^{\mathbf{p}}]$$

or in other words

$$rac{\mathrm{d} \mathrm{W}^\mathrm{p}}{\mathrm{d} \mathrm{Y}} \; = \; - \mathrm{H}^\mathrm{RFT} \; \mathrm{W}^\mathrm{p}$$

Spectrum of $\mathbf{H}^{\mathbf{RFT}}$ defines the energy dependence of the average.

Dense/Dilute limit

$$\mathbf{H}^{\mathrm{KLWMIJ}} = \mathbf{H}^{\mathrm{RFT}}(\rho \to \mathbf{0}); \qquad \qquad \mathbf{H}^{\mathrm{JIMWLK}} = \mathbf{H}^{\mathrm{RFT}}(\rho \to \infty)$$

JIMWLK - Jalilian Marian, Iancu, McLerran, Leonidov, Kovner (1997-2002)

KLWMIJ - A. Kovner and M.L., Phys.Rev.D71:085004, 2005

Evolution with Pomeron Loops (model):

$$\mathbf{H}^{\mathrm{RFT}} \simeq \mathbf{H}^{\mathrm{JIMWLK}}(\rho \to \infty) '' + '' \mathbf{H}^{\mathrm{KLWMIJ}}(\rho \to \mathbf{0})$$

High energy evolution of light cone wave function

Hard particles with $k^+>\Lambda$ scatter off the target. In the eikonal approximation, the scattering amplitude is independent of k^+ . Hard (valence) modes are described by the valence density $\rho(x_\perp)$.

Soft modes are not many. They do not contribute much to the scattering amplitude.

The boost opens a window above Λ with the width $\sim \delta y$. The window is populated by soft modes, which became hard after the boost. These newly created hard modes do scatter off the target.

In the dilute limit $\rho \sim 1$; gluon emission $\sim \alpha_s \, \rho$

In the dense limit $\rho \sim 1/\alpha_s$, we have $\alpha_s \rho \sim 1$, and the number of gluons in the window can be very large.

Once evolution of the hadronic wave function (Ω) is computed, we can deduce evolution of an arbitrary observable $\hat{\mathcal{O}}(\rho)$

The evolution of the expectation value

$$\frac{\mathbf{d} \left\langle \mathbf{P} | \hat{\mathcal{O}} | \mathbf{P} \right\rangle}{\mathbf{d} \mathbf{Y}} = \lim_{\mathbf{Y} \to \mathbf{Y}_{\mathbf{0}}} \frac{\left\langle \mathbf{P} | \mathbf{\Omega}_{\mathbf{Y}}^{\dagger} \hat{\mathcal{O}} [\rho + \delta \rho] \, \mathbf{\Omega}_{\mathbf{Y}} | \mathbf{P} \right\rangle - \left\langle \mathbf{P} | \hat{\mathcal{O}} [\rho] | \mathbf{P} \right\rangle}{\mathbf{Y} - \mathbf{Y}_{\mathbf{0}}} = -\int \mathbf{D} \rho \, \mathbf{W}[\rho] \, \mathbf{H}^{\mathrm{RFT}} \, \mathcal{O}[\rho]$$

Charge density due to newly produced gluon

$$\delta
ho^{
m a}({
m x}) \, = \, \int_{
m e^{
m Y_0}}^{
m e^{
m Y}} \! {
m d} {
m k}^+ \, {
m a_i^{\dagger b}}({
m k}^+, {
m x}) \, {
m T_{bc}^a} \, {
m a_i^c}({
m k}^+, {
m x})$$

Dual Wilson line (charge density shift operator)

$$\mathbf{R}^{\mathrm{ab}}(\mathbf{x}) = \left[\mathcal{P} \exp\{\mathbf{T}^{\mathrm{c}} \frac{\delta}{\delta \rho^{\mathrm{c}}(\mathbf{x})}\} \right]^{\mathrm{ab}}, \qquad \mathbf{R} \ \hat{\mathcal{O}}[\rho] = \hat{\mathcal{O}}[\rho + \mathbf{T}]$$

KLWMIJ Hamiltonian (dilute limit)

Linear evolution means $\delta
ho \, \propto \,
ho_v^p$

Emission amplitude is given by the Weizsaker-Williams field

$$b_i^a(z) = \frac{g}{2\pi} \int d^2x \frac{(x-z)_i}{(x-z)^2} \rho^a(x)$$

Gluon coherent field operator in the dilute limit

$$\Omega_Y(\rho\,\to\,0)\,\equiv\,C_Y\,=\,\mathrm{Exp}\,\bigg\{i\,\int d^2z\,b_i^a(z)\,\int_{e^{\textstyle Y_0}\,\Lambda}^{e^{\textstyle Y}\,\Lambda}\frac{dk^+}{\pi^{1/2}|k^+|^{1/2}}\,\Big[a_i^a(k^+,z)\,+\,a_i^{\dagger a}(k^+,z))\Big]\bigg\}$$

The operator C dresses the valence charges by a cloud of the WW gluons

$$\mathbf{H}^{\mathrm{RFT}}(
ho \,
ightarrow \, \mathbf{0}) \;\; = \;\; \mathbf{H}^{\mathrm{KLWMIJ}}[
ho, \delta/\delta
ho] \; = \; \int_{\mathbf{z}} \, \mathbf{b}^{\mathrm{a}}_{\mathbf{z}}[
ho] \, [\mathbf{1} \, - \, \mathbf{R}_{\mathbf{z}}]^{\mathrm{ab}} \, \mathbf{b}^{\mathrm{b}}_{\mathbf{z}}[
ho]$$

$$\mathbf{H}^{ ext{KLWMIJ}} \, = \, rac{lpha_{ ext{s}}}{2\,\pi^2} \, \int ext{d}^2 \mathbf{z} \, \, \, \mathbf{Q}_{ ext{i}}^{ ext{a}}(\mathbf{z}) \, \, \mathbf{Q}_{ ext{i}}^{ ext{a}}(\mathbf{z}) \, \, \geq \, \, 0$$

The "amplitudes" $\mathbf{Q_i^a(z)}$ are defined as

$${f Q}_{
m i}^{
m a}({f z}) \; = \; \int {f d}^2 {f x} \, rac{({f x}-{f z})_{
m i}}{({f x}-{f z})^2} \; \left[{f R}^{
m ab}({f z}) \, {f J}_{
m R}^{
m b}({f x}) \; - \; {f J}_{
m L}^{
m b}({f x})
ight]$$

The generators of the right/left color rotations

$$\mathbf{J}_{\mathbf{R}}^{a}(\mathbf{x}) \; = \; -\operatorname{tr}\left\{\mathbf{R}(\mathbf{x}) \; \mathbf{T}^{a} \frac{\delta}{\delta \mathbf{R}^{\dagger}(\mathbf{x})}\right\}, \qquad \quad \mathbf{J}_{\mathbf{L}}^{a}(\mathbf{x}) \; = \; -\operatorname{tr}\left\{\mathbf{T}^{a} \, \mathbf{R}(\mathbf{x}) \, \frac{\delta}{\delta \mathbf{R}^{\dagger}(\mathbf{x})}\right\}$$

Eikonal scattering approximation

Eikonal scattering is a color rotation Eikonal factor does not depend on rapidity

In the light cone gauge (${f A}^+={f 0}$) the large target field component is ${f A}^-=lpha^{
m t}$.

$$\mathbf{S}(\mathbf{x}) \ = \ \mathcal{P} \ \exp \left\{ \mathbf{i} \int d\mathbf{x}^+ \, \mathbf{T}^a \, \alpha_t^a(\mathbf{x}, \mathbf{x}^+) \right\} \, . \qquad \qquad "\mathbf{\Delta}" \, \alpha^t \ = \ \rho^t \quad \ (\mathbf{Y}\mathbf{M})$$

$$|\mathbf{in}\rangle = |\mathbf{z}, \mathbf{b}\rangle; \qquad |\mathbf{out}\rangle = |\mathbf{z}, \mathbf{a}\rangle; \qquad |\mathbf{out}\rangle = \mathbf{S}|\mathbf{in}\rangle$$

JIMWLK Hamiltonian (dense limit)

In the dense regime: $\Omega(\rho \sim 1/\alpha_{\rm s}) = C B$

B is a Bogolyubov operator

$$\mathbf{B} = \exp[\Lambda(\rho) (\mathbf{a}^2 + \mathbf{a}^{\dagger 2}) + \cdots]$$

B defines quasiparticles above the WW background

$$H^{JIMWLK}\left[\alpha^t, \frac{\delta}{\delta \alpha^t}\right] = \int_z b_i \left[\frac{\delta}{\delta \alpha^t}\right] \left[1 - S(z)\right] b_i \left[\frac{\delta}{\delta \alpha^t}\right]$$

matrix for

$$S^{ab}(z) = P \exp \left\{ i \alpha^t(z) \right\}^{ab}$$

DDD - Dense Dilute Duality

$$H^{KLWMIJ} (\rho \to 0) \ = \ \alpha_s \, \int_{x,y,z} \frac{(z-x)_i(z-y)_i}{(z-x)^2(z-y)^2} \ \rho^a(x) \left[1 \, - \, R(z) \right]^{ab} \rho^b(y)$$

linear emission + multiple rescatterings

$$\mathbf{H}^{\mathrm{JIMWLK}}\left(\rho \to \infty\right) \; = \; \alpha_{\mathrm{s}} \, \int_{\mathbf{x},\mathbf{y},\mathbf{z}} \frac{(\mathbf{z}-\mathbf{x})_{\mathrm{i}}(\mathbf{z}-\mathbf{y})_{\mathrm{i}}}{(\mathbf{z}-\mathbf{x})^{2}(\mathbf{z}-\mathbf{y})^{2}} \; \; \frac{\delta}{\delta\alpha^{\mathrm{a}}(\mathbf{x})} \left[\mathbf{1} \, - \, \mathbf{S}(\mathbf{z})\right]^{\mathrm{ab}} \frac{\delta}{\delta\alpha^{\mathrm{b}}(\mathbf{y})}$$

non-linear emission + double gluon exchange

DDD transformation:

$$\mathbf{i} \alpha \to \frac{\delta}{\delta \rho}; \qquad \frac{\delta}{\delta \alpha} \to \mathbf{i} \rho \qquad \mathbf{S} \to \mathbf{R} \qquad \mathbf{H}^{\text{JIMWLK}} \leftrightarrow \mathbf{H}^{\text{KLWMIJ}}$$

$$\frac{\delta}{\delta \alpha} \rightarrow i \mu$$

$$\mathbf{S} \rightarrow \mathbf{R}$$

$$\mathbf{H}^{\mathrm{JIMWLK}} \; \leftrightarrow \; \mathbf{H}^{\mathrm{KLWMIJ}}$$

Self-Duality of High Energy Evolution

- Lorentz Invariance (LI)
- Eikonal Approximation (EA)
- Projectile Target Democracy (PTD)

$$\mathbf{H}^{\mathrm{RFT}}(\mathbf{i}\,\alpha\,\,,\delta/\delta\,\alpha) = \mathbf{H}^{\mathrm{RFT}}(\delta/\delta\,\rho,\,\,\mathbf{i}\,\rho)$$

Self-Duality = t-channel unitarity?

KLWMIJ (JIMWLK) vs BFKL

JIMWLK/KLWMIJ has non-negative spectrum (Unitarity!)

BFKL has a negative eigenvalue (Unitarity is violated!)

BFKL is a limit of JIMWLK/KLWMIJ?!

Initial wave packet localized at the origin (dilute regime $\rho \sim 0$) can be expanded in both KLWMIJ and BFKL eigenfunctions.

BFKL eigenfunctions are non-normalizable

At small times (rapidities) the evolutions are similar but at late times BFKL drives the system towards unitarity violation.

Reggeon Field Theory in QCD – Summary

- Hamiltonian (2+1) dimensional interacting non-local field theory.
- The basic "quantum Reggeon field" is the unitary matrix R (S).
- Symmetry: DDD, Self-duality
- Two zero energy degenerate vacua ("Yang" and "Yin"),
 DDD is spontaneously broken.
- Spectrum of excitations is twice degenerate (gluons and "holes")

- More symmetries: $SU_V(N)$, Z_2 ; 2-d Conformal invariance?
- BFKL Pomeron is a tachyon

There are Postdoc Fellowships at the BGU

Projecting KLWMIJ onto singlets

 H_{KLWMIJ} defines a 2+1 dimensional non-local QFT of unitary matrix R, but not a QFT of Reggeons. Reggeons are physical scattering amplitudes - color singlets.

Is it possible to project H_{KLWMIJ} onto color singlets and derive the RFT?

First step is to choose effective degrees of freedom and make sure to preserve symmetries

 $\mathbf{SU_L(N)}~\times~\mathbf{SU_R(N)}$ – effective degrees of freedom must be scalars.

Charge conjugation Z_2 : $\mathbf{R}(\mathbf{x}) \rightarrow \mathbf{R}^*(\mathbf{x})$

Time reversal (Signature) Z_2 : $\mathbf{R}(\mathbf{x}) \rightarrow \mathbf{R}^{\dagger}(\mathbf{x})$

Natural condition: in the linearized regime (R = 1 - $T\frac{\delta}{\delta\rho}$...) we shell reduce to BKP.

In a sense, we study the low energy limit of high energy QCD.

There is infinite number of independent color singlets, but there is a natural hierarchy

Dipole: $d(x,y) = \frac{1}{N_c} Tr[R(x)R^{\dagger}(y)]$

Qudrupole: $Q(x, y, u, v) = \frac{1}{N_c} Tr[R(x) R^{\dagger}(y) R(u) R^{\dagger}(v)]$

Naturally decomposes into

Pomeron: - C, T even $P(1,2)=rac{1}{2}[2-d(1,2)-d(2,1)]$

Odderon: - C, T odd $O(1,2)=\frac{1}{2}[d(1,2)-d(2,1)]$

B-Reggeon: C,T even, perturbatively orthogonal to P

$$\mathbf{B}_{1,2,3,4} = rac{1}{4} \left[4 - \mathbf{Q}_{1,2,3,4} - \mathbf{Q}_{4,1,2,3} - \mathbf{Q}_{3,2,1,4} - \mathbf{Q}_{2,1,4,3}
ight] - \left[\mathbf{P}_{12} + \mathbf{P}_{14} + \mathbf{P}_{23} + \mathbf{P}_{34} - \mathbf{P}_{13} - \mathbf{P}_{24}
ight]$$

Other 'ONs

C-Reggeon odd, T even: $C_{1,2,3,4}=rac{1}{4}\left[Q_{1,2,3,4}+Q_{4,1,2,3}-Q_{3,2,1,4}-Q_{2,1,4,3}
ight]$

T odds: $\mathbf{D}_{1,2,3,4}^{\pm}=rac{1}{4}\left[\mathbf{Q}_{1,2,3,4}-\mathbf{Q}_{4,1,2,3}
ight]\pmrac{1}{4}\left[\mathbf{Q}_{3,2,1,4}-\mathbf{Q}_{2,1,4,3}
ight]$

And higher multipoles

$$H_{KLWMIJ} = H_P + H_O + H_B + H_C + H_D + \cdots$$

$$H_P = -\frac{\bar{\alpha}_s}{2\pi} \int_{x,y,z} \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \left\{ \left[P_{x,z} + P_{z,y} - P_{x,y} - P_{x,z} P_{z,y} + O_{x,z} O_{z,y} \right] P_{x,y}^{\dagger} \right\}$$

$$H_O = -\frac{\bar{\alpha}_s}{2\pi} \int_{x,y,z} \frac{(x-y)^2}{(x-z)^2 (y-z)^2} \Big\{ [O_{x,z} + O_{z,y} - O_{x,y} - O_{x,z} P_{z,y} - P_{x,z} O_{z,y}] O_{x,y}^{\dagger} \Big\}$$

$$H_B = -\frac{\bar{\alpha}_s}{2\pi} \int_{xyuvz} \left\{ \left[- \left[M_{x,y;z} + M_{u,v;z} - L_{x,u,v,y;z} \right] B_{xyuv} + 4L_{x,v,u,v;z} B_{xyuz} \right] B_{xyuv}^{\dagger} \right\} \right\}$$

$$-2L_{x,y,u,v;z} \left[P_{xv} P_{uy} + O_{xv} O_{uy} \right] B_{xyuv}^{\dagger} - 2P_{xz} P_{yz} \left[2L_{x,y,u,v;z} B_{xyuv}^{\dagger} - \left(L_{x,u,y,v;z} + L_{x,v,y,u;z} \right) B_{xuyv}^{\dagger} \right]$$

$$-4P_{xz} P_{yu} \left[2L_{x,y,x,v;z} B_{xyuv}^{\dagger} - L_{x,y,x,u;z} B_{xyvu}^{\dagger} \right] - 4B_{xyuz} P_{zv} L_{x,v,u,v;z} B_{xyuv}^{\dagger}$$

$$-4D_{xyuz}^{\dagger} O_{zv} L_{x,v,u,v;z} B_{xyuv}^{\dagger} \right\}$$

All vertices allowed by the symmetries

At leading N_c all of them have the nature of splitting: one Reggeon going into two

At subleading N_c one gets also merging vertices

QCD

QCD Lagrangian

$$\mathcal{L} = \frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \overline{\psi} (i \not \partial - g \not A - m) \psi$$

The field strength

$$G_a^{\mu\nu} = \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} - g f^{abc} A_b^{\mu} A_c^{\nu}$$

Equations of motion:

Maxwell equation:

$$\partial_{\mu} G^{\mu\nu} = g J^{\nu};$$
 $J_{a}^{\nu} = \bar{\psi} \gamma^{\nu} \tau^{a} \psi - f^{abc} G_{b}^{\nu\mu} A_{c}^{\mu}$

Dirac equation

$$(i\,\gamma^\mu\,D_\mu\,-\,m)\,\psi\,=\,0$$

Light Cone

LC time
$$x^+ = (t + z)/\sqrt{2}$$

$$x^- = (t - z)/\sqrt{2}$$

LC gauge

$$A^{+} = \frac{1}{\sqrt{2}} (A^{0} + A^{3}) = 0$$

The Gauss law constraint

$$\partial_{\mu} G^{\mu +} = g J^{+}$$

is solved for the A^- field

$$- (\partial^{+})^{2} A_{a}^{-} + \partial^{+} \partial_{i} A_{a}^{i} = g J_{a}^{+}$$

$$A_a^- = -\frac{\partial^i}{\partial^+} A_a^i + \frac{g}{(\partial^+)^2} J_a^+$$

Same story with quarks

Light Cone Hamiltonian

Canonical variables:

$$A^i$$
, $\Pi^i = \frac{\delta L}{\delta(\partial^- A^i)} = G^{+i} = \partial^+ A^i$

Light Cone Hamiltonian:

$$H^{LC} = \int dx^- d^2 x_\perp \, \left[\Pi^i \, \partial^- A^i \, - \, L \right] \, = \, H_E \, + \, H_M$$

The electric and magnetic parts

$$H_E = \frac{1}{2} \int \frac{dk^+}{(2\pi)} d^2x \ \Pi_a^-(k^+, x) \Pi_a^-(-k^+, x)$$

$$H_M = \frac{1}{4} \int \frac{dk^+}{(2\pi)} d^2x \ G^a_{ij}(k^+, x) G^a_{ij}(-k^+, x)$$

The chromoelectric field

$$\Pi_a^-(k^+, x) = \partial^+ A^- = -\partial^i A_i^a + \frac{g}{\partial^+} J_a^+$$

We split the modes into hard and soft: The hard modes act as an external current $j_a^+ = \delta(x^-) \, \rho^a$ for the soft modes. $J^+ = j^a + g \, A \, A + (quark \ current)$

$$H^{LC} \,=\, H_A^{LC} + H_
ho^{LC}\,; \qquad \qquad H_
ho^{LC} \ket{\Psi_\Lambda} \,=\, E \ket{\Psi_\Lambda} \,;$$

$$H^{LC}\ket{\Psi_{\Lambda'}}\,=\,E'\ket{\Psi_{\Lambda'}}$$

 $|\Psi_{\Lambda}\rangle$ is a vacuum of the soft modes A.

$$H_A^{LC} = H_0 + \delta H^{\rho} + g AAA + \dots; \qquad \delta H^{\rho} \sim g \rho A$$

Quantization

$$A_i^a(x^-, \mathbf{x}_\perp) = \int_0^\infty \frac{dk^+}{2\pi} \frac{1}{\sqrt{2k^+}} \left\{ a_i^a(k^+, \mathbf{x}) e^{-ik^+x^-} + a_i^{a\dagger}(k^+, \mathbf{x}) e^{ik^+x^-} \right\}$$

$$\left[a_i^a(k^+, k), a_j^{b\dagger}(p^+, p)\right] = (2\pi)^3 \,\delta^{ab} \,\delta_{ij} \,\delta^3(k - p)$$

The free part of the LCH

$$H_0 = \int_{k^+>0} \frac{dk^+}{2\pi} \frac{d^2k_{\perp}}{(2\pi)^2} \frac{k_{\perp}^2}{2k^+} a_i^{\dagger a}(k^+, k_{\perp}) a_i^a(k^+, k_{\perp})$$

The vacuum of the LCH is simply the Fock space vacuum of the operators a

$$a_q|0\rangle = 0; E_0 = 0$$

The one particle state

$$|k,a,i\rangle = \frac{1}{(2\pi)^{3/2}} a_i^{a\dagger}(k^+,k) |0\rangle$$
 $E_g = k^- = \frac{k_\perp^2}{2k^+}$

Perturbation Theory

$$\delta H^{\rho} = -\int \frac{dk^{+}}{2\pi} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} \frac{g k_{i}}{\sqrt{2} |k^{+}|^{3/2}} \left[a_{i}^{\dagger a}(k^{+}, k_{\perp}) \hat{\rho}^{a}(-k_{\perp}) + a_{i}^{a}(k^{+}, -k_{\perp}) \hat{\rho}^{a}(k_{\perp}) \right]$$

The first order perturbation theory

$$|\theta\rangle = \beta |0\rangle - \sum_{i} |i\rangle \frac{\langle i|\delta H^{\rho}|0\rangle}{E_{i}} \qquad \langle \theta|\theta\rangle = 1 \to \beta$$

This Hamiltonian creates only one particle state from the vacuum

$$\langle 1 \, gluon | \, \delta H^{\rho} | 0 \rangle = \langle k_{\perp}, k^{+}, a, i | \, \delta H^{\rho} | 0 \rangle = \frac{g \, k_{i}}{4 \, \pi^{3/2} \, |k^{+}|^{3/2}} \rho^{a} (-k_{\perp})$$

We can write the soft gluon vacuum state to the first order in the coupling as

$$|\theta\rangle = C_{\delta Y} |0\rangle; \qquad |\Psi_{\Lambda'}\rangle = C_{\delta Y} |\Psi_{\Lambda}\rangle$$

The Coherent operator having the form

$$C_{\delta Y} \, = \, \mathrm{Exp} \left\{ i \int d^2 x \, b_i^a(x) \, \int_{\Lambda}^{e^{\delta Y} \, \Lambda} \! rac{dk^+}{\sqrt{2} \, \pi |k^+|^{1/2}} \left[a_i^a(k^+, x) \, + \, a_i^{\dagger a}(k^+, x)
ight]
ight\}$$

The "classical" field b_i is the Weizsaker-Williams field of the color charge density ρ^a

$$b_i^a(k) = g \frac{-i k_i}{k_\perp^2} \rho^a(-k);$$
 $b_i^a(x) = \frac{g}{2\pi} \int d^2y \frac{(x-y)_i}{(x-y)^2} \rho^a(y).$

NLO

• NLO: g^3 + normalization up g^4

$$\begin{aligned} |\theta\rangle &= \beta |0\rangle + \sum_{i} |i\rangle \left[-\frac{\langle i|\delta H|0\rangle}{E_{i}} + \frac{\langle i|\delta H|j\rangle \langle j|\delta H|0\rangle}{E_{i}E_{j}} + \right. \\ &+ \left. \frac{\langle i|\delta H|0\rangle \langle j|\delta H|0\rangle^{2} (2E_{j} - E_{i})}{2E_{i}^{2}E_{j}^{2}} - \frac{\langle i|\delta H|j\rangle \langle j|\delta H|k\rangle \langle k|\delta H|0\rangle}{E_{i}E_{j}E_{k}} \right] \end{aligned}$$

Beyond JIMWLK: JIMWLK+

A. Kovner and M.L., JHEP 0503:001,2005

Coherent emission of a single gluon

$$D_i[b] b_i^a = \rho_p^a$$

b is non-linear in $\rho^p = \rho_v \geq 1$

$$H^{JIMWLK+} = \int_{z} b_{i} [1 - S(z)] b_{i}$$

Semi-inclusive reactions

The wave function coming into the collision region at time t=0

$$|\Psi_{\mathrm{in}}
angle \, = \, \Omega_{\mathrm{Y}} \, |
ho, 0_{\mathrm{a}}
angle \, .$$

The system emerges from the collision region with the wave function

$$|\Psi_{
m out}
angle \, = \, \hat{
m S} \, \Omega_{
m Y} \, \left|
ho, 0_{
m a}
ight
angle \, .$$

The system keeps evolving after the collision to the asymptotic time $t\to +\infty$, at which point the measurement of an observable $\hat{\mathcal{O}}$ is made

$$\langle \hat{\mathcal{O}}
angle_{ ext{P,T}} \, = \, \langle \, \Omega_{ ext{Y}}^\dagger \, \left(1 \, - \, \hat{ ext{S}}^\dagger
ight) \Omega_{ ext{Y}} \, \, \hat{\mathcal{O}} \, \, \, \Omega_{ ext{Y}}^\dagger \, \, \left(1 \, - \, \hat{ ext{S}}
ight) \Omega_{ ext{Y}} \, \,
angle_{ ext{P,T}}$$

Single inclusive gluon production

The observable

$$\hat{\mathcal{O}}_{\mathrm{g}} \ \sim \ \mathbf{a_{i}^{\dagger \, a}(k) \, a_{i}^{a}(k)}$$

$$\frac{dN}{d^2kdy}\,=\,\langle\,\sigma(k)\,\rangle_{P,T}$$

$$\sigma(\mathbf{k}) = \int_{\mathbf{z}, \overline{\mathbf{z}}, \mathbf{x}_1, \overline{\mathbf{x}}_1} e^{i\mathbf{k}(\mathbf{z} - \overline{\mathbf{z}})} \vec{\mathbf{f}}(\overline{\mathbf{z}} - \overline{\mathbf{x}}_1) \cdot \vec{\mathbf{f}}(\mathbf{x}_1 - \mathbf{z}) \left\{ \rho(\mathbf{x}_1) [\mathbf{S}^{\dagger}(\mathbf{x}_1) - \mathbf{S}^{\dagger}(\mathbf{z})] [\mathbf{S}(\overline{\mathbf{x}}_1) - \mathbf{S}(\mathbf{z})] \rho(\overline{\mathbf{x}}_1) \right\}$$

Here

$$f_i(x-y) = \frac{(x-y)_i}{(x-y)^2}$$

Yin and Yang

Yang (white) vacuum:
$$H^{KLWMIJ} | Yang \rangle = 0$$

$$\omega^{Yang} = 0$$

$$|Yang\rangle = \delta(\rho);$$

$$S^{ab} | Yang \rangle = \delta^{ab} | Yang \rangle;$$

$$\frac{\delta}{\delta R} | Yang \rangle = 0$$

$$H^{JIMWLK} | Yin \rangle = 0$$

$$\omega^{Yin} = 0$$

$$|Yin\rangle = 1;$$

$$\langle Yin | S^{ab}(x) | Yin \rangle = 0;$$

$$\frac{\delta}{\delta S} |Yin\rangle = 0$$

DDD transforms $|Yin\rangle$ into $|Yang\rangle$

$$H^{RFT} | Yin \rangle = H^{RFT} | Yang \rangle = 0$$

Vacuum is doubly degenerate: DDD is spontaneously broken

There are two degenerate towers of excited states:

"GLUONS" - live above Yang

$$g_n = R(x_1) \cdots R(x_n) | Yang \rangle$$

S=1 at all points in the transverse plane except $x_1, \cdots x_n$

"HOLES" - live above Yin

$$h_n = S(x_1) \cdots S(x_n) \mid Yin \rangle$$

S=0 at all points in the transverse plane except $x_1, \cdots x_n$

Projectile averaged S-matrix:

$$\mathbf{\Sigma}_{\mathbf{Y}-\mathbf{Y_0}}^{\mathbf{p}}(\rho^{\mathbf{t}}) = \langle \mathbf{P} | \hat{\mathbf{S}}(\rho^{\mathbf{t}}, \rho^{\mathbf{p}}) | \mathbf{P} \rangle = \int \mathbf{D} \rho^{\mathbf{p}} \hat{\mathbf{S}}(\rho^{\mathbf{t}}, \rho^{\mathbf{p}}) \mathbf{W}_{\mathbf{Y}-\mathbf{Y_0}}^{\mathbf{p}}[\rho^{\mathbf{p}}]$$

$$\mathbf{S}(\mathbf{Y}) \ = \ \int \, \mathbf{D} \rho^{\mathrm{t}} \ \boldsymbol{\Sigma}_{\mathbf{Y}-\mathbf{Y_0}}^{\mathrm{p}}[\rho^{\mathrm{t}}] \ \mathbf{W}_{\mathbf{Y_0}}^{\mathrm{t}}[\rho^{\mathrm{t}}]$$

$$rac{ ext{dS}}{ ext{dY}} \, = \, - \, \int ext{D}
ho^{ ext{t}} \, \, \, oldsymbol{\Sigma}^{ ext{P}}_{ ext{Y}- ext{Y}_{ ext{0}}}[
ho^{ ext{t}}] \, \, \, oldsymbol{ ext{H}}^{ ext{RFT}}[
ho^{ ext{t}}, \, \delta/\delta
ho^{ ext{t}}] \, \, \, \, ext{W}^{ ext{T}}_{ ext{Y}_{ ext{0}}}[
ho^{ ext{t}}]$$

$$oldsymbol{\Sigma}_{0}^{ ext{P}} \;\; = \;\; \sum_{ ext{i}} \; \gamma_{ ext{i}}^{ ext{P}} \; | \, \Psi_{ ext{i}} \,
angle \hspace{0.5cm} oldsymbol{W}_{0}^{ ext{T}} \;\; = \;\; \sum_{ ext{i}} \; \gamma_{ ext{i}}^{ ext{T} \, *} \; \langle \; \Psi_{ ext{i}} \, | \;$$

$$\mathbf{S}(\mathbf{Y}) = \sum_{\mathbf{i}} \; \gamma_{\mathbf{i}}^{\mathbf{P}} \; \gamma_{\mathbf{i}}^{\mathbf{T} *} \; \; \mathbf{e}^{\; -\; \omega_{\mathbf{i}} \; \mathbf{Y}}$$

Unitarity
$$\iff \omega_{\mathbf{i}} \geq \mathbf{0}; \qquad \omega(BFKL) < 0$$

RFT beyond JIMWLK/KLWMIJ

$${
m H}^{
m RFT} \, = \, rac{1}{2\pi} \, [{
m b} \, - \, {
m ar b}] \, {
m R}^\dagger \, ({
m 1} \, - \, {
m l} \, - \, {
m L}) \, ({
m 1} \, - \, {
m 2l}) \, {
m R} \, ({
m 1} \, - \, {
m 2l}) \, ({
m 1} \, - \, {
m l} \, - \, {
m L}) \, [{
m b} \, - \, {
m ar b}]$$

 $\mathbf{b} \equiv \mathbf{b}[\rho]$ is the WW field of the incoming state

 $ar{\mathbf{b}} \equiv \mathbf{R}^\dagger \, \mathbf{b} [\mathbf{R} \,
ho] \quad \text{is the WW field of the outgoing state}$

Projectors:

$$1 \; \equiv \; \frac{\partial_i \, \partial_j}{\partial^2} \qquad \qquad L \; \equiv \; \frac{D[b]_i \, D[b]_j}{D[b]^2}$$

Expanding in either small ρ or small $\delta/\delta\rho$ we reproduce KLWMIJ and JIMWLK.

Denote soft glue creation and annihilation operators as ${\bf a}$ and ${\bf a}^{\dagger}$.

$$\mathbf{H}_{ ext{QCD}} = \mathbf{H}(
ho,\,\mathbf{a},\,\mathbf{a}^\dagger)$$

Hadron wave function in the soft gluon Fock space

$$|\Psi\rangle_{\mathrm{Y}_{\mathbf{0}}} = |v\rangle = |\rho\rangle_{\mathrm{valence}} \otimes |\mathbf{0}_{\mathrm{a}}\rangle_{\mathrm{soft}}$$

The evolved wave function

$$|\Psi\rangle_{
m Y} = \Omega_{
m Y}(
ho,\,{
m a})\,|\Psi
angle_{
m Y_0};$$

or equivalently

$$\Omega^{\dagger} \; \mathrm{H} \; \Omega \; = \; \mathrm{H_{diagonal}}$$

The major challenge is to find Ω that does the job