Tutorial "General Relativity"

Winter term 2016/2017

Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees

Sheet No. 2

will be discussed on Nov/15/17

1. Line Element

Consider the two-dimensional line element given by

$$\mathrm{d}s^2 = x^2\mathrm{d}x^2 + 2\mathrm{d}x\mathrm{d}y - \mathrm{d}y^2$$

. Write down g_{ab} , g^{ab} and then raise and lower indices on $V_a = (1, -1)^T$ and $W^a = (0, 1)^T$.

2. Coordinate Transformations

In a coordinate transformation, the components of the transformation matrix $\Lambda^{b}{}_{a}$ are formed by taking the partial derivative of one coordinate with respect to the other

$$\Lambda^{b}{}_{a} = \frac{\partial x^{b}}{\partial x'^{a}},$$

whereas basis vectors transform as

$$\boldsymbol{e}_a' = \Lambda^b_{\ a} \boldsymbol{e}_b$$

Plane polar coordinates are related to cartesian coordinates by

$$x = r \cos \theta, \quad y = r \sin \theta$$

Describe the transformation matrix that maps cartesian coordinates to (holonomous) polar coordinates, and write down the polar-coordinate basis vectors in terms of the basis vectors of cartesian coordinates.

3. General Coordinate Transformations and Metric components

Under a coordinate transformation¹ $x^A = x^A(q^\mu)$, the Minkowski-metric components η_{AB} transform to new metric components $g_{\mu\nu}$ in such a way that proper distances are invariant. In other words, the line element $ds^2 = \eta_{AB} dx^A dx^B$ is invariant, i.e., $ds^2 = g_{\mu\nu} dq^{\mu} dq^{\nu}$.

(a) Show, that this implies that $g_{\mu\nu}$ is related to η_{AB} by

$$g_{\mu\nu} = \frac{\partial x^A}{\partial q^{\mu}} \frac{\partial x^B}{\partial q^{\nu}} \eta_{AB}$$

(b) Show, that the inverse metric $g^{\mu\nu}$, i.e., $g^{\mu\nu}g_{\nu\lambda} = \delta^{\mu}_{\lambda}$ is given by

$$g^{\mu\nu} = \eta^{AB} \frac{\partial q^{\mu}}{\partial x^A} \frac{\partial q^{\nu}}{\partial x^B}$$

¹Here we write capital roman letters to indicate components with respect to an inertial Minkowski basis. As greek indices $A \in \{0, 1, 2, 3\}$, and the usual Einstein summation convention is used for these indices too.

4. Rotating frame in Special Relativity

A rotating frame can be described by

$$t = t',$$

$$x = x' \cos(\omega t') - y' \sin(\omega t'),$$

$$y = x' \sin(\omega t') + y' \cos(\omega t'),$$

$$z = z'.$$

The invariant line element reads $ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$

- (a) Calculate the line element and read off the metric components in the rotating frame.
- (b) The affine connections (Christoffel symbols) for the primed coordinates are given as

$$\Gamma^{\rho}_{\ \mu\nu} = \frac{1}{2}g^{\rho\sigma} \left(\frac{\partial g_{\nu\sigma}}{\partial x'^{\mu}} + \frac{\partial g_{\mu\sigma}}{\partial x'^{\nu}} - \frac{\partial g_{\mu\nu}}{\partial x'^{\sigma}}\right)$$

Calculate the non-vanishing affine connections.

(c) Derive the geodesic equation in a rotating frame. Use your results from (b) to derive the relativistic centrifugal- and the Coriolis force.

Hint: It is easier to first derive the equations of motion for the geodesic from the quadratic form of the Lagrangian,

$$L = \frac{1}{2} g_{\mu\nu} \frac{\mathrm{d}x'^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x'^{\nu}}{\mathrm{d}\lambda},$$

i.e., using the Euler-Lagrange equations²

$$g^{\mu\nu}\left[\frac{\mathrm{d}}{\mathrm{d}\lambda}\frac{\partial L}{\partial \dot{x}'^{\nu}}-\frac{\partial L}{\partial x'^{\nu}}\right]=0,$$

which then take directly the form of the geodesic equation (proof that!)

$$\frac{\mathrm{D}^2 x'^{\mu}}{\mathrm{D}\lambda^2} := \frac{\mathrm{d}^2 x'^{\mu}}{\mathrm{d}\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x'^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x'^{\beta}}{\mathrm{d}\lambda} = 0$$

From this it is easy to read off the Christoffel symbols $\Gamma^{\mu}_{\ \alpha\beta}$. Since the Lagrangian is not explicitly dependent on the "world-line parameter" λ ,

$$H = p'_{\mu} \dot{x}'^{\mu} - L = L = \text{const.}$$
 with $p'_{\mu} = \frac{\partial L}{\partial \dot{x}'^{\mu}}$

This implies that one can choose $\lambda = \tau$, i.e., the proper time of the particle, as the world-line parameter by normalizing it such that

$$g_{\mu\nu}\frac{\mathrm{d}x^{\prime\mu}}{\mathrm{d}\lambda}\frac{\mathrm{d}x^{\prime\nu}}{\mathrm{d}\lambda} = 2L = c^2.$$

- (d) Solve the equations of motion with the choice $\lambda = \tau$ for the world-line parameter.
 - **Hint:** The only non-trivial equations are that for x' and y'. Here the task is tremendously simplified by introducing the complex auxilliary variable $\xi' = x' + iy'$ and derive an equation of motion for it. Then the solution for x' and y' is given by $x' = \operatorname{Re} \xi'$ and $y' = \operatorname{Im} \xi'$.

²Here $\dot{x}^{\prime\nu} = \mathrm{d}x^{\prime\nu}/\mathrm{d}\lambda$.