Tutorial "General Relativity"

Winter term 2016/2017

Lecturer: Prof. Dr. C. Greiner
Tutor: Hendrik van Hees

Sheet No. 2

will be discussed on Nov/15/17

1. Line Element

Consider the two-dimensional line element given by

$$
\mathrm{d} s^{2}=x^{2} \mathrm{~d} x^{2}+2 \mathrm{~d} x \mathrm{~d} y-\mathrm{d} y^{2}
$$

. Write down $g_{a b}, g^{a b}$ and then raise and lower indices on $V_{a}=(1,-1)^{T}$ and $W^{a}=(0,1)^{T}$.

2. Coordinate Transformations

In a coordinate transformation, the components of the transformation matrix $\Lambda^{b}{ }_{a}$ are formed by taking the partial derivative of one coordinate with respect to the other

$$
\Lambda_{a}^{b}=\frac{\partial x^{b}}{\partial x^{\prime a}},
$$

whereas basis vectors transform as

$$
\boldsymbol{e}_{a}^{\prime}=\Lambda^{b}{ }_{a} \boldsymbol{e}_{b}
$$

Plane polar coordinates are related to cartesian coordinates by

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Describe the transformation matrix that maps cartesian coordinates to (holonomous) polar coordinates, and write down the polar-coordinate basis vectors in terms of the basis vectors of cartesian coordinates.

3. General Coordinate Transformations and Metric components

Under a coordinate transformation ${ }^{1} x^{A}=x^{A}\left(q^{\mu}\right)$, the Minkowski-metric components $\eta_{A B}$ transform to new metric components $g_{\mu \nu}$ in such a way that proper distances are invariant. In other words, the line element $\mathrm{d} s^{2}=\eta_{A B} \mathrm{~d} x^{A} \mathrm{~d} x^{B}$ is invariant, i.e., $\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} q^{\mu} \mathrm{d} q^{\nu}$.
(a) Show, that this implies that $g_{\mu \nu}$ is related to $\eta_{A B}$ by

$$
g_{\mu \nu}=\frac{\partial x^{A}}{\partial q^{\mu}} \frac{\partial x^{B}}{\partial q^{\nu}} \eta_{A B} .
$$

(b) Show, that the inverse metric $g^{\mu \nu}$, i.e., $g^{\mu \nu} g_{\nu \lambda}=\delta_{\lambda}^{\mu}$ is given by

$$
g^{\mu \nu}=\eta^{A B} \frac{\partial q^{\mu}}{\partial x^{A}} \frac{\partial q^{\nu}}{\partial x^{B}} .
$$

[^0]
4. Rotating frame in Special Relativity

A rotating frame can be described by

$$
\begin{aligned}
t & =t^{\prime} \\
x & =x^{\prime} \cos \left(\omega t^{\prime}\right)-y^{\prime} \sin \left(\omega t^{\prime}\right), \\
y & =x^{\prime} \sin \left(\omega t^{\prime}\right)+y^{\prime} \cos \left(\omega t^{\prime}\right), \\
z & =z^{\prime} .
\end{aligned}
$$

The invariant line element reads $\mathrm{d} s^{2}=c^{2} \mathrm{~d} t^{2}-\mathrm{d} x^{2}-\mathrm{d} y^{2}-\mathrm{d} z^{2}$
(a) Calculate the line element and read off the metric components in the rotating frame.
(b) The affine connections (Christoffel symbols) for the primed coordinates are given as

$$
\Gamma^{\rho}{ }_{\mu \nu}=\frac{1}{2} g^{\rho \sigma}\left(\frac{\partial g_{\nu \sigma}}{\partial x^{\prime \mu}}+\frac{\partial g_{\mu \sigma}}{\partial x^{\prime \nu}}-\frac{\partial g_{\mu \nu}}{\partial x^{\prime \sigma}}\right)
$$

Calculate the non-vanishing affine connections.
(c) Derive the geodesic equation in a rotating frame. Use your results from (b) to derive the relativistic centrifugal- and the Coriolis force.
Hint: It is easier to first derive the equations of motion for the geodesic from the quadratic form of the Lagrangian,

$$
L=\frac{1}{2} g_{\mu \nu} \frac{\mathrm{d} x^{\prime \mu}}{\mathrm{d} \lambda} \frac{\mathrm{~d} x^{\prime \nu}}{\mathrm{d} \lambda}
$$

i.e., using the Euler-Lagrange equations ${ }^{2}$

$$
g^{\mu \nu}\left[\frac{\mathrm{d}}{\mathrm{~d} \lambda} \frac{\partial L}{\partial \dot{x}^{\prime \nu}}-\frac{\partial L}{\partial x^{\prime \nu}}\right]=0
$$

which then take directly the form of the geodesic equation (proof that!)

$$
\frac{\mathrm{D}^{2} x^{\prime \mu}}{\mathrm{D} \lambda^{2}}:=\frac{\mathrm{d}^{2} x^{\prime \mu}}{\mathrm{d} \lambda^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{\mathrm{d} x^{\prime \alpha}}{\mathrm{d} \lambda} \frac{\mathrm{~d} x^{\prime \beta}}{\mathrm{d} \lambda}=0 .
$$

From this it is easy to read off the Christoffel symbols $\Gamma^{\mu}{ }_{\alpha \beta}$.
Since the Lagrangian is not explicitly dependent on the "world-line parameter" λ,

$$
H=p_{\mu}^{\prime} \dot{x}^{\prime \mu}-L=L=\text { const. } \quad \text { with } \quad p_{\mu}^{\prime}=\frac{\partial L}{\partial \dot{x}^{\prime \mu}}
$$

This implies that one can choose $\lambda=\tau$, i.e., the proper time of the particle, as the world-line parameter by normalizing it such that

$$
g_{\mu \nu} \frac{\mathrm{d} x^{\prime \mu}}{\mathrm{d} \lambda} \frac{\mathrm{~d} x^{\prime \nu}}{\mathrm{d} \lambda}=2 L=c^{2} .
$$

(d) Solve the equations of motion with the choice $\lambda=\tau$ for the world-line parameter.

Hint: The only non-trivial equations are that for x^{\prime} and y^{\prime}. Here the task is tremendously simplified by introducing the complex auxilliary variable $\xi^{\prime}=x^{\prime}+\mathrm{i} y^{\prime}$ and derive an equation of motion for it. Then the solution for x^{\prime} and y^{\prime} is given by $x^{\prime}=\operatorname{Re} \xi^{\prime}$ and $y^{\prime}=\operatorname{Im} \xi^{\prime}$.

[^1]
[^0]: ${ }^{1}$ Here we write capital roman letters to indicate components with respect to an inertial Minkowksi basis. As greek indices $A \in\{0,1,2,3\}$, and the usual Einstein summation convention is used for these indices too.

[^1]: ${ }^{2}$ Here $\dot{x}^{\prime \nu}=\mathrm{d} x^{\prime \nu} / \mathrm{d} \lambda$.

