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1. Line Element
Consider the two-dimensional line element given by

ds2 = x2dx2 + 2dxdy − dy2

. Write down gab, g
ab and then raise and lower indices on Va = (1,−1)T and W a = (0, 1)T .

2. Coordinate Transformations

In a coordinate transformation, the components of the transformation matrix Λb
a are formed

by taking the partial derivative of one coordinate with respect to the other

Λb
a =

∂xb

∂x′a
,

whereas basis vectors transform as
e′
a = Λb

aeb

Plane polar coordinates are related to cartesian coordinates by

x = r cos θ, y = r sin θ

Describe the transformation matrix that maps cartesian coordinates to (holonomous) polar
coordinates, and write down the polar-coordinate basis vectors in terms of the basis vectors
of cartesian coordinates.

3. General Coordinate Transformations and Metric components

Under a coordinate transformation1 xA = xA(qµ), the Minkowski-metric components ηAB
transform to new metric components gµν in such a way that proper distances are invariant.
In other words, the line element ds2 = ηABdxAdxB is invariant, i.e., ds2 = gµνdq

µdqν .

(a) Show, that this implies that gµν is related to ηAB by

gµν =
∂xA

∂qµ
∂xB

∂qν
ηAB.

(b) Show, that the inverse metric gµν , i.e., gµνgνλ = δµλ is given by

gµν = ηAB
∂qµ

∂xA
∂qν

∂xB
.

1Here we write capital roman letters to indicate components with respect to an inertial Minkowksi basis. As
greek indices A ∈ {0, 1, 2, 3}, and the usual Einstein summation convention is used for these indices too.



4. Rotating frame in Special Relativity

A rotating frame can be described by

t = t′,

x = x′ cos(ωt′)− y′ sin(ωt′),

y = x′ sin(ωt′) + y′ cos(ωt′),

z = z′.

The invariant line element reads ds2 = c2dt2 − dx2 − dy2 − dz2

(a) Calculate the line element and read off the metric components in the rotating frame.

(b) The affine connections (Christoffel symbols) for the primed coordinates are given as

Γρµν =
1

2
gρσ

(
∂gνσ
∂x′µ

+
∂gµσ
∂x′ν

− ∂gµν
∂x′σ

)
Calculate the non-vanishing affine connections.

(c) Derive the geodesic equation in a rotating frame. Use your results from (b) to derive
the relativistic centrifugal- and the Coriolis force.

Hint: It is easier to first derive the equations of motion for the geodesic from the
quadratic form of the Lagrangian,

L =
1

2
gµν

dx′µ

dλ

dx′ν

dλ
,

i.e., using the Euler-Lagrange equations2

gµν
[

d

dλ

∂L

∂ẋ′ν
− ∂L

∂x′ν

]
= 0,

which then take directly the form of the geodesic equation (proof that! )

D2x′µ

Dλ2
:=

d2x′µ

dλ2
+ Γµαβ

dx′α

dλ

dx′β

dλ
= 0.

From this it is easy to read off the Christoffel symbols Γµαβ.

Since the Lagrangian is not explicitly dependent on the “world-line parameter” λ,

H = p′µẋ
′µ − L = L = const. with p′µ =

∂L

∂ẋ′µ
.

This implies that one can choose λ = τ , i.e., the proper time of the particle, as the
world-line parameter by normalizing it such that

gµν
dx′µ

dλ

dx′ν

dλ
= 2L = c2.

(d) Solve the equations of motion with the choice λ = τ for the world-line parameter.

Hint: The only non-trivial equations are that for x′ and y′. Here the task is tremen-
dously simplified by introducing the complex auxilliary variable ξ′ = x′ +iy′ and derive
an equation of motion for it. Then the solution for x′ and y′ is given by x′ = Re ξ′ and
y′ = Im ξ′.

2Here ẋ′ν = dx′ν/dλ.


