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1. Line Element
Consider the two-dimensional line element given by

ds? = 2?daz? + 2dzdy — dy?
. Write down g, g%° and then raise and lower indices on V, = (1, —1)7 and W* = (0,1)7.

2. Coordinate Transformations

In a coordinate transformation, the components of the transformation matrix A®, are formed
by taking the partial derivative of one coordinate with respect to the other
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whereas basis vectors transform as
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Plane polar coordinates are related to cartesian coordinates by
r=rcosf, y=rsinf

Describe the transformation matrix that maps cartesian coordinates to (holonomous) polar
coordinates, and write down the polar-coordinate basis vectors in terms of the basis vectors
of cartesian coordinates.

3. General Coordinate Transformations and Metric components

Under a coordinate transformation® 24 = z4(¢#), the Minkowski-metric components 17z
transform to new metric components g, in such a way that proper distances are invariant.
In other words, the line element ds? = napdz?dz? is invariant, i.e., ds* = g,,dg"dq".

(a) Show, that this implies that g, is related to nap by
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(b) Show, that the inverse metric g*”, i.e., g"g,, = d} is given by

w _ a0 04"
g OxA 0xB’
Here we write capital roman letters to indicate components with respect to an inertial Minkowksi basis. As
greek indices A € {0,1,2,3}, and the usual Einstein summation convention is used for these indices too.




4. Rotating frame in Special Relativity
A rotating frame can be described by
t=t,
xr = 1’ cos(wt’) — 3y sin(wt’),
y = o' sin(wt') + 1/ cos(wt'),
z=2z.
The invariant line element reads ds? = c2dt? — da? — dy? — d2?

(a) Calculate the line element and read off the metric components in the rotating frame.

(b) The affine connections (Christoffel symbols) for the primed coordinates are given as
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Calculate the non-vanishing affine connections.
(c) Derive the geodesic equation in a rotating frame. Use your results from (b) to derive
the relativistic centrifugal- and the Coriolis force.

Hint: It is easier to first derive the equations of motion for the geodesic from the
quadratic form of the Lagrangian,
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i.e., using the Euler-Lagrange equations?
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which then take directly the form of the geodesic equation (proof that!)
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From this it is easy to read off the Christoffel symbols T'* L
Since the Lagrangian is not explicitly dependent on the “world-line parameter” A,
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This implies that one can choose A = 7, i.e., the proper time of the particle, as the
world-line parameter by normalizing it such that
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(d) Solve the equations of motion with the choice A = 7 for the world-line parameter.

Hint: The only non-trivial equations are that for 2’ and y’. Here the task is tremen-
dously simplified by introducing the complex auxilliary variable ' = 2’ +1iy" and derive
an equation of motion for it. Then the solution for " and y' is given by 2/ = Re ¢’ and
y =1Im¢.

2Here " = da' /d\.



