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1. Line Element
Consider the two-dimensional line element given by

ds2 = x2dx2 + 2dxdy − dy2.

. Write down gab, g
ab and then raise and lower indices on Va = (1,−1)T and W a = (0, 1)T .

Solution: The covariant metric components can be read off the expression for the line
element as

(gab) = ĝ =

(
x2 1
1 −1

)
. (1)

The contravariant components are given by the inverse of this matrix, which is given by
Kramer’s rule, using det ĝ = −(1 + x2),

(gab) = ĝ−1 =
1

1 + x2

(
1 1
1 −x2

)
. (2)

The contravariant components of the vector V , Va = (1,−1), are given by

(V b) = (Vbg
ba) = (1,−1)ĝ−1 = (0, 1). (3)

This implies

(Wa) = (gabW
b) = ĝ

(
0
1

)
=

(
1
−1

)
. (4)

2. Coordinate Transformations

In a coordinate transformation, the components of the transformation matrix Λb
a are formed

by taking the partial derivative of one coordinate with respect to the other

Λb
a =

∂xb

∂x′a
,

whereas basis vectors transform as
e′a = Λb

aeb.

Plane polar coordinates are related to cartesian coordinates by

x = r cos θ, y = r sin θ.

Describe the transformation matrix that maps cartesian coordinates to (holonomous) polar
coordinates, and write down the polar-coordinate basis vectors in terms of the basis vectors
of cartesian coordinates.



Solution: Contravariant vector components transform as the coordinate differentials,

dxa =
∂xa

∂x′b
dx′b = Λa

bdx
′b, (5)

and vectors are invariant objects, i.e.,

V = V aea = V ′be′b = Λa
bV
′bea ⇒ e′b = Λa

bea. (6)

That defines the transformations rules for contravariant (upper indices) and covariant (lower
indices) objects like tensor components and basis vectors.

For the above example of polar coordinates (r, θ) we have(
dx
dy

)
=

(
cos θ −r sin θ
sin θ r cos θ

)(
dr
dθ

)
= Λ̂

(
dr
dθ

)
. (7)

From this we find

(er, eθ) = (ex, ey)Λ̂ = (cos θex + sin θey,−r sin θex + r cos θey). (8)

Note: Here we consider the socalled holonomous coordinates and basis vectors of the curvi-
linear coordinates, not the orthonormal basis vectors as usually used in three-dimensional
vector calculus.

3. General Coordinate Transformations and Metric components

Under a coordinate transformation1 xA = xA(qµ), the Minkowski-metric components ηAB
transform to new metric components gµν in such a way that proper distances are invariant.
In other words, the line element ds2 = ηABdxAdxB is invariant, i.e., ds2 = gµνdq

µdqν .

(a) Show, that this implies that gµν is related to ηAB by

gµν =
∂xA

∂qµ
∂xB

∂qν
ηAB.

Solution: We have

ds2 = ηABdxAdxB = ηAB
∂xA

∂qµ
∂xB

∂qν
dqµdqν =: gµνdq

µdqν . (9)

Since this should hold true for all dqµ, we must have

gµν = ηAB
∂xA

∂qµ
∂xB

∂qν
. (10)

(b) Show, that the inverse-metric components gµν , i.e., gµνgνλ = δµλ , are given by

gµν = ηAB
∂qµ

∂xA
∂qν

∂xB
.

1Here we write capital roman letters to indicate components with respect to an inertial Minkowksi basis. As
greek indices A ∈ {0, 1, 2, 3}, and the usual Einstein summation convention is used for these indices too.



Solution: We use (10) and the given equation to show that indeed (gµν) is inverse to
(gµν):

gµνgνλ = ηAB
∂qµ

∂xA
∂qν

∂xB
ηCD

∂xC

∂qν
∂xD

∂qλ

=

(
∂xC

∂qν
∂qν

∂xB

)
∂xD

∂qλ
∂qµ

∂xA
ηABηCD

=

(
∂xC

∂xB

)
∂xD

∂qλ
∂qµ

∂xA
ηABηCD

= δCB
∂xD

∂qλ
∂qµ

∂xA
ηABηCD

= ηABηBD
∂xD

∂qλ
∂qµ

∂xA
= δAD

∂xD

∂qλ
∂qµ

∂xA

=
∂xA

∂qλ
∂qµ

∂xA
=
∂qλ

∂qµ
= δµλ .

(11)

4. Rotating frame in Special Relativity

A rotating frame can be described by

t = t′,

x = x′ cos(ωt′)− y′ sin(ωt′),

y = x′ sin(ωt)′ + y′ cos(ωt′),

z = z′.

The invariant line element reads ds2 = c2dt2 − dx2 − dy2 − dz2

(a) Calculate the metric components in the rotating frame.

Solution: We get (with x0 = x′0 = ct = ct′), using

(dxµ) = dx′ν
∂xµ

∂x′ν
=


dx′0

dx′ cos(ωt′)− dt′ωx′ sin(ωt′)− dy′ sin(ωt′)− dt′ωy′ cos(ωt′)
−dx′ sin(ωt′) + dt′ωx′ cos(ωt′) + dy′ cos(ωt′)− dt′ωy′ sin(ωt′)

dz′

 ,

(12)
after some algebra

ds2 = (dx0)2 − dx2 − dy2 − dz2

= (dx′0)2
(

1− ω2

c2
(x′2 + y′2)

)
− dx′2 − dy′2 − dz′2 + 2dx′0dx′

ωy′

c
− 2dx′0dy′

ωx′

c
.

(13)

From this one reads off the covariant metric components in the new coordinates,

(g′µν) = ĝ′ =


1− ω2(x′2+y′2)

c2
ωy′

c
−ωx′

c
0

ωy′

c
−1 0 0

−ωx′

c
0 −1 0

0 0 0 −1

 . (14)



We also note the contravariant metric components, which are given by matrix inversion
to

(g′µν) = ĝ′−1 =


1 ωy′

c
−ωx′
c

0
ωy′

c
−1 + ω2y′2

c2
−ω2x′y′

c2
0

−ωx′
c

−ω2x′y′

c2
−1 + ω2x′2

c2
0

0 0 0 −1

 . (15)

(b) The affine connections (Christoffel symbols) for the primed coordinates are given as

Γρµν =
1

2
g′ρσ

(
∂g′νσ
∂x′µ

+
∂g′µσ
∂x′ν

−
∂g′µν
∂x′σ

)
.

Calculate the non-vanishing affine connections.

(c) Derive the geodesic equation in a rotating frame. Use your results from (b) to derive
the relativistic centrifugal- and the Coriolis force.

Hint: It is easier to first derive the equations of motion for the geodesic from the
quadratic form of the Lagrangian,

L =
1

2
g′µν

dx′µ

dλ

dx′ν

dλ
, (16)

i.e., using the Euler-Lagrange equations

g′µν
[

d

dλ

∂L

∂ẋ′ν
− ∂L

∂x′ν

]
= 0,

which then take directly the form of the geodesic equation (proof that! )

D2xµ

Dλ2
:=

d2x′µ

dλ2
+ Γµαβ

dx′α

dλ

dx′β

dλ
= 0.

From this it is easy to read off the Christoffel symbols Γµαβ.

Solution: Following the hint, we first prove the claimed connection between the
Christoffel symbols and the Euler-Lagrange equations with the above given Lagrangian:

d

dλ

∂L

∂ẋ′ν
= g′ναẍ

′α + ∂βg
′
ναẋ

′αẋ′β = g′ναẍ
′α +

1

2
(∂′αg

′
βν + ∂′βg

′
αν)ẋ

′αẋ′β (17)

∂L

∂x′ν
=

1

2
∂νg

′
αβẋ

′αẋ′β. (18)

Writing down the Euler-Lagrange equations and contracting with gµν finally leads to

ẍ′µ +
1

2
g′µν(∂αg

′
βν + ∂βg

′
αν − ∂νg′αβ) = ẍ′µ + Γµαβẋ

′αẋ′β = 0. (19)

Now for the above example of a rotating reference frame, first we calculate(
d

dλ

∂L

∂ẋ′ν
− ∂L

∂x′ν

)

=


(1 + ω2ρ2/c2)ẍ′0 + ωy′ẍ′/c− ωx′ÿ′/c− 2ω2ẋ′0(x′ẋ′ + y′ẏ′)/c2

ωy′ẍ′0/c− ẍ′ + ω2x′(ẋ′0)2/c2 + 2ωẋ′0ẏ′/c
−ωx′ẍ′0/c− ÿ′ − 2ωẋ′0ẋ′/c+ ω2y′(ẋ′0)2/c2

−z̈′

 = 0.

(20)



Multiplying this covariant vector components with the contravariant metric ĝ−1 we get
ẍ′0

ẍ′ − ω2x′(ẋ′0)2/c2 − 2ωẋ′0ẏ′/c
ÿ′ − ω2y′(ẋ′0)2/c2 + 2ωẋ′0ẋ′/c

z̈′

 = 0, (21)

which is indeed in the form (19). We can immediately read off the non-vanishing
Christoffel symbols,

Γ1
00 = −ω

2x′

c2
, Γ1

02 = Γ1
20 = −ω

c
, Γ2

00 = −ω
2y′

c2
, Γ2

01 = Γ2
10 =

ω

c
. (22)

The geodesic equations are given by (21).

Since the Lagrangian (16) does not explicitly depend on the affine parameter λ the
“Hamiltonian”

H = p′µẋ
′µ − L, p′µ =

∂L

∂ẋ′µ
= g′µν ẋ

′ν (23)

is conserved. Now in our case H = L, and this implies that by choosing H = c2/2 we
define λ = τ to be the proper time. According to the first equation in (21) we have

x′0 = ct = Acτ, (24)

where we have choosen the origin of the coordinate time to coincide with the origin of
proper time, and A is an integration constant to be determined. Then the spatial part
of the equations of motion can be rewritten as

~̈x′ + 2A~ω × ~̇x′ + A2~ω × (~ω × ~x′) = 0 with ~ω =

0
0
ω

 . (25)

Multiplying with the invariant mass of the particle m and solving for m~̈x′ leads to the
spatial components of the inertial Minkowski forces

m~̈x′ = ~K ′ = −2mA~ω × ~̇x′ −mA2~ω × (~ω × ~x′). (26)

It is clear that in this case the temporal component of the Minkowski force K0 = 0.

(d) Solve the equations of motion with the choice λ = τ for the world-line parameter.

Hint: The only non-trivial equations are that for x′ and y′. Here the task is tremen-
dously simplified by introducing the complex auxilliary variable ξ′ = x′+iy′ and derive
an equation of motion for it. Then the solution for x′ and y′ is given by x′ = Re ξ′ and
y′ = Im ξ′.

Solution:

Written out in components the equations of motion (25)

ẍ′ − ω2A2x′ − 2ωAẏ′ = 0, ÿ′ − ω2A2y′ + 2ωAẋ′ = 0, z̈′ = 0. (27)

To solve the equations for x′ and y′ we introduce the complex variable

ξ′ = x′ + iy′. (28)

Then the first two equations (27) are obviously the real and imaginary parts of the
equation

ξ̈′ + 2iωAξ̇′ − ω2A2ξ′ = 0. (29)



As a homogeneous linear differential equation of motion we try to solve it by making
the ansatz

ξ′(τ) = B exp(−iΩτ). (30)

Plugging this in (29) leads to the characteristic equation

(Ω− Aω)2 = 0 ⇒ Ω = Aω. (31)

Since we find only one solution for Ω, we need to find another independent solution of
(29). To that end we insert the ansatz

ξ′(τ) = B(τ) exp(−iAωτ), (32)

leading to
B̈(τ) = 0 ⇒ B(τ) = B′1 +B′2τ, B′1, B

′
2 ∈ C. (33)

Writing B′1 = B1 exp(−iϕ1), B
′
2 = B2 exp(−iϕ2) with B1, B2 ≥ 0 the general solution

of (29) is
ξ′(τ) = B1 exp(−iAωτ + iϕ1) +B2τ exp(iAωτ + iϕ2), (34)

i.e.,

x′(τ) = Re ξ′(τ) = B1 cos(Aωτ + ϕ1) +B2τ cos(Aωτ + ϕ2),

y′(τ) = Im ξ′(τ) = −B1 sin(Aωτ + ϕ1)−B2τ sin(Aωτ + ϕ2).
(35)

Of course, there are only six independent integration constants determined by the
initial values ~x′0 = ~x′(τ = 0) and ~̇x′0 = ~̇x′(τ = 0). It is clear that in this case

A =
dt

dτ
= γ = const, (36)

and it is determined by

gµν ẋ
′µẋ′ν = c2A2 −B2

2 − C2
1 = c2, (37)

i.e.,

A =

√
1 +

B2
2 + C2

2

c2
. (38)


