Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

Exercise Sheet #3
Deadline: 06.05.2024, 12:00h

Problem 1 (Working with Arrays: Connect Four) (10 points)

In this problem we will implement the famous game Connect Four. In this
game two players start by choosing a color and then take turns dropping
colored tokens into a six-row, seven-column vertically suspended grid. The
pieces fall straight down, occupying the lowest available space within the
column. The objective of the game is to be the first to form a horizon-
tal, vertical, or diagonal line of four of one’s own tokens. Your goal is to
implement Connect Four in C++. The two colors will be represented by
symbols, namely o and x. The playing field is represented as a 2D array
with 6 rows (ROWS) and 7 columns (COLS). The following steps will guide
you through the implementation. You can either implement your own ver-
sion from scratch, or use the program skeleton given below or online https:
//itp.uni-frankfurt.de/~nevermann/teaching/connect_four.cpp.

(a) Implement a function
void print_board(char board[ROWS] [COLS])

that takes the playing field array (board) as input and prints it to the
console. Represent the tokens of the two players with o and x. Empty
cells should be represented by a single space. Include boundaries of the
playing field in your visualization. Also add column indices to simplify
the gameplay.

(@ points)

(b) Next, implement a function
void drop_piece(char board[ROWS] [COLS], int col, char token)
that takes the board, a column index col and a token (o0 or x) as input.
The function should simulate a drop of a token into the column with
index col.


https://itp.uni-frankfurt.de/~nevermann/teaching/connect_four.cpp
https://itp.uni-frankfurt.de/~nevermann/teaching/connect_four.cpp

o UL W N =

0 ~3

21

[SH N
w N

N

[CECENECEN

RSO D ®

Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

Make sure that the token correctly drops to the lowest available space
within the column. If the column is full, display a warning to the user
and simply exit out of the function.

(® points)

(¢) Finally, implement a function to check if the game is over. The function
signature should be
bool is_game_over (char board[ROWS] [COLS])
where the function returns a bool that indicates if the game is over or
not. The game is over once one player forms a horizontal, vertical, or
diagonal line of four of its own tokens, or if the playing field is full.

(® points)

Hint: If you are using the code skeleton and did not complete part (c), comment out lines
31 - 34 (that is, prepend // to the beginning of the line) in the given sample code.

#include <iostream>

#define ROWS 6
#define COLS 7

void print_board(char board[ROWS][COLS]) {
// Insert code for part (a)
}

void drop_piece(char board[ROWS][COLS], int col_number, char token) {
// Insert code for part (b)
¥

bool is_game_over (char board[ROWS][COLS]) {
// Insert code for part (c)
}

int main() {
char board[ROWS][COLS] = {

{ s s s s s B },
{ s s s s s B },
{ s s s s s B },
{ s s s s s B },
{ s B s s s B },
{ s B s s s B }
};
// Game loop
bool next_is_playerl = true;
while (true) {
print_board(board);
if (is_game_over(board)) {
std::cout << << std::endl;

break;

s

int next_col;

char next_token;

if (next_is_player1) {
std::cout << << std::endl;
next_token = H

}

else {
std::cout << << std::endl;
next_token = B

std::cout << ;
std::cin >> next_col;
drop_piece (board, next_col, next_token);
// Alter who is nexzt
next_is_playerl = !next_is_playerl;
¥

return 0;




Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

Problem 2 (Pointers) (10 points)

(a) Define three pointers of the type int, double, long double that each point
to an array of the corresponding type. Print the addresses of the arrays
(i.e. the values of the pointers) and the value that the pointer represents.
Then increment the pointers (e.g. by ++p or p=p+1) and print both the
value of the pointer and the element it points. What do you find for the
different data types?

(@ point)

(b) With reinterpret_cast<intptr_t>(p), you can convert the hexadecimal
representation of a pointer p into decimal (for more information, see
https://en.cppreference.com/w/cpp/language/reinterpret_cast
and https://en.cppreference.com/w/cpp/types/integer). For the
data types from part (a), reprint the decimal addresses of two consecu-
tive elements in each array. The jumps in the address numbers should
correspond to the memory needed to store these data types.

(@ point)

(¢) We now want to work with C-style strings. These can be thought of
as char arrays and are thus declared by a pointer to the first character
in the string. C-style strings are ended by a null-terminator, a special
character . Write a program that asks the user to input a string and
then stores that string as a C-style string. Determine its length (number
of characters) using pointer arithmetics and output the result to the user.

(@ point)

For the following parts provide the function definition as well as a small
example and print the result to the console.

(d) Write a function
int myfunc(int &x, int &y)
that takes two integers by reference and returns their product. Rewrite
the function such that it takes two pointers as arguments instead.

(@ points)

(e) Write a function
double scalarProduct(double *arrl, double *arr2)
that returns the scalar product of two vectors stored in arri, arr2.

(@ points)


https://en.cppreference.com/w/cpp/language/reinterpret_cast
https://en.cppreference.com/w/cpp/types/integer

Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

(f) Now implement the vector product of two vectors, therefore implement
the function
void outerProduct(double *arrl, double *arr2, double *result),
where the two vectors are stored in arri, arr2 and the result is to be
stored in result. This structure is the typical way to return arrays from
functions.

(® points)



Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

Problem 3 (Advanced: Sorting Algorithm) (10 points)

A sorting algorithm is an algorithm that puts elements of a list (or an ar-
ray) in a certain order, we will consider numerical order of lists of integers.
The goal of this exercise is to compare different sorting algorithms for their
performance.

Implement the following sorting algorithms:

e Radix Sort https://en.wikipedia.org/wiki/Radix_sort
e Bubble Sort https://en.wikipedia.org/wiki/Bubble_sort

« Another sorting algorithm of your choice https://en.wikipedia.org/
wiki/Sorting_algorithm#Comparison_of_algorithms

These algorithms can be classified by their average performance on randomly
generated lists. This is important because many algorithms need a different
number of steps depending on the particular set of numbers in the list. An-
alyze the algorithms’ average performance:

o Sort N; = 1000 different lists, containing n random integer numbers
having up to ng = 4 digits, recording the average run-time.

« Analyse the scaling of the average run-time as a function of
n € [100, ..., 10000].

o Compare the scaling that you find for the different algorithms with
each other and with the theoretical scaling.

e Plot and discuss these results.

Hint: You can measure the run-time within C++ with the chrono library. To compile the

example on the next page, you need to set the -std=c++11 option in the g++ compiler.


https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms
https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms

Advanced Introduction to C++-, Scientific SoSe 24 | 29.04.2024
Computing and Machine Learning C. Gros, D. Nevermann

#include <iostream>
#include <chrono>

using namespace std;
using namespace std::chrono;

void £() {
// Do some work
}
int main() {
auto start = high_resolution_clock::now();
£0;
auto stop = high_resolution_clock::now() ;
auto dt = duration_cast<microseconds>(stop - start);
cout << << dt.count () <<
<< endl;

return O;




	(Working with Arrays: Connect Four)(10 points)
	(Pointers)(10 points)
	(Advanced: Sorting Algorithm)(10 points)

