
Chapter 6

Relativistic quantum mechanics

The Schrödinger equation for a free particle in the coordinate representation,

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ,

is manifestly not Lorentz constant since time and space derivatives are of different order.
This implies that it changes its structure under a transformation from one inertial system
to another.

By using the correspondence principle, Schrödinger, Gordon, and Klein formulated in
1926-1927 the so-called Klein-Gordon equation, which was a scalar relativistic wave equa-
tion of second order (see for instance: E. Schrödinger, Ann Physik 81, 109 (1926);
W.Gordon, Z. Physik 40, 117 (1926); O.Klein, Z. Physik 41, 407 (1927)). This equa-
tion was, though, initially dismissed because it led to negative probability densities.

Dirac (P.A.M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928)) published in 1928
the Dirac equation, which is a relativistic equation for spin-1/2 particles. This equation
has, like the Klein-Gordon equation, solutions with negative energy. In order to avoid
transitions of an electron to states of negative energy, Dirac postulated in 1930 that the
states of negative energy should all be occupied and the particles that are missing in these
occupied states represent particles of opposite charge (antiparticles). Pauli and Weisskopf,
using this concept, also interpreted the Klein-Gordon equation as such that could be used
to describe f.i. mesons with spin zero (π-mesons).

6.1 The Klein-Gordon equation

6.1.1 Derivation

We shall consider the correspondence principle in order to derive the Klein- Gordon equa-
tion.

Following the correspondence principle, we can replace classical quantities by operators
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as
energy E → i~ ∂

∂t

momentum ~p → −i~~∇
and obtain from the non-relativistic energy of a free particle

E =
~p 2

2m
,

its time-dependent Schrödinger equation:

i~
∂

∂t
Ψ = −~

2∇2

2m
Ψ

which is not Lorentz invariant.

In order to introduce the relativistic formulation, we first define our notation according
to the special theory of relativity:

1 - components of space-time four-vectors are denoted by Greek indices;

2 - components of spacial three-vectors are denoted by Latin indices or cartesian coor-
dinates (x, y, z);

3 - we use Einstein’s summation convention: Greek or Latin indices that appear twice,
one contravariant and one covariant, are summed over;

4 - notation for the Lorentz transformation is as follows.

(i) The contravariant and covariant components of the position vector are

xµ : x0 = ct x1 = x x2 = y x3 = z (contravariant)
xµ : x0 = ct x1 = −x x2 = −y x3 = −z (covariant)

The metric tensor g,

g = gµν = gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(Minkowski metric),

relates covariant and contravariant components as

xµ = gµνx
ν , xµ = gµνxν .

For gµν we have that

gµν = gµσgσν ≡ δµν
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and

gµν = δµν =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

For instance, the d’Alembert operator � is defined in terms of gµν as

� =
1

c2
∂2

∂t2
−

3
∑

i=1

∂2

∂(xi)2
= ∂µ∂

µ = gµν∂
µ∂ν ,

where the covariant vector

∂µ =
∂

∂xµ

is the four-dimensional generalization of the gradient vector. Remember that in
electrodynamics the d’Alembert operator � ≡ ∂µ∂

µ is invariant under Lorentz
transformations.

(ii) Inertial frames are frames of reference in which, in the absence of forces, parti-
cles move uniformly. The Lorentz transformations tell us how the coordinates
of two inertial frames transform into one another. The coordinates of two ref-
erence systems in uniform motion must be related to one another by a linear

transformation. Therefore, the inhomogenious Lorentz transformation has the
form

x′µ = Λµ
νx

ν + aµ ,

where Λµ
ν and aµ are real.

(iii) World line of an object is the sequence of space-time events corresponding to
the history of the object. In an internal reference frame, the world line of a
particle is a straight line.

(iv) Principle of relativity : the laws of nature are the same in all inertial frames.
For instance, the requirement that the d’Alambert operator be invariant under
Lorentz transformation yields

Λν
µg

µνΛρ
ν = gλρ (6.1)

or, in matrix form,

ΛgΛT = g . (6.2)

Relations (6.1) and (6.2) define the Lorentz transformations. A Lorentz trans-
formation can be denoted by the form (Λ, a) with

→ translation group (1, a)

→ rotation group (Λ, 0)

The set of Lorentz transformations form the Lorentz group. The set of trans-
formations that also includes translations is described as the Poincaré group.
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(v) In relativity, proper time is the time between events occuring at the same
place as where the single clock that measures it is located. The proper time
depends on the events and on the motion of the clock between the events. An
accelerating clock will measure a shorter proper time between two events than
a non-accelerating (inertial) clock would do for the same events.

5 - xµ(s) = (ct, ~x)
is the contravariant four-vector representation of the world line as a function of
proper time s. The differential of the proper time, ds, is related to dx0 via

ds =
√

1− (v/c)2 dx0,

where ~v = c d~x
dx0 is the velocity. One can also show that

ẋµ(s) =
dx

ds
=

dx

dt
· dt
ds

=
v/c

√

1− (v/c)2
.

6 - for the four-momentum we have

pµ = mc ẋµ(s) =
1

√

1− (v/c)2

(

mc
m~v

)

=

(

E/c
~p

)

,

with the definition

E/c = p0 =
mc

√

1− (v/c)2
(kinetic energy of the particle)

Therefore, according to the special theory of relativity, the energy E and the mo-
mentum (px, py, pz) transform as the components of a contravariant four-vector :

pµ = (p0, p1, p2, p3) =

(

E

c
, px, py, pz

)

.

7 - with the metric tensor gµν , we obtain the covariant components of the four-momentum:

pµ = gµνp
ν =

(

E

c
,−~p

)

.

The invariant scalar product of the four-momentum is given by

pµp
µ =

E2

c2
− ~p 2 = m2c2,

where m is the rest mass and c is the speed of light. By using special relativity, we
obtain the energy-momentum relation for a free particle:

E =
√

~p 2c2 +m2c4 . (6.3)
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We apply now the correspondence principle to eq. (6.3) and obtain the wave equation

i~
∂

∂t
Ψ =

√
−~2c2∇2 +m2c4Ψ ,

in which time and space do not occur symmetrically because a Taylor expansion of the
square root leads to infinitely high derivatives in space. But if, instead of eq. (6.3), we
start from the squared equation,

E2 = ~p 2c2 +m2c4 ,

we arrive at

−~
2 ∂

2

∂t2
Ψ =

(

−~
2c2~∇ 2 +m2c4

)

Ψ,

which can be written in the following Lorentz covariant form:

(

∂µ∂
µ +

(mc

~

)2
)

Ψ = 0 , (6.4)

with xµ = (x0 = ct, ~x) being the space-time position vector.

Lorentz covariant form of an equation: an equation is Lorentz covariant if it can be
written in terms of Lorentz covariant quantities (i.e. quantities that transform under a
given representation of the Lorentz group). Such an equation holds then in any inertial

frame, which is a requirement of the principle of relativity.

Eq. (6.4) is the Klein-Gordon equation. Let us now consider its properties.

6.1.2 The continuity equation

We first use the Klein-Gordon equation to derive the continuity equation.

Multiplying the Klein-Gordon equation by Ψ∗

Ψ∗

(

∂µ∂
µ +

(mc

~

)2
)

Ψ = 0 (6.5)

and subtracting from (6.5) its complex conjugate

Ψ

(

∂µ∂
µ +

(mc

~

)2
)

Ψ∗ = 0,

we get
Ψ∗∂µ∂

µΨ−Ψ∂µ∂
µΨ∗ = 0

and then
∂µ (Ψ

∗∂µΨ−Ψ∂µΨ∗) = 0 . (6.6)
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We multiply now (6.6) by ~

2mi
and obtain (writing explicitly)

∂

∂t

(

i~

2mc2

(

Ψ∗∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

))

+ ~∇ · ~

2mi
[Ψ∗∇Ψ−Ψ∇Ψ∗] = 0,

which has the form of the continuity equation

ρ̇+ ~∇ ·~j = 0 ,

with the density

ρ =
i~

2mc2

(

Ψ∗∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

)

and the current density

~j =
~

2mi

(

Ψ∗~∇Ψ−Ψ~∇Ψ∗
)

.

Note:

1) ρ is not positive-defined and therefore cannot be directly interpreted as a probability
density;

2) the Klein-Gordon equation is a second-order differential equation in t and therefore
the initial values of Ψ and ∂Ψ

∂t
are chosen independently, so that ρ as a function of

~x can be positive and negative.

6.1.3 Free solutions of the Klein-Gordon equation

The Klein-Gordon equation has two free solutions

Ψ(~x, t) = ei(Et−~p·~x)/~,

with

E = ±
√

~p 2c2 +m2c4.

Both solutions with positive and negative energies are possible, and the energy is not

bounded from below, which does not make sense for a free particle. Moreover, this is
a scalar theory, which doesn’t contain spin and therefore can only describe spin-zero
particles.

For these reasons, the Klein-Gordon equation was rejected. One year later Dirac pro-
posed his equation for spin-1/2 fermions. He interpreted the negative energy solutions
by assuming that the unoccupied states of negative energy describe antiparticles. The
Klein-Gordon equation, though, is still suitable for describing mesons.
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6.2 Dirac equation

6.2.1 Derivation of the Dirac equation

Dirac postulated a differential equation of first order such that

1 - the density

ρ =

(

Ψ∗ ∂

∂t
Ψ+ c.c.

)

,

which contains the first time derivative, is positive definite;

2 - the equation is relativistic covariant. This means that its spatial derivatives are of
the same order as the time derivatives, that is, of first order.

We are thus seeking for a wave equation of the form

i~
∂

∂t
Ψ =

(

~c

i
αk∂k + βmc2

)

Ψ ≡ HΨ , (6.7)

where αk, β have to be yet defined.

The Dirac Hamiltonian (6.7) is linear in the momentum operator and in the energy at rest.
Therefore, αk and β cannot be scalar numbers. If they were, then the equation would not
be form invariant with respect to spatial rotations. αk and β must be hermitian matrices
for H to be hermitian.

Let αk and β be N ×N matrices and

Ψ =







Ψ1
...

ΨN







be an N -component column vector. N is not yet determined.
We then impose the following requirements on eq. (6.7):

(i) The components of Ψ must satisfy the Klein-Gordon equation, so that plane waves
fulfill the relativistic energy-momentum relation

E2 = p2c2 +m2c4.

(ii) There exists a conserved four-component current jµ whose zeroth component is a
positive density.

(iii) The equation must be Lorentz covariant, which means that it must have the same
form in all reference frames that are connected by a Lorentz (Poincaré) transforma-
tion. This requirement is fulfilled since (6.7) is of the first order.
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In order to fulfill condition (i), we consider the second derivative of eq. (6.7)

−~
2 ∂

2

∂t2
Ψ = −~

2c2
∑

ij

1

2
(αiαj + αjαi)∂i∂jΨ

+
~mc3

i

3
∑

i=1

(αiβ + βαi)∂iΨ+ β2m2c4Ψ, (6.8)

where we used ∂i∂j = ∂j∂i. Comparing eq. (6.8) with the Klein-Gordon equation

[

∂µ∂
µ +

(mc

~

)2
]

Ψ = 0 ,

we obtain three conditions

αiαj + αjαi = 2δij1

αiβ + βαi = 0

(αi)2 = β2 = 1 (6.9)

In order to fulfill condition (ii), let us consider the continuity equation.

6.2.2 Continuity equation

The adjoint of Ψ is
Ψ† = (Ψ∗

1,Ψ
∗
2, . . . ,Ψ

∗
N).

We multiply the Dirac equation (6.7) from the left by Ψ†

i~Ψ†∂Ψ

∂t
=

~c

i
Ψ†αi∂iΨ+mc2Ψ†βΨ.

The corresponding complex conjugate relation is

−i~
∂

∂t
Ψ†Ψ = −~c

i
(∂iΨ

†)αi†Ψ+mc2Ψ†β†Ψ,

and the difference between these two relations is then

∂

∂t
(Ψ†Ψ) = −c

(

(∂iΨ
†)αi†Ψ+Ψ†αi∂iΨ

)

+
imc2

~
(Ψ†β†Ψ−Ψ†βΨ).

For this equation to resemble a continuity equation we need the matrices α and β to be
hermitian, i.e.

αi† = αi, β† = β .

With these conditions, the density

ρ ≡ Ψ†Ψ =
N
∑

α=1

Ψ∗
αΨα (6.10)
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and the current density

jk ≡ cΨ†αkΨ

satisfy the continuity equation

∂

∂t
ρ+ ~∇ ·~j = 0 .

The zeroth component of jµ is

j0 = cρ,

and the four-current-density is defined as

jµ ≡ (j0, jk).

With this, the continuity equation can be written as

∂µj
µ =

1

c

∂

∂t
j0 +

∂

∂xk
jk = 0 ,

which is a nice compact form. The density defined in eq. (6.10) is positive definite and
can be given the interpretation of a probabiliy density.

6.2.3 Properties of the Dirac matrices αk and β

1 - The matrices αk and β anticommute (see eq. (6.9)).

2 - From (αk)2 = β2 = 1 follows that the matrices αk and β have only eigenvalues ±1.

3 - We consider eq. (6.9)

αkβ + βαk = 0.

For

αk = −βαkβ

we see, using the cyclic invariance of the trace, that

Trαk = −Trβαkβ = −Trαkβ2 = −Trαk.

Analogously,

Trβ = −Trβ.

So,

Trαk = Trβ = 0 ,

which means that the number of positive and negative eigenvalues must be equal,
and therefore N (the dimension of the matrix) must be even.
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N = 2 is not sufficient since among the 2× 2 matrices that are known, 1, σx, σy, and σz,
only three are mutually anticomuting; the 1 commutes with the rest. Thus, N = 4 is the
smallest dimension in which it is possible to fulfill (6.7)-(6.9).

A concrete representation of the matrices is

αi =

(

0 σi

σi 0

)

and β =

(

1 0
0 −1

)

, (6.11)

with σi being the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

,

and 1 being the 2-dimensional identity. αi and β defined in this way satisfy the condition
(6.9)

αiβ + βαi =

(

0 −σi

σi 0

)

+

(

0 σi

−σi 0

)

= 0.

→ The Dirac equation (6.7) together with the definitions of αi and β (6.11) is called
“standart representation” of the Dirac equation.

→ Ψ is a four-spinor, or bispinor, when it is represented by two-component spinors.

→ Ψ† is the hermitian adjoint spinor.

6.2.4 Covariant form of the Dirac equation

We multiply the Dirac equation (6.7) by β
c

−i ~ β ∂0Ψ− i ~ β αi ∂iΨ+mcΨ = 0

and introduce the Dirac matrices γ0 and γi as

γ0 ≡ β and γi ≡ βαi .

γ0 and γi have the following properties.

1 - γ0 is hermitian and (γ0)2 = 1.

2 - γk is anti-hermitian:
(γk)† = −γk and (γk)2 = −1.

Proof :

(γk)† = αkβ = −βαk = −γk;

(γk)2 = βαkβαk = −1.
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3 - γ0γk + γkγ0 = ββαk + βαkβ = 0.

4 - γkγl + γlγk = βαkβαl + βαlβαk = 0 for k 6= l.

Properties 1-4 can be summarized as

γµγν + γνγµ = 2gµν1 .

Having introduced γi and γ0, the Dirac equation (6.7) has now the form

(

−iγµ∂µ +
mc

~

)

Ψ = 0 . (6.12)

This equation can be written in a more compact form using the following Feynman nota-

tion:

✚v ≡ γv ≡ γµvµ = γµv
µ = γ0v0 − ~γ · ~v (vµ denotes any vector).

The Feynman slash indicates multiplication by the matrix γµ. Eq. (6.12) thus becomes

(

−i✓✓∂ +
mc

~

)

Ψ = 0 ,

with

γ0 =

(

1 0
0 −1

)

and γi =

(

0 σi

−σi 0

)

.

Note: one can obtain other representations of the γ matrices by considering a non-singular
transformation M :

γ → MγM−1.

For instance, the so-called Majorana representation of γ or the Chiral representation of γ
are also used.

6.2.5 Non-relativistic limit of the Dirac equation

Particle at rest

Consider eq. (6.7),

i~
∂Ψ

∂t
=

(

~c

i
αl∂l + βmc2

)

Ψ,

for a free particle at rest, i.e. with wavevector ~k = 0. In this case, the spatial derivatives
vanish, and the equation becomes

i~
∂Ψ

∂t
= βmc2Ψ.
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The solutions of this equation are

Ψ
(+)
1 = e−

imc
2

~
t









1
0
0
0









, Ψ
(+)
2 = e−

imc
2

~
t









0
1
0
0









,

Ψ
(−)
1 = e

imc
2

~
t









0
0
1
0









, Ψ
(−)
2 = e

imc
2

~
t









0
0
0
1









.

Ψ
(+)
1 and Ψ

(+)
2 are positive-energy solutions, and Ψ

(−)
1 and Ψ

(−)
2 are negative-energy solu-

tions. We examine now the positive-energy solutions. The negative-energy solutions will
be discussed later. It is experimentally shown that the negative solutions are physical

solutions and describe antiparticles (positrons).

Coupling to the electromagnetic field

The coupling to the electromagnetic field is included into consideration by

- replacing the canonical momentum ~p by the kinetic momentum
(

~p− e
c
~A
)

and

- augmenting the rest energy in the Dirac Hamiltonian by the scalar electric field eΦ,

so that (6.7) becomes

i~
∂Ψ

∂t
=

(

c~α ·
(

~p− e

c
~A
)

+ βmc2 + eΦ
)

Ψ . (6.13)

Here, e is the charge of the particle, with e = −e0 for the electron.

Non-relativistic limit: the Pauli equation

In order to derive the non-relativistic limit of the Dirac equation, we consider the repre-
sentation of the Dirac matrices in (6.11) and decompose the four-spinor into 2-component
vectors ϕ̃ and χ̃

Ψ ≡
(

ϕ̃
χ̃

)

,

with

i~
∂

∂t

(

ϕ̃
χ̃

)

= c

(

~σ · ~π χ̃
~σ · ~π ϕ̃

)

+ eΦ

(

ϕ̃
χ̃

)

+mc2
(

ϕ̃
−χ̃

)

,

where

~π = ~p− e

c
~A

is the kinetic momentum operator.
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In the non-relativistic limit, the rest energy mc2 is the largest energy involved. Therefore,
we take as positive-energy solutions wavefunctions of the form

(

ϕ̃
χ̃

)

= e−
imc

2

~
t

(

ϕ
χ

)

,

where
(

ϕ
χ

)

are considered to vary slowly with time and satisfy the equation

i~
∂

∂t

(

ϕ
χ

)

= c

(

~σ · ~π χ
~σ · ~π ϕ

)

+ eΦ

(

ϕ
χ

)

− 2mc2
(

0
χ

)

. (6.14)

For the equation for χ, one may neglect ~ ∂
∂t
χ and eΦχ in comparison to 2mc2χ and get

c ~σ · ~π ϕ = 2mc2χ,

χ =
~σ · ~π
2mc

ϕ . (6.15)

We see from this equation that χ is a factor ∼ v
c
smaller than ϕ. Therefore,

ϕ is the large component of the spinor and

χ is the small component of the spinor.

We insert (6.15) in the first equation of (6.14) and obtain

i~
∂ϕ

∂t
=

(

1

2m
(~σ · ~π) (~σ · ~π) + eΦ

)

ϕ . (6.16)

Then, using the identity

(~σ · ~a)(~σ ·~b) = ~a ·~b+ i~σ(~a×~b),

with
σiσj = δij + iǫijkσk,

we get

(~σ · ~π) (~σ · ~π) = ~π 2 + i~σ (~π × ~π) = ~π 2 − e~

c
~σ · ~B . (6.17)

Note that we used

(~π × ~π)i ϕ = −i~

(

−e

c

)

ǫijk
(

∂jA
k − Ak∂j

)

ϕ

= i
~e

c
ǫijk

(

∂jA
k
)

ϕ = i
~e

c
Biϕ,
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with
Bi = ǫijk∂jA

k .

We introduce now eq. (6.17) into eq. (6.16):

i~
∂

∂t
ϕ =

[

1

2m

(

~p− e

c
~A
)2

− e~

2mc
~σ · ~B + eΦ

]

ϕ , (6.18)

which is the Pauli equation for the Pauli spinor ϕ as is known from non-relativistic quan-
tum mechanics. The two components of ϕ describe the spin of the electron.

In this derivation, one obtains the correct gyromagnetic ratio g = 2 for the electron.

Proof : We assume a homogeneous magnetic field ~B that can be represented by the vector
potential ~A:

~B = curl ~A, ~A =
1

2
~B × ~x.

Introducing the orbital angular momentum ~L and spin ~S,

~L = ~x× ~p, ~S =
1

2
~~σ,

into eq. (6.18) and using the fact that

(

~p · ~A
)

=
~

i

(

~∇ · ~A
)

= 0

is the Coulomb gauge and

−~p · ~A− ~A · ~p = −2 ~A · ~p = −2
1

2

(

~B × ~x
)

· ~p

= − (~x× ~p) · ~B = −~L · ~B,

we get

i~
∂ϕ

∂t
=

(

~p 2

2m
− e

2mc
(~L+ 2~S) · ~B +

e2

2mc2
~A 2 + eΦ

)

ϕ . (6.19)

The eigenvalues of the spin operator ~S are ±~/2. The interaction with the electromagnetic
field is, following eq. (6.19),

Hint = −~µ · ~B +
e2

2mc2
~A 2 + eΦ,

with the magnetic moment

~µ = ~µorbit + ~µspin =
e

2mc

(

~L+ 2~S
)

. (6.20)
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From eq. (6.20) it follows that the spin-induced magnetic moment is

~µspin = g
e

2mc
~S ⇒ g = 2 (gyromagnetic, or Landé, factor).

For the electron,
e

2mc
= −µB

~
,

where µB is the Bohr magneton

µB =
e0~

2mc
= 0.927× 10−20 erg/G.

The non-relativistic limit approximation is good for atoms with small atomic number Z.

Coupling to electromagnetic field. Compact form

Here we will show a more compact way to express eq. (6.14), the coupling of the Dirac
equation to the electromagnetic field. For this purpose, we consider the covariant and
contravariant forms of the momentum operator,

pµ = i~∂µ and pµ = i~∂µ,

with

∂µ =
∂

∂xµ
and ∂µ =

∂

∂xµ

.

Then,

p0 = p0 = i~
∂

∂(ct)
, p1 = −p1 = i~

∂

∂x1

=
~

i

∂

∂x1
.

Coupling to the electromagnetic field is now realized via

pµ → pµ −
e

c
Aµ,

with Aµ = (Φ, ~A) being the four-potential. This scheme is called minimal coupling. This
implies

i~
∂

∂xµ
→ i~

∂

∂xµ
− e

c
Aµ

or, explicitly,
{

i~ ∂
∂t

→ i~ ∂
∂t
− eΦ

~

i
∂
∂xi → ~

i
∂
∂xi +

e
c
Ai =

~

i
∂
∂xi − e

c
Ai

For the spacial components, this is identical to the replacement

~

i
~∇ → ~

i
~∇− e

c
~A.

Inserting this replacement into the Dirac equation, we obtain

(

−γµ
(

i~∂µ −
e

c
Aµ

)

+mc
)

Ψ = 0 → Dirac equation in a relativisic covariant
form in the presence of an electromagnetic field
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6.2.6 Physical interpretation of the solution to the Dirac equa-

tion

The Dirac equation possesses negative-energy solutions. The kinetic energy in these states
is negative, which means that the particle moves in the opposite direction to the one
occupying the usual state of positive energy. Therefore, such a particle, carrying the
charge of an electron, is repelled by the field of a proton.

One cannot exclude these negative-energy states since the positive-energy states do not
represent a complete set of solutions. The physical consequence of these two sets of
solutions is that, when an external perturbation (measurement) causes an electron to enter
a certain state, this state will be a combination of positive- and negative-energy states.
In the case when the electron is confined in a region that is smaller than its Compton
wavelength, this interference between positive- and negative- energy components produces
an oscillatory motion known as “Zitterbewegung”. In order to see that let us solve the
Dirac equation in the Heisenberg representation. The Heisenberg operators O(t) fulfill
the equation of motion:

dO(t)

dt
=

1

i~
[O(t), H] .

We consider free particles, and therefore the momentum ~p conmutes with the Hamiltonian

H = c~α · ~p+ βmc2 (6.21)

and therefore

d~p(t)

dt
= 0

what leads to ~p(t) = ~p = constant.
Note also that

~v(t) =
d~x(t)

dt
=

1

i~
[~x(t), H] = c~α(t)

and

d~α

dt
=

1

i~
[~α(t), H] =

2

i~
(c~p−H~α(t))

Since H is time independent, we can integrate the previous equation:

~v(t) = c~α(t) = cH−1~p+ e
2iHt

~ (~α(0)− cH−1~p)

and integrating again we obtain:

~x(t) = ~x(0) +
c2~p

H
t+

~c

2iH
(e

2iHt

~ − 1)(~α(0)− c~p

H
) (6.22)

Since
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~αH +H~α = 2c~p

then

(~α− c~p

H
)H +H(~α− c~p

H
) = 0 (6.23)

We observe that the solution Eq. 6.22 contains a linear term in time which corresponds to
the group velocity motion, and an oscillating term which describes the ”Zitterbewegung”
of the free particle. Since the vanishing of the anticonmutator Eq. 6.23 implies that
the energies must be of opposite sign, the ”Zitterbewegung” is the result of interference
between positive and negative energy states.

Discussion about hole theory in class.
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