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Chapter 1

Introduction

The first theory of interactions in quantum many-body systems (presently known
as the Landau’s Fermi liquid theory) was proposed by L. D. Landau in 1950s [1–3]
and is the starting point for the whole field of many-body physics. This seminal
work was the first example of a before unimaginative solution to the exponential
complexity of an interacting system consisting of many quantum particles that was
actually found in a robust way creating a basis for the modern understanding of the
effect of Coulomb interactions between electrons in conductors. Since then a great
deal of progress has been made in this field: J. Bardeen, L. N. Cooper, and J. R.
Schrieffer have created a microscopic theory of the pairing effect between electrons
[4] as an effort to identify the microscopic mechanism behind superconductivity in
the same decade of 1950s and two decades later in the 1970s new theoretical tools
were developed1 [5–8] culminating in the theory of interactions in one dimension
(commonly referred to as Luttinger liquid as opposite to Fermi liquid) where both
the Fermi liquid and the BCS theory do not apply.

All of these three theories describe the low energy excitations of a many-body
system above its ground state, or above the gap energy in the case of a super-
conductor. At higher energy they become uncontrollable, e.g. the lifetime of the
quasiparticles of Fermi liquid becomes shorter and shorter when the excitation en-
ergy is increased away from the Fermi energy due to the effect of the non-linearity
of the single particle spectrum that eventually reduces the quasiparticle’s lifetime to
zero. This common limit of applicability raises the contemporary question: “what
is/are the many-body theory/ies at high energy?”. A part of the answer was given
only very recently (in 2000s) in one dimension by L. Glazman and his co-workers
in the form of the mobile impurity model [10, 11]. And this will be the point of
departure for the present work.

Although, the domain of this work is one dimension, it is instructive to recall first
the Landau’s Fermi liquid, since it was historically the first theory of interactions
and is a convenient way of introducing basic many-body concepts and notations and

1This list is by no means complete, for a systematic review of the literature on this topic see
for example [9].
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Figure 1.1: (a) Occupation numbers nk of a system consisting of many fermions
as a function of the modulus of the momentum k = |k|: the dashed line is the
free electron system at zero temperature in which all the states up to the Fermi
momentum kF are filled and the full line is an interacting system in two or three
dimensions described by the Landau’s Fermi liquid theory. (b) Spectral function
A (k, ε) for a fixed value of k1 as a function energy ε: the dashed line is the position
of a delta function of a non-interacting system and the full line is a Lorentzian with
a finite width that corresponds to a quasiparticle in the Fermi liquid theory.

sketching the overall framework2. At zero temperature (T = 0) a system consisting
of N free fermions forms a Fermi-Dirac condensate, e.g. electrons fill single particle
states with the lowest energy up a given threshold—Fermi energy EF . The corres-
ponding occupation number nk, where k is the single particle momentum, of the
Fermi sea is a step function that is one for all momenta which modulus |k| ≤ kF ,
where kF is the Fermi momentum, and is zero for |k| > kF , see the dashed line in Fig.
1.1(a). Excitations of the free system with respect to its ground state, correspond
to adding an extra particle above the Fermi energy (or removing a particle below it)
with a well-defined momentum k. These excitations also have a well-defined energy
εk and the infinite lifetime since they are the eigenstates of the Hamiltonian. A
common way of characterising these many-body excitations is the spectral function
A (k, ε), which is defined as the probability density of finding an excitation with
energy ε and momentum k. For free electrons it is A (k, ε) = δ (ε− εk + EF ), see
the dashed line in the cut of the spectral function along the energy axis for a fixed
momentum k1 > kF in Fig. 1.1(b).

2The BCS theory will not be introduced here at all since we are dealing with repulsive interac-
tions only and also since interactions of any sign do not open a gap in one dimension making the
theoretical approach the same for repulsion as for attraction, unlike higher dimensions where the
pairing instability opens a gap leading to a completely different physics.
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When interactions are turned on, the properties of the system essentially do not
change, i.e. they remain almost the same as that of the free electrons—and this
is the main result of the Fermi liquid theory. The free particles are not individual
excitations anymore, they are dressed by density fluctuations of the existing Fermi
sea, constructed out of the excitations of the electron-hole pairs type that do not
change the total number of particles but they are coupled to the single particle states
via the interaction. These collective objects are called quasiparticles now since they
are formed by many individual electrons, however these quasiparticles still retain
most of the fermionic properties of the undressed single particle excitations within
the Fermi liquid theory. The whole effect of the interactions is manifested only in
renormalisation of the single particle properties by so-called Landau parameters.

Occupation numbers nk in the Fermi liquid theory still have a discontinuity at
the Fermi surface, see the full line in Fig. 1.1(a). However the amplitude of this
discontinuity is not one anymore but is a number Z smaller than one Z < 1, which
represents the fraction of electrons which still keeps the original fermionic property
of a free electron after it has been smeared by the interactions with other electrons.
The bigger is the smearing the less of the original single particle properties remain
and the smaller is Z. Any finite Z > 0 means that quasiparticles are still defined
through a single-particle-like dispersion relation εk. Although, εk is not the bare
energy of a single electron. Nevertheless, close to the Fermi surface the dispersion
can be linearised in the powers of k − kF as

εk = EF +
kF
m∗

(k − kF ) , (1.1)

where k = |k| is the modulus of the momentum and m∗ is a parameter that is
usually called effective mass, for free electrons m∗ = m is the mass of the electron
itself. Here we assumed rotational symmetry in two and three dimensions, therefore
the Fermi surface is circular (spherical) and the above expansion is the same in
all directions. Thus, close to the Fermi surface we can use the same free electron
dispersion changing only the mass of the particles from m to m∗, and no extra
parameters are needed. The Fermi momentum is not changed by interactions due
to Luttinger theorem [12]. The theorem states that for the translationally invariant
systems, though the shape of the Fermi surface can be changed by interactions, the
volume enclosed by it is proportional only to the electron density irrespective of the
interactions. For also rotationally invariant systems it directly implies that kF is
also independent of interactions (it is an invariant of the interaction strength).

Since the quasiparticles are not completely free particles, their lifetime τ is finite.
The corresponding spectral function in Fig. 1.1(b) is not a delta function anymore,
like for a free particle (dashed line), but is a Lorentzian with a finite width 1/τ
(solid line), which position for a fixed k1 is centred at the energy given by Eq.
(1.1). When the lifetime τ is shorter than the characteristic timescale defined by
the dispersion, 1/ (εk − EF ), the notion of a quasiparticle disappears altogether, i.e.
it is not possible anymore to define a single-particle-like dispersion in Eq. (1.1).
In the proximity to the Fermi surface k → kF , the timescale 1/ (εk − EF ) becomes

333



1. Introduction1. Introduction1. Introduction

bigger and bigger, but fortunately the lifetime τ also diverges since electrons have
less and less phase space to scatter close to the Fermi surface leading to a smaller
degree of smeariness of the quasiparticles that is reflected in the energy dependence
of the lifetime τε. For instance, simple phase-space arguments [13] show that τε ∼
1/ (ε− EF )2 close to the Fermi energy in three dimension. Thus, the width of
the Lorentzian 1/τε is always narrower than the energy scale (ε− EF ) making the
quasiparticles always well-defined and, therefore, making the Fermi liquid theory
better and better when the energy is closer and closer to the Fermi level. For most
of the low energy properties a big but finite lifetime can be just ignored.

It has to be noted that the quasiparticle states are not the exact eigenstates
of the quantum model. The Fock space of a many-body system is exponentially
large. For example for a system of spinless fermions on a lattice in D dimensions
the total number of states is 2N , where N = LD is the number of sites, L is the
linear dimension of the lattice in the units of the lattice spacing, and D is its spatial
dimension. Therefore, the average distance between the many-body eigenenergies is
exponentially small, ∼ exp(−L). For a free system however the excitation energy
for is given by Eq. (1.1) with m∗ = m, thus the distance between the states in
the energy domain is much larger, ∼ 1/L, than the level spacing of the interacting
system. This is caused by a huge degeneracy of the many-body states of the free
system, which is lifted by the interactions. The existence of quasiparticles in a Fermi
liquid is a result of clustering of the exact eigenstates from the exponentially large
continuum around certain points in the energy domain, given by the quasiparticle
dispersion in Eq. (1.1). An ensemble of many states from the exponentially large
continuum forms a quasiparticle with its finite lifetime, a Lorentzian with a finite
width given by the full dashed line in Fig. 1.1(b).

Essentially a free Fermi gas description of interacting electrons, the interactions
only renormalise parameters of the free system, is what makes Fermi liquid so suc-
cessful. For instance, it forms the basis of the modern theory of transport in con-
ductors: metals and semiconductors. Even in semiconductors the Fermi energy is at
least 5000K (for Silicon or GaAs) and is even higher for metals. In a typical range
from low 1K to room 300K temperatures the relevant quasiparticles are always close
to the Fermi energy and thus the almost free particle approximation of Fermi liquid
is generally robust. It is routinely confirmed by a plethora of solid-state experiments,
including electrical, thermo-electrical, classical Hall, spintronics, thermo-spin, and
so on experiments3. Another realisation of Fermi liquid is He3, which obeys the
Fermi statistics at low temperatures since it has total spin 1/2. The Fermi energy is
quite small ' 5K that requires the temperatures to be in the milli-Kelvins range in
order to keep excitations only close to the Fermi surface. This temperature range is
still accessible via the currently available cryogenic techniques, where experiments
do observe a renormalisation of the free Fermi gas parameters, e.g. in Ref. [14, 15].
Also in industry the field of electronics uses the transport theory of semiconductors

3The applications of the Fermi liquid theory in the field of solid-state are so many and are
so diverse that reviewing them with any reasonable degree of comprehension is just not possible.
Only a few highlights are given here.
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based on the Fermi liquid theory as a fundamental building block of a countless
number of modern consumer devices.

Landau has originally constructed the Fermi liquid theory [1, 2] in a phenomen-
ological way by expanding the free energy of an interacting Fermi gas up to the
second order in small deviations from the free particle distribution function. Then,
all of the observable properties can derived starting from this postulated form of free
energy. Later, the same picture was reproduced microscopically by the many-body
perturbation theory in interactions in diagrammatic form [16, 17] (a good review is
given in the book [13]) and by renormalisation group [18, 19]. Although the Landau’s
phenomenological approach still keeps its value due to its technical simplicity and
physical transparency. Both, microscopically and phenomenologically, the lifetime
of the excitations shortens away from the Fermi energy. Eventually quasiparticles
become undefined. This breakdown point happens not at a large energy scale, like
the Fermi energy, but at a much lower energy. It can be visualised as an increasing
contribution of the parabolic correction to Eq. (1.1). When it becomes of the same
order as the linear term the quasiparticles are no longer defined, making the Fermi
liquid theory valid only at low energy. The non-linear theory—for excitations with
non-linear dispersion—still remains an open problem.

While the Fermi liquid theory works well in two and three dimensions, it fails
completely in one dimension, even at low energy. The lowest order perturbative
correction in the interaction potential to the free electron self-energy in one dimen-
sion is proportional to 1/ (ε− εk) close to the Fermi level [20]. This divergence
signals that the many-body eigenstates are very different from free particle excita-
tions, and require a new solution to the many-body problem. Fortunately, at low
energy the one dimensional problem was completely solved at the microscopic level
by bosonisation. Under linearisation of the single particle dispersion at low energy
εk = EF + vFk, the electron-hole excitations of the free particle spectrum becomes
equidistant and very degenerate, like for bosons, that allows to map all of the free
Fermi states onto pure bosonic excitations consisting of many electron-hole pairs
[21]. Moreover the density-density interaction between the fermions, quartic in the
field operators, becomes only quadratic in bosonic operators under this mapping.
Thus, this procedure of bosonisation makes the interacting Hamiltonian quadratic
in the bosonic degrees of freedom, which is just a harmonic oscillator that is solved
immediately, and the same procedure remains valid for arbitrary strength of the
interactions between the original fermionic particles.

The usual way of performing calculations using the result of this bosonisation
procedure is to start from the so-called Tomonaga-Luttinger model [21, 22]

HTL =
v

2π

∫
dx

[
K (∇θ)2 +

1

K
(∇ϕ)2

]
, (1.2)

where the bosonic degrees of freedom are represented by a pair of fields, ∇θ and
∇ϕ, that have the meaning of the current and the density operators respectively,
with the following boson-like commutation relation between them [ϕ (x) ,∇θ (x′)] =
iπδ (x− x′). Here we use the notations of the Giamarchi’s book [23]. The only two
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effective parameters that describe a generic interacting system in one dimension are
v and K: v is the sound velocity and K is Luttinger parameter, which together
encode the original interaction strength.

Since the Tomonaga-Luttinger model is quadratic in bosonic operators, the cor-
responding conformal field theory can be constructed straightforwardly by writing
down the action for the Hamiltonian in Eq. (1.2). Then, observables are calculated
as Gaussian averages of the operators over the free fields θ and ϕ producing the
hallmark of the Luttiger liquid physics, power-law dependencies in various quantit-
ies, where the exponents depends on v and K. For the dynamical structure factor,
S (k, ε) =

∫
dtdxei(εt−kx)〈ρ (x, t) ρ (0, 0)〉 where the density ρ has to be expressed

through ∇ϕ and its time evolution ρ (x, t) and the zero temperature average 〈. . . 〉
are given by the model in Eq. (1.2), this procedure gives the zero delta-functional
width of the excitations S (k, ε) ∼ |k − kF | δ (ε− v |k − kF |). However, these excita-
tions are Bose-like hydrodynamic modes consisting of many electron-hole excitations
of the original fermions (the so-called charge density wave or CDW) instead of the
Fermi-like quasiparticles of the Landau’s Fermi liquid theory. The occupation num-
bers nk =

∫
dxe−ikx

〈
ψ† (x)ψ (0)

〉
∼ 1/2 + const · sign (k − kF ) |k − kF |(K+K−1)/2−1,

where the original fermionic field operator is bosonised as ψ ∼ eiθ+iϕ, has no discon-
tinuity at the Fermi momentum unlike Fermi liquid, see Fig. 1.1(a), but rather has
a smooth power-law behaviour with the exponent (K +K−1) /2 − 1 > 0 given by
Luttinger parameter K, which is a clear manifestation of a non-Fermi liquid nature
of the interacting systems in one dimension.

The systems with spin behave in even stranger way in one dimension—their
spin degeneracy is lifted by interaction producing two different velocities, unlike
higher dimensions where the double degeneracy of electron spin-1/2 enters only as
a factor in the density of states. The up and the down spin states produce two sets
of bosonic fields in the Tomonaga-Luttinger model. The density-density interaction
couples two species since fermions with the same spin cannot be at the same point in
space but different spins can, hybridising the two independent liquids. Application
of the bosonisation technique to the model of spinful fermions gives two independent
Tomonaga-Luttinger models for the charge degree of freedom ρ (CDW) and for the
spin degree of freedom σ (spin density wave or SDW) [23]. Each of the two models
has the form of Eq. (1.2) but the sound velocities vρ,σ and Luttinger parameters
Kρ,σ are different for any finite interaction strength between the original fermions.
Thus, the degeneracy with respect to the spin degree of freedom is not present,
which is manifested, for example, in a extra branch of dispersion with vσ 6= vρ in
the excitation spectrum in one dimension [23].

Realisations of one dimensional system are quite uncommon in nature. But the
big theoretical advancements in 1970s motivated strongly the experimental com-
munity to manufacture artificial systems that behave essentially one-dimensional
inside a three-dimensional system. One class of such designs are strongly aniso-
tropic magnetic insulators or organic materials, which three-dimensional crystals
consist of bundles of magnetic chains with a weak magnetic exchange between them
that can be neglected, e.g. KCuF3 [24] and (TNTSF)2PF6 [25]. Another system
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Figure 1.2: (a) Linear-response two-terminal conductances G of single-wall carbon
nanotubes as functions of temperature at a double-logarithmic scale. The triangles
are a pair of straight nanotubes and squares are a nanotube with a kink. The solid
lines are power-law functions G ∼ Tα with the real exponents α (α = 0.35 for the
straight nanotubes and α = 2.2 for the nanotube with a kink) generally predicted
by the Tomonaga-Luttinger model for an interacting one-dimensional conductor.
The figure is taken from Ref. [26]. (b) Differential conductance measured through
a double-well GaAs heterostructure where quantum wires are formed in the upper
layer by potential gates. The magnetic field B applied perpendicular to the wires
and the bias between the two layers Vdc provide the momentum and the energy
resolution in the measured spectral function. Two branches with linear dispersions,
marked by vρ 6= vσ, extend from the Fermi point at B = 3.4 T and Vdc = 0. The
figure is taken from Ref. [28].

is carbon nanotubes that self-assemble themselves under certain conditions and are
one-dimensional conductors. Electrical conductance of a nanotube can be meas-
ured straightforwardly by attaching it to a pair of electrodes. The temperature
dependence of the conductance [26] shows a power-law function predicted by the
Tomonaga-Luttinger model, we reproduce them in Fig. 1.2(a). A quantum wire
can also be made using the currently available techniques of nano-lithography in
semiconductors. Starting from the GaAs double-well heterostructures this design
allows to measure a more detailed quantity, spectral function A (k, ε), with both
momentum and energy resolutions, where the separation of the free electronic excit-
ations into the spin and the charge modes with different velocities, also predicted by
the Tomonaga-Luttinger model, was observed [27, 28], which we reproduce in Fig.
1.2(b).

Away from low energy the curvature of the original parabolic dispersion at the
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Fermi energy becomes progressively more important. It, for instance, broadens
the sharp dynamical structure factor that is strictly delta-functional, S (k, ε) ∼
δ (ε− v |k − kF |), for the linearised spectrum, reflecting the infinite lifetime of the
hydrodynamic modes of the Tomonaga-Luttinger model. Addition of a quadratic
term, k2/ (2m∗), to the linearised dispersion εk = EF + vFk should on a simple level
introduces a finite width to the delta function. Close to the Fermi energy the mo-
mentum can be expressed though energy as k = (ε− EF ) /vF giving the broadening
1/τε ∼ (ε− EF )2 / (mv2

F ) that increases from zero at ε = EF to bigger and bigger
values away from it, like the quasiparticle lifetime of the Fermi liquid in higher di-
mensions. However, unlike in the Fermi liquid perturbation theory in the k2/ (2m∗)
correction on top of the Tomonaga-Luttiger model fails due to many divergencies,
and there is no clear way how to deal with them [29, 30]. This is not totally surpris-
ing since linearisation of the dispersion imposes an additional symmetry (Lorentz
invariance) on the system. Thus, the eigenstates become additionally degenerate,
the energy and the momentum conservation laws of the linear model become the
same. When, a finite curvature (the parabolic 1/m∗ term) reduces the Lorentz in-
variance to Galilean, the energy and momentum conservation laws become different,
making the corresponding perturbation theory degenerate and producing various di-
vergencies.

These singularities occur not only at the special (Fermi) points but also at arbit-
rary momenta, analogously to another problem, the Fermi edge singularity effect in
x-ray absorption or emission in three dimensional metals. The solution to the latter
problem was given by Nozieres and De Dominicis in the form of the heavy impurity
model [31] that is an effective one-body problem of a single impurity (representing a
hole-like excitation deep under the Fermi level) coupled to many Fermi liquid qua-
siparticles at the Fermi level. The connection between the nonlinearity problem in
one dimension and the edge singularity in a Fermi liquid was first spotted on the
microscopic level for weakly interacting fermions in [32, 33].

The field theoretical methods, which were based only on this analogy, further led
L. Glazman and his co-workers to the phenomenological construction of the non-
linear Luttiger liquid theory [34]. In one dimension the continuum of the many-body
excitations does not cover the whole energy-momentum plane due to a kinematic
constraint, see the white regions in Fig. 1.3(a). For example, creation of an excit-
ation of the electron-hole pair type at a fixed momentum k 6= kF requires at least
a finite energy of removing at least a single particle at some finite distance from
the Fermi level and putting in the lowest available state just above the Fermi level
since there are only two Fermi points ±kF . In two dimension such a constraint
already does not exists since it is always possible to connect two different points
on the Fermi circle with a vector k of an arbitrary length, creating an excitation
with zero energy at arbitrary finite momentum |k| < 2kF . Therefore, a threshold in
the energy-momentum plane that separates the region with a finite density of states
from the zero density is yet another peculiarity of the one-dimensional physics.

This spectral threshold is an analog of the Fermi edge in the x-ray scattering
problem in three dimension. The nonlinear Luttinger liquid model was constructed
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Figure 1.3: (a) Density of the many-body excitations of a one-dimensional system
on the energy-momentum plane: finite in the grey areas and zero in the white areas.
The red line marks the border between the two defining the dispersion of the spectral
edge εth (k), it is generally a multi-valued function. The low energy regions around
the ±kF points, where the linear Luttinger liquid theory is valid, are marked with
green circles (b) Dynamical structure factor S (k, ε) along the vertical cut at a fixed
k1 in the non-linear region marked by the dashed line in (a) as a function of ε (only
its bottom half for ε < 0 is plotted). Above the threshold, ε > εth (k1), it is zero
and below, ε < εth (k), it is a power-law singularity close to the threshold with the
exponent α (k1) that generally depends on the position of the cut k1.

phenomenologically [34] as a heavy impurity at a fixed momentum, which takes the
excitations along the edge with arbitrary curvature up to higher energy—see the
red line in Fig. 1.3(a), coupled to the Luttinger liquid modes at low energy, which
describe the excitations just above (in the particle sector) or below (in the hole
sector) the spectral edge. The coupling is of the density-density type conserving the
occupation number of the heavy impurity that restricts the validity of this model
to higher energy, where the process of absorption or emission of the heavy impurity
by the Luttinger liquid modes is forbidden by a large energy barrier4.

The two unknown coupling constant between the mobile impurity and the pair
of the canonically conjugated variables of the Tomonaga-Luttinger model in Eq.
(1.2) can be fixed phenomenologically considering physical properties of the hybrid
system. One is the translation invariance of the couple model and the other is an
observable that corresponds to the change of the total energy with respect long-
range variations of the density. Thus, only one addition parameter in the nonlinear
Luttinger liquid theory, on top of v and K of the linear theory in one dimension, is
the dispersion of the spectral threshold εth (k), represented by the red line in Fig.

4Unlike in the x-ray problem, heavy impurity in the non-linear Luttinger theory has to be
mobile (so-called mobile impurity model) since the spectral threshold extends long all momenta.
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1.3(a), that enters as the single particles dispersion of the mobile impurity

HnLL = HTL +

∫
dx

[
(Vθ∇θ + Vϕ∇ϕ) d†d+ d†

(
εth (k)− i∂εth (k)

∂k
∂x

)
d

]
, (1.3)

where d is the fermionic operator of the mobile impurity that depends on the spatial
coordinate d ≡ d (x), the coupling constants are Vθ = ∂kεth (k) − k/m and Vϕ =
∂ρε (k)+πv/K, ρ is the particle density, and HTL is the Tomonaga-Luttinger model
in Eq. (1.2). Then, owing to the quadratic in the bosonic operators structure of
HTL, the observables in the nonlinear Luttinger theory given by the model in Eq.
(1.3) can be calculated using again the conformal field theory, after the coupling
between the mobile impurity and the hydrodynamic modes eliminated via a unitary
rotation, relating expectation value to the dispersion of the spectral threshold and
the Luttinger parameters. For instance, this gives power-law singularities around
the threshold in the dynamic response function in a wide energy range, see Fig.
1.3(b), and relates the corresponding exponents to the derivatives of εth (k), v, and
K. This behaviour is very different from just gradually disappearing quasiparticle
lifetime in the Fermi liquid theory in higher dimensions in Fig. 1.1(b).

Being constructed phenomenologically, the nonlinear Luttinger liquid theory is
universal in the sense that it is applicable to all types of interacting models in one
dimension: fermionic, bosonic, and spin. It also breaks the low energy restriction
of the Tomonaga-Luttinger model, strictly imposed by the linearisation condition
around the Fermi point. At the same time the nonlinear Luttinger liquid theory
leaves the problem of calculating the dispersion of the spectral edges in an interact-
ing system εth (k) open. It is also only the first example of an interacting theory
beyond the low energy limit in one dimension, which is however still restricted to
the proximity of the spectral edges. A broader question remains open: what is
the general theory of interacting systems at high energy that is not restricted to a
particular class of many-body excitations in one-dimension?

In this introduction to six papers [35–40], reprinted in the appendix, the answers
to both of these questions are discussed in the form of explicit calculation of the
dispersion for the spectral threshold and a new theory at high energy–hierarchy of
modes–that is not restricted to the proximity of the spectral edges, as well as a few
experiments confirming these theoretical predictions. Here we will also discuss an
application of the new high energy theory to the problem of magnetoelasticity in
one dimension.

The fundamental models of Fermi and Bose particles with short-range interaction
(with and without spin) in one dimension can be analysed using the available exact
diagonalisation method of Bethe ansatz [41]. While this approach is completely free
of approximations and it does provide the full microscopic information about the
exponentially large continuum of the many-body states at all energy scales, it makes
calculation of observables very difficult in practice, especially the ones that still
involve the many-body matrix elements, due to a huge mathematical complexity.
The problem of evaluating energy of the lowest (in the particle sector) and the
highest (in the hole sector) energy states for a fixed momentum, which form the
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dispersion of the spectral edge modes εth (k) and require solving only the eigenvalue
problem for a polynomial number of states, is still feasible in the thermodynamic
limit [35, 36]. It gives an empirical model for the dispersion with only one free
parameter–effective mass m∗,

εth (k) = µ+
k2
F

2m∗
± (k − k0)2

2m∗
, (1.4)

where ± refers to the particle/hole sector, see Fig. 1.3(a), k0 = 0 (kF ) for fermions
(bosons), and µ is the chemical potential. Here the concept of effective mass is
introduced at all energy scales that reduces to the renormalised velocity v = kF/m

∗

of the Tomonaga-Luttinger model at low energy. Thus, m∗ can be defined using only
the already existing low energy Luttinger parameter v in addition to the original
mass of the free particles as m∗ = Km for spinless particles and m∗ = Kσm in the
spinful case. This result is exact for spinless particles and non-parabolic deviations
are small but still finite for particles with spin [36]. In combination with Eq. (1.4)
the nonlinear Luttinger theory gives full description of the high energy modes around
the spectral edges in terms of only two Luttinger parameters v and K defined at
low energy, e.g. it gives an explicit dependence of the threshold exponent α on k,
see Fig. 1.3(b), in term of only v and K.

Away from the spectral edges the nonlinear Luttinger liquid theory becomes in-
applicable. However, also away from low energy, a different structure emerges–the
exponentially huge continuum of the many-body excitations splits itself into a hier-
archy of levels formed by only polynomial number of excitations, separated by powers
of the small parameter R2/L2 in their spectral power, where R is the interaction
radius and L is the length of the system [37, 38]. Thus, only small numbers of ex-
citations in a representative region on the energy-momentum plane accumulate the
principle amplitude of a particular observable. This allows analytical calculations
in the thermodynamic limit that are not restricted to the proximity of the spectral
edges. For instance, for spinless fermions the two strongest excitations, with R2/L2

to the zeroth power, form a single particles-like (parabolic) dispersion with a renor-
malised mass in the spectral function and the second-level, with R2/L2 to the first
power, produce an inverse power-law line shape to the principle parabola. In the
hole sector, where the strongest excitations are on the spectral edge, see the red line
between the points ±kF in Fig. 1.3(a), the low energy side of this line shape is the
threshold singularity calculated by the nonlinear Luttinger theory and the exponent
α (k) is the same as predicted by the model in Eq. (1.3).

At low energy the hierarchy of modes crosses over into the linear Luttinger liquid
that can be illustrated using the local density of states n (ε). At high energy the
main contribution is accumulated by the principal parabola (the strongest level for
this observable) giving the inverse square root functional behaviour, n (ε) ∼ 1/

√
ε,

like for a free system, where the interactions only renormalise the prefactor. At
low energy the Tomonaga-Luttinger model predicts that n (ε) is suppressed at the
Fermi energy as a power-law, n (ε) ∼ |ε− EF |β where the exponent β depends
on the Luttinger parameter K [23]. This signals a breakdown of the hierarchy of
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modes, which predicts a finite n (ε) ∼ 1/
√
EF , at low energy. Thus, the Tomonaga-

Luttinger model becomes the relevant theory, in which all of the many-body modes
form hydrodynamic excitations in the linear regime, marked by green circles in Fig.
1.3(a), in which Lorentz invariance is dominant. However, the further we go into
the non-linear region the more important becomes the nonlinearity, reducing Lorentz
invariance to Galilean and making the hierarchy of modes the relevant theory at high
energy. The border between the two regimes is of the crossover type that can be
established via the Bethe ansatz approach, which is valid at all energy scales—see
[38] for details.

Hierarchy of interacting modes has already been applied to the many-body theory
of magnetoelasticity in one dimension. In a spin chain, the atoms that hosts the
spins can move around their equilibrium positions changing the exchange energy
between the neighbours. This is the microscopic mechanism for coupling magnetic
excitations of the Heisenberg model with the phonons that are formed by motion of
the atoms in the chain. The magnetic energy scale characterised by the exchange
energy is usually much smaller than the phononic energy scale characterised by the
Debye’s energy, making the interaction between the two subsystems perturbative.
The renormalisation of the mechanical properties, e.g. change of the velocity of
the acoustic mode, is given by the next-neighbour correlation function of the spins,
which can be related only to the ground states energy of the Heisenberg model in
one dimension, which is a well-established quantity [41].

There is also another process in the microscopic theory—attenuation of the phon-
ons, which is a bit more complicated. The resonance decay into the many-body ex-
citations of the spin chain is always possible due to a continuum of their excitations,
see the grey area in Fig. 1.3(a), but is very slow since the relevant high-energy excit-
ations belong to the second level of the hierarchy so that the transition amplitude,
∼ 1/L4, vanishes in the thermodynamic limit. The main mechanism is then hybrid-
isation of a single phonon with a continuum of the many-body magnetic excitations.
While the degree of hybridisation with one many-body state is tiny, the sum over a
polynomial number of these second-level excitations compensates for this smallness
remaining finite in the thermodynamic limit. And the contribution of the third- and
higher-level excitations become already small, i.e. their contribution also vanishes
in the thermodynamic limit, which is a manifestation of the hierarchy of modes in
this theory [40]. The magnetic field dependence of the phononic attenuation is an
observable that can be probed directly, e.g. in ultrasound experiments in anisotropic
magnetic insulators.

Experiments on probing the high energy regime are already ongoing in fermionic
realisations of interacting one-dimensional systems [38, 39]. In a double-well hetero-
structure, the two-dimensional electron gas in the bottom layer has a well defined
Fermi energy (a Fermi liquid) that serves as a good probe of the quantum wires
formed in the top layer by potential gates, see the sketch in the top-left inset in Fig.
1.4(a). A current through such a system adds or removes an electron from the wire,
depending on the sign of the bias applied between the two layers Vdc, measuring the
spectral function of the one-dimensional electronic system. A variable in amplitude
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Figure 1.4: (a) Conductance through a double-well heterostructure with quantum
wires of length L = 10µm, see details in the text. In the linear regime around
kF it shows two different velocities, spin-charge separation—see a zoom-in in the
bottom-right inset. The solid green parabola marks the strongest excitations of
the one-dimensional system. All other lines mark parasitic signals coming from
different parts of the sample and from two-dimensional dispersion probed by the one-
dimensional system. The figure is taken from Ref. [38]. (b) The same experiment
as in (a) but the wires are shorter, L = 1µm. All lines mark parasitic signals.
In addition to the principal one-dimensional parabola, a one-dimensional replica
formed by subleading excitation is observed; marked by arrows. The figure is taken
from Ref. [39].

magnetic field applied perpendicular to the wires (B) gives a momentum resolution
by changing the projection of the electron momentum parallel to the wire in a con-
trollable way. A transport measurement through such a structure as a function of B
and Vdc probes directly the spectral function as a function of momentum and energy
A (k, ε), see details in [28].

At low energy the already known spin-charge separation—a Luttinger liquid
effect—is observed, see the bottom-left inset in Fig. 1.4(a). Fitting of the charge
and the spin velocities gives the ration vρ/vσ = 1.4 ÷ 1.8. The existence of two
objects with different linear dispersions (that is absent in the Fermi liquid theory
but is predicted for Luttinger liquids) confirms that the interactions in the one-
dimension electronic system are appreciable and this ration between the velocities
gives the ration between the interaction and the kinetic energies of the order of
one. At high energy there is only a single parabola—formed by the leading order
excitations—in long wire (of length about L = 10µm), see the main figure in Fig.
1.4(a). An estimate of the amplitude of the first subleading modes gives four orders
of magnitude (λ2

F/L
2 ∼ 104 where λF was used as an estimate for the screening
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radius R) suppression with respect to the amplitude of the observable leading mode,
reducing the amplitude of the subleading modes at least an order of magnitude below
the noise floor of this experiment. In shorter wires (of length about L = 1µm)
the suppression λ2

F/L
2 ∼ 102 becomes two order of magnitude weaker making the

first subleading mode (a replica of the principal parabola in the particle sector)
observable, see Fig. 1.4(b), thus, experimentally confirming the existence of the
small parameter R2/L2 at high energy in a one-dimensional interacting system.

The remainder of the introduction is organised as follows. Chapter 2 contains a
derivation of the Tomonaga-Luttinger model and a brief account of the observables
evaluated within this model. This low energy theory of interactions is well-developed
in the literature and is confirmed quite comprehensively in experiments. Thus, it
can serve as a good reference point to any further developments in one dimension.
Section 2.1 describes the bosonisation technique in one dimension that will be used
in Sections 2.2 and 2.3 and will be needed in Chapter 3 in the non-linear Luttinger
liquid theory. A derivation of the local density of states within the Tomonaga-
Luttinger model is given in Section 2.2. This quantity is used to demonstrate the
crossover from the hierarchy of modes at high energy to the Luttinger liquid beha-
viour at low energy in papers [37, 38]. In Section 2.3, the spin-charge separation
effect is derived for the spinful model with short range interactions using the boson-
isation approach. The ratio of the velocities of the charge to the spin modes is used
as a gauge of the interaction strength in the experiment on transport spectroscopy
that measures a one dimensional spectral function at all energy scales [39].

A summary of the mobile impurity model and its main prediction—power-law
singularities at the spectral threshold—is presented in Chapter 3. In Section 3.1,
a phenomenological construction of the model is given by extending the notion of
Luttinger liquids beyond the linear region and low energy. This only new quantity
needed for the non-linear model is dispersion of the spectral edge at high energies.
A calculation of the power-laws around the spectral edges is given in terms of the
curvature of this dispersion and the low energy parameters v and K. This dispersion
is evaluated microscopically in the papers [35, 36] for the all principal models with
short range interactions in one dimension in terms of only the Luttinger parameter
K and the free particle mass. In conjunction with the mobile impurity model result,
it reduces the dependencies of the threshold exponents to only the momentum in the
non-linear region and the Luttinger parameters from low energy. These expressions
for the spinless and spinful fermion cases are obtained in Section 3.2.

Details of the microscopic Bethe ansatz technique are given in Chapter 4. This
is an exact diagonalisation tools that is applicable to a wide range of systems with
short range interactions in one dimension. In Section 4.1, a derivation of the Bethe
ansatz equations is given, using the XXZ model as an example, which reduces the
exponential complexity of diagonalising a many-body Hamiltonian to solving only a
system of N non-linear equation, where N is the number of particles. A construction
of the algebraic representation of Bethe ansatz is given in Section 4.2. This approach
is an essential tool enabling evaluation of the matrix elements, generally needed for
the observables, for a large number of particles. Both technique are used as a work
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horse in the papers [35, 36] for evaluating the dispersion of the spectral threshold, for
identifying the hierarchy of modes at high energy and for studying its crossover to
the Luttinger liquid physics in low energy in the papers [37, 38], and for constructing
the many-body theory of magnetoelasticity in the paper [40].

An introduction to magnetoelasticity is given in Chapter 5. The microscopic
origin of the magneto-elastic coupling is discussed in Section 5.1 and experimentally
accessible observables in this class of systems in one dimension are summarised in
Section 5.2. This chapter also serves as an extended introduction to the paper [40].
Finally, concluding remarks are given in Chapter 6.
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Chapter 2

Low energies

This chapter contains a review of the Luttiger liquid theory. It starts from the
linear approximation to the interacting model of spinless fermions. Then, the bosonic
degrees of freedom are introduced via a rotation in Fock space and it is shown that in
these variables the interacting model is diagonal. The usual form of the Tomonaga-
Luttiger model is finally given in term of the canonically conjugated fields θ and
ϕ that are superpositions of the bosonic operators. A more convenient tool for
calculating the expectation values is the conformal field theory since the model is
quadratic in bosons. In Section 2.2 we will present a calculation of the correlation
function and the local density of states. Finally, we will bosonise the model of
spinful fermions with density-density interaction and show that the resulting pair
of Tomonaga-Luttinger models for the spin and charge degrees of freedom have
different velocities explicitly in Section 2.3. In this chapter we will use the notations
of the book [23].

Let us start from the model of interacting spinless fermions,

H =
∑
k

εkc
†
kck +

∑
q

Vq
2L
ρ (q) ρ (−q) , (2.1)

where
εk =

k2

2m
(2.2)

is the parabolic dispersion, the ck operators obey the Fermi commutation relations{
ck, c

†
k′

}
= δkk′ , (2.3)

the Fourier transform of the density operator is

ρ (q) =
∑
k

c†k+qck, (2.4)

Vq is the Fourier transform of the two-body interaction potential, and we assume
~ = 1.

Close to the Fermi energy the spectrum is almost linear so it can be linearised
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Figure 2.1: (a) The model of fermions with a parabolic dispersion in one dimension
in free space. The single particles states up to a Fermi energy are filled (grey region)
and the states above the Fermi energy are empty (white region). The dashed lines
are the linearised dispersion at the two Fermi points ±kF . (b) The model with
linearised dispersion that splits the electrons into two subbands: the left (L) and
the right (R) movers with the velocities ±vF . Each subband is extended to infinite
number of negative states.

explicitly in the model in Eq. (2.1). Since there are only two Fermi point (±kF ) in
one dimension this procedure introduces two subbands,

εk ≈ εL,RvFk (2.5)

where vF = pF/m, that represent the left movers (L) with εL = −1 and the right
movers (R) with εR = 1, see Fig. 2.1(b). Substitution of Eq. (2.5) into Eq. (2.1)
gives

H =
∑

k,r=L,R

vF (εrk − kF ) c†kck +
∑
q

Vq
2L
ρ (q) ρ (−q) , (2.6)

where the Fermi energy was already subtracted from the Hamiltonian.
Although, at high energy the models in Eq. (2.1) and Eq. (2.6) are very different,

see Fig. 2.1, at low energy they are almost the same making their observable at low
energy also almost the same. The models in Eq. (2.6) however is much easier to
analyse due to purely linear spectrum of the single particle excitations that increases
the symmetry from Galelian to Lorentzian, making the energy and the momentum
conservation laws the same. In the following section we review the analysis of model
in Eq. (2.6) extending k to ±∞ and forgetting about the curvature of the original
dispersion completely.
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E 0 1 2 3

Fermions |110000 . . . 〉F |101000 . . . 〉F
|011000 . . . 〉F |010100 . . . 〉F
|100100 . . . 〉F |100010 . . . 〉F

Bosons |00〉B |10〉B
|01〉B |11〉B
|20〉B |30〉B

Table 2.1: The correspondence between the electron-hole pair excitations in a fermi-
onic system with a linear dispersion and bosonic excitations with the same dispersion
for N = 2 fermionic particles and up to the energy E = 3.

2.1 Bosonisation
Before mapping the fermionic degrees of freedom in Eq. (2.6) onto bosons, it is
convenient to split the linear Hamiltonian into the free part

H0 =
∑

k,r=L,R

vF (εrk − kF ) c†krckr (2.7)

and the interaction part

Hint =
∑
q

Vq
2L
ρ (q) ρ (−q) . (2.8)

Then, let us deal with H0 first.
The linear spectrum in Eq. (2.7) has equidistant level spacing reminding of

a single bosonic level, which can be populated with one, two, three, and so on
excitations producing the same spectrum. At a more detailed level, it is not a
single fermion that can be represented as a bosonic excitation in a many-particle
system but an electron-hole pair on top of the Fermi sea; its total spin is even
(zero) like that of a boson. In order to visualise the structure of the many-body
spectrum of free particles, let us consider a simple example of a Fermi sea consisting
of only N = 1 fermion, see Fig. 2.2(a). There is only one electron-hole pair with
possible momentum k = 1, 2, 3, . . . , see an illustration in Fig. 2.2(b). This spectrum
corresponds to the spectrum of the bosonic Hamiltonian1 H =

∑∞
k=0 kb

†
kbk under

the constraint that the total number of bosons is N = 1. Starting from the Fermi
sea with N = 2 fermions, there is only one electron-hole pair excitation at the
lowest energy E = 1 with k = 1. There are two excitations with E = 2, two
excitations with E = 3, and so on. The correspondence between the fermionic
|11, 12, 03, . . . 〉F = c†1c

†
2 · · · |0〉 and the bosonic |n1, n2, . . . 〉B =

(
b†1

)n1
(
b†2

)n2

· · · |0〉
states (where |0〉 is the vacuum state) up to the energy E = 3 is given in Table. 2.1.
The degeneracies coincide as well thus this is also the spectrum of the same bosonic

1We consider only one branch (εR = 1) in the model in Eq. (2.7) and assume that vF = 1 and
k = 0, 1, 2, . . . for illustrative purposes here.
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Hamiltonian H =
∑∞

k=0 kb
†
kbk for N = 2 bosons. A rigorous proof of completeness

of the Fock space under the Bose-Fermi mapping for arbitrary N is given in [42].

4

3

2

1

0

4

3

2

1

0

Figure 2.2: States of a fermionic sys-
tem with a linear spectrum for N = 1:
(a) the ground state |10000 . . . 〉F and
(b) an electron-hole pair |00100 . . . 〉F .

A formal change of variables can be in-
troduced by constructing bosonic operat-
ors out of the fermionic density operator in
the momentum space in Eq. (2.4), which
creates electron-hole pairs, in the following
way

b†pr = i

√
2π

L |p|ρ
†
pr

= i

√
2π

L |p|
∑
k

c†k+p,rckr, (2.9)

bpr = −i
√

2π

L |p|ρpr

= −i
√

2π

L |p|
∑
k

c†k−p,rckr.(2.10)

These bosonic operators immediately commute when the band index r is different,[
bpR, b

†
pL

]
= 0. Within the same subband commutation relations encounter a di-

vergence that needs to regularised first. It is caused by extension of the linearised
spectrum to −∞, see Fig. 2.1(b), that creates formally an infinite number of occu-
pied states at negative energies. The common way of handling this problem is by
introducing normal ordering,

: AB := AB − 〈0 |AB| 0〉 , (2.11)

where the average of over the ground state, 〈0 |. . . | 0〉, is subtracted from the oper-
ators. This is the only property of the normal ordering that is needed in the present
context. For instance, application of the rule in Eq. (2.11) to the fermionic operators
Eqs. (2.9,2.10) gives

: c†k±p,rcpr :=

{
c†k±p,rckr, p 6= 0,

c†krckr −
〈

0
∣∣∣c†krckr∣∣∣ 0〉 , p = 0.

(2.12)

The commutator between the bosonic operators within the same subband eval-
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uates as [
bpr, b

†
p′r

]
=

2π

L
√
|p| |p′|

∑
k

(
c†k+p−p′,rckr − c†k+p,rck+p′,r

)
=

2π

L |p|δpp′
∑
k

(
: c†krckr − c†k+p,rck+p,r :

+
〈

0
∣∣∣c†krckr − c†k+p,rck+p,r

∣∣∣ 0〉)
= δpp′ . (2.13)

When p 6= p′ in the first line of the above expression, the momentum k in the first
term under the sum can be shifted as k → k−p and is canceled by the second term,
resulting in zero for the whole sum, i.e. in δpp′ in the second line. When p = p′, the
shift in k becomes trickier. A way to clarify it is by introducing the normal ordering
in the second line of the above expression using Eq. (2.12). Then, the two parts of
the normal ordered term cancel each other under the shift of k → k + p in the first
part. And the second term with the expectation values evaluates as

2π

Lp

(
0∑

k=−∞

1−
−p∑

k=−∞

1

)
=

2π

Lp

Lp

2π
= 1, (2.14)

where 1 is the expectation value of the filled fermionic states, producing the bosonic
commutation relation between the operators defined in Eqs. (2.9,2.10)[

bpr, b
†
p′r′

]
= δpp′δrr′ . (2.15)

Now, the free model in terms of the original fermionic degrees of freedom in Eq.
(2.7) has to be mapped to the bosonic representation in Eqs. (2.9,2.10). Instead
of solving the inverse problem of expressing the fermionic operators through the
bosonic operators explicitly, it is more convenient to commute the bpr with H0 using
the fermionic commutation rules,

[bpr, H0] = −i
√

2π

L |p|
∑
r′kk′

[
c†k−p,rckr, vF (εr′k

′ − kF ) c†k′r′ck′r′
]

= −i
√

2π

L |p|vF εr |p|
∑
k

c†k−p,rckr

= vF εr |p| bpr. (2.16)

The commutator of the bosonic creation operators is done in the same way giving[
b†pr, H0

]
= vF εr |p| b†pr.
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The number of electron hole-pairs operator can be introduced as follows,

Nr =
∑
k

(
c†krckr −

〈
0
∣∣∣c†krckr∣∣∣ 0〉) , (2.17)

where the average 〈0 |. . . | 0〉 is again taken with respect to the ground state. Since
this operator commutes with the Hamiltonian, [H0, Nr] = 0, we can evaluate an
expectation value of H0 with respect to a state with a fixed value of 〈Nr〉 = nr,

〈nr |H0|nr〉 =
2πvF
L

nr∑
q=1

q =
πvF
L
nr (nr + 1) . (2.18)

Here the electron-hole pairs are created around the Fermi energy. The only form
that obeys Eq. (2.16) and Eq. (2.18) is

H0 =
∑
r,p 6=0

(
vF |p| b†prbpr +

πvF
L
N2
r

)
, (2.19)

where we have already substructed the linear in Nr term since it is a conserved
quantity of the model.

It is more convenient to use the bosonic model in terms of canonically conjugated
variables rather than in the form of second quantisation in Eq. (2.19). The usual
way of introducing coordinate-momentum variables is via a pair of fields in real
space in terms of the bosonic operators,

ϕ (x) = − (NR +NL)
πx

L
− iπ

L

∑
p 6=0

√
L |p|
2π

e−α|p|/2−ipx

p

[
b†pR + b†−p,L

]
(2.20)

and

θ (x) = (NR −NL)
πx

L
− iπ

L

∑
p6=0

√
L |p|
2π

e−α|p|/2−ipx

|p|
[
b†pR − b†−p,L

]
, (2.21)

where Y (x) = 1 for x ≥ 0 and Y (x) = 0 for x < 0 is a step function and α is
an arbitrary small parameter that is needed for regularisation. Strictly speaking
the α → 0 limit has to be taken, but it is simpler for calculations to keep it finite
that corresponds to having a finite bandwidth, ω0 ∼ 1/α, for the model. The
commutation relation between these two fields can be evaluated using Eq. (2.15) as

[ϕ (x) , θ (x′)] =
∑
p 6=0

π

Lp
eip(x

′−x)+α|p|

= i

∫ ∞
0

dp

p
sin (p (x′ − x)) e−α|p|

=
iπ

2
sign (x′ − x) , (2.22)
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where in the second line the continuum,
∑

p 2π/L→
∫
dp, and the α→ 0 limit were

taken. Here sign (x) = 1 for x > 0, sign (x) = −1 for x < 0, and sign (0) = 1/2
is the sign function. The derivative of the above equation with respect to x′ gives
almost the canonical commutation relation,

[ϕ (x) ,∇θ (x′)] = iπδ (x′ − x) , (2.23)

for ϕ and ∇θ. Thus, ∇θ/π can be identified as the momentum and ϕ as the co-
ordinate variable.

Gradients of ϕ and θ can be evaluated in terms of the density operators of the
left and the right movers in the continuum limit as

∇ϕ (x) = −π (ρR (x) + ρL (x)) , (2.24)
∇θ (x) = π (ρR (x)− ρL (x)) , (2.25)

where the real space densities are the Fourier transforms of Eqs. (2.9,2.10)

ρr (x) =
1

2π

∫
dpeipxρpr. (2.26)

It gives ∇ϕ (x) as a sum of the densities of both subbands that can be interpreted
as a total density fluctuation at point x and ∇θ (x) is a difference in the number of
the left and the right movers. Thus, it can be interpreted as the current operator.
Finally, the free model in Eq. (2.19) can be written using Eqs. (2.20,2.21) as

H0 =
vF
2π

∫
dx
[
(∇θ)2 + (∇ϕ)2] . (2.27)

The last step is mapping of the interaction part of the linear Hamiltonian in Eq.
(2.8) onto the bosonic variables. The bosonic operators in Eqs. (2.9,2.10) are linear
in densities. Therefore, the resulting form of Hint will also be a quadratic form in
bosonic variables. This is a huge advantage of the bosonisation procedure that maps
the whole interacting Hamiltonian that is quartic in the original fermionic operators
onto a quadratic form in a bosonic operators that can be diagonalised trivially. This
mapping holds for any interaction strength V , including the regions of intermediate
and large values of V where there is no hope to apply the perturbation theory to
free fermion in any form.2 Instead of the momentum representation of Hint in Eq.
(2.8), we will start from the real space representation,

Hint =

∫
dxdx′V (x− x′) ρ (x) ρ (x′) , (2.28)

and consider only a short range interaction potential, V (x− x′) ≈ V0δ (x− x′). Fi-
nite range interactions potential can also be taken in account by a similar procedure
but we restrict ourselves to the delta function for illustration purposes here.

2In one dimension perturbation theory in interactions produces logarithmic divergencies, unlike
in two and three dimensions, so strictly speaking it is inapplicable even at small V .
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The fermionic field operator in the real space can be split into a sum over two
subbands consisting the left and right the movers, see visual representation of the
bands in Fig. 2.2(b), as

ψ (x) =
1√
L

[ ∑
−Λ<k−kF<Λ

eikxck +
∑

−Λ<k+kF<Λ

eikxck

]
(2.29)

= ψL (x) + ψR (x) . (2.30)

where Λ is a momentum cutoff. The total density operator, ρ (x) = ψ† (x)ψ (x),
becomes

ρ (x) = ψ†L (x)ψL (x) + ψ†R (x)ψR (x) +
[
ψ†R (x)ψL (x) + ψ†L (x)ψR (x)

]
. (2.31)

The first two terms here correspond to the scattering processes within the same sub-
band that are responding to the density fluctuation at q ∼ 0 and the last two terms
are the scattering process between the two subbands at q ∼ 2kF . In a continuum
model with a short range interaction only the first pair is responsible for the low
energy excitations [43, 44]. Thus we keep only their contributions to the density
fluctuations,

ρ (x) = ρL (x) + ρR (x) , (2.32)

where the density operators for each subband can, in turn, be expressed in terms of
the bosonic variables using Eqs. (2.9,2.10).

For the delta-functional interaction profile the interaction Hamiltonian depends
only on one parameter, the interaction strength V0,

Hint = V0

∫
dxρ2 (x) , (2.33)

where the density squared operator is split into the left and the right movers using
Eq. (2.32) as

ρ (x)2 = ρ2
R (x) + ρ2

L (x) + 2ρR (x) ρL (x) , (2.34)

where the densities of different subbands commute with each other. Expressing the
ρr (x) operator in the bosonic language of ϕ and θ by means of the relations in Eqs.
(2.24, 2.25) the contribution of the first two terms become

V0

∫
dxρR (x) ρR (x) =

V0

(2π)2

∫
dx (∇ϕ−∇θ)2 (2.35)

and
V0

∫
dxρL (x) ρL (x) =

V0

(2π)2

∫
dx (∇ϕ+∇θ)2 . (2.36)
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The contribution of the third term is obtained via the same procedure as

2V0

∫
dxρL (x) ρR (x) =

2V0

(2π)2

∫
dx
[
(∇ϕ)2 − (∇θ)2] . (2.37)

Then, the interaction part of the Hamiltonian is the sum of all three contributions
in Eqs. (2.35,2.36,2.37),

Hint =
4V0

(2π)2

∫
dx (∇ϕ)2 . (2.38)

The total Hamiltonian in terms of ϕ and θ is a sum of H0 in Eq. (2.27) and Hint

in Eq. (2.38),

H =
vF
2π

∫
dx (∇θ)2 +

(
vF
2π

+
4V0

(2π)2

)∫
dx (∇ϕ)2 . (2.39)

It is usually parameterised in terms of the Luttinger parameters v and K that are
defined via the factors in front of the two terms above as

vK = vF , (2.40)
v

K
= vF

(
1 +

2V0

πvF

)
, (2.41)

which can be solved immediately for v and K as

v = vF

√
1 +

2V0

πvF
, (2.42)

K =
1√

1 + 2V0
πvF

. (2.43)

Note that for a finite-range interaction, V (x), the explicit expressions of Luttinger
parameters in terms of microscopic interaction parameters will be different but the
form of H in terms of ϕ and θ will stay the same. It is also instructive to note that
Eq. (2.40) holds generally for all microscopic systems with Galilean invariance [45].
In terms of these parameters Eq. (2.39) reads as

HTL =
v

2π

∫
dx

[
K (∇θ)2 +

1

K
(∇ϕ)2

]
. (2.44)

This is the celebrated Tomonaga-Luttiger model written in the commonly used form
that was stated in the introduction in Eq. (1.2).

While the derivation here was performed starting from a specific microscopic
model, the resulting Hamiltonian is generic for linear spectrum and arbitrary in-
teractions, e.g. see the book in [23]. It is usual in the literature to start already
from the Tomonaga-Luttinger model in Eq. (2.44), where v and K are arbitrary
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parameters that contain all the relevant information about microscopic details of the
specific underlaying model, without rederiving it every time. For fermionic systems
K < 1 (v > vF ) for repulsive and K > 1 (v < vF ) for attractive interactions.

2.2 Correlation functions
The bosonised model in Eq. (2.19) in the second quantisation representation or in
Eq. (2.44) in the representation of canonically conjugated variables is already diag-
onal in the bosonic degrees of freedom: its eigenvectors are single bosonic excitations.
In terms of the original fermions, see Eq. (2.9), each bosonic excitation consists of
many electron-hole pairs created at a given momentum that form (charge) density
waves (CDW) on top of the Fermi ground state. Thus, it is also easier to evaluate
observables as expectation values with respect to the effective free bosonic model,
since the bosonic path integrals are easer to construct than the fermionic ones, in
which anti-commuticity of the fermions complicate matters considerably [46]. Then,
the well developed machinery of path integral can be used for practical calculations
of the correlation functions. The only non-trivial task in this approach is expressing
the original fermionic operators of the physical observables in terms of the bosonic
degrees of freedom.

The form of the fermionic field operator for a single subband ψr (x) can be
assessed by means of a similar procedure to what has been used for establishing the
form of the free Hamiltonian H0, see in Eqs. (2.16,2.19). For ψr (x), the density
operator ρr (x) needs to be commuting with the field operator for the same subband
using their representations in terms of the fermionic operators in Eqs. (2.9,2.29)
and the fermionic commutation rules,[

ρ†pr, ψr
]

=
1√
L

∑
kk′

eik
′x
[
c†k+p,rckr, ck′,r

]
= −eipxψr (x) . (2.45)

The bosonic representation of the field operator then can be guessed as

ψr (x) ∼ e
∑
p

2πεr
pL

eipxρpr (2.46)

that satisfy the same commutation rule in Eq. (2.45), which can be straightforwardly
checked by using the bosonic commutation relation for ρpr and ρ†pr in Eq. (2.13).

The form in Eq. (2.45) is correct but, unfortunately, it still misses an essential
part. It can be seen almost immediately since the field operator ψr (x) changes the
total number of particles in the system by destroying one. On the other hand the
form in Eq. (2.45) conserves the number of particles since the density operator ρpr
creates only electron-hole pairs. Therefore, the missing factor in the bosonic rep-
resentation has to change the total number of fermions. These additional operators
are the so-called ’Klein factors’. They commute with the bosonic operators and are
introduced for each fermion species r as Ur. The full expression for the field operator
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reads
ψr (x) = Ure

∑
p

2πεr
pL

eipxρpr (2.47)

In the above expression, the operator Ur destroys the density uniformly, i.e. Ur is
independent of x, and the exponential factor is responsible for the spatial depend-
ence. Due to this factorisation only the exponential part is needed for calculating
the correlation functions. Although the Ur operators are needed for the rigorous
mapping between the fermions and the bosons [42, 47], they will not be introduced
here since they will not be needed for the calculations in what follows. A detailed
but a bit tedious construction of the Klein factors Ur and the exact fermionic to
bosonic mapping is given, for example, in a good review in [9]. The usual form of
the ψr (x) operator in terms of the bosonic fields ϕ (x) and θ (x) can be recovered
by employing the definitions in Eqs. (2.24,2.25,2.26) from Eq. (2.47) as

ψr (x) =
Ur√
2πα

eiεrkF xe−i(εrϕ(x)−θ(x)), (2.48)

where α is a small auxiliary variable that should be understood as a cutoff represent-
ing a finite bandwidth, like in the definitions of ϕ (x) and θ (x) in Eqs. (2.20,2.21),
and the α→ 0 limit has to be taken in the final results.

Correlation function can be evaluated in a convenient way using the formalism
of the functional integral. Here a detailed information to the technique will be omit
and the reader is referred to the book in [48]. The notations of this book in the
bosonic case will be followed below.

Let us start with Tomonaga-Luttinger model HTL in Eq. (2.44) represented in
terms of two canonically conjugated fields ϕ (x) and Π = ∇θ/π that satisfy the
canonical commutation relation

[ψ (x) ,Π (x′)] = iδ (x− x′) , (2.49)

which is equivalent to Eq. (2.23). The partition function can be expressed via the
following functional integral,

Z =

∫
DϕDΠe

∫
dτdx(iΠ∂τϕ−HTL), (2.50)

where ϕ ≡ ϕ (x, τ) and Π ≡ Π (x, τ) and the function of coordinate x and imaginary
time τ ,

∫
Dϕ means integration over all possible functions ϕ (x, τ), finite temperat-

ures are considered thus the integral over τ is taken over a finite range
∫ β

0
dτ , and β

is the inverse temperature. Bosonic statistics of HTL allows only the periodic bound-
ary condition, ϕ (x, τ + β) = ϕ (x, τ) [48]. The time-ordered correlation functions,
involving a product of two operators A (x, τ) and B (0, 0), where the time evolution
of an operator is given by the Hamiltonian,

A (τ) = eτHA (0) e−τH , (2.51)
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can also be expressed via functional integral as

〈TA (x, τ)B (0, 0)〉 =
1

Z

∫
DϕDΠA (x, τ)B (0, 0) e

∫
dτdx(iΠ∂τϕ−HTL), (2.52)

where T is the time ordering operator and A (x, τ) and B (0, 0) depend on x and
τ through the bosonic fields as A (ϕ (x, τ) , θ (x, τ)) and B (ϕ (0, 0) , θ (0, 0)). The
functional integral representation automatically takes care of the time order in the
right hand side of the above expression [48].

The common observable that describes dynamical properties of the system is the
single-particle Green function. For the right movers subband it reads

GR (x, τ) = −
〈
TψR (x, τ)ψ†R (0, 0)

〉
= −e

ikF x

2πα

〈
Tei(ϕ(x,τ)−θ(x,τ))e−i(ϕ(0,0)−θ(0,0))

〉
= −e

ikF x

2πα
e−

1
2〈T [(ϕ(x,τ)−θ(x,τ))−(ϕ(0,0)−θ(0,0))]2〉 (2.53)

where Eq. (2.48) was used to express ψR (x) in terms of the field operators ϕ and
θ. The third line was obtained from the second by means of the Debye-Waller rela-
tionship, which can be proved directly in the operator form [49]. Now the function
integral in Eq. (2.52) can be used in order to evaluate the following correlation
functions, 〈

T (ϕ (r)− ϕ (0))2〉 ,〈
T (θ (r)− θ (0))2〉 ,
〈Tθ (r)ϕ (0)〉 ,

(2.54)

of the bosonic fields, where the short hand notations r = (x, τ) in the real and
q = (k, ω) in the Fourier space for the calculations below were introduced.

Let us first evaluate the first line in Eq. (2.54) in the Fourier domain of the
bosonic field. Introducing Fourier reprentation of the field ϕ (r) as

ϕ (r) =
1

βL

∑
q

ϕ (q) eiq·r, (2.55)

where ϕ (q) is its Fourier component, the needed correlation function can be written
as 〈

T (ϕ (r)− ϕ (0))2〉 =
1

(βL)2

∑
q1q2

〈Tϕ (q1)ϕ (q2)〉
(
eiq1·r − 1

) (
eiq2·r − 1

)
, (2.56)

where eiq·r = ei(kx−ωτ). The average in the momentum space has to be evaluated
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using the function integral in Eq. (2.52) as

〈Tϕ (q1)ϕ (q2)〉 =
1

Z

∫
DϕDθϕ (q1)ϕ (q2) e−S, (2.57)

where the action given by Hamiltonian in Eq. (2.44) in the real space,

S = −
∫
d2r

[
i

π
∇θ (r) ∂τϕ (r)− 1

2π

(
vK (∇θ (r))2 +

v

K
(∇ϕ (r))2

)]
, (2.58)

has to be expressed in the momentum space as well. Using Eq. (2.55) and the
corresponding expression for the other field θ (r), which is written in the absolutely
the same way in terms of its Fourier components θ (q), the action reads

S = − 1

βL

∑
q

[
−ikω

π
ϕ (q) θ (−q)− vK

2π
k2θ (q) θ (−q)− vk2

2πK
ϕ (q)ϕ (−q)

]
,

(2.59)
Note that Fourier components of the real fields ϕ and θ have the following property
ϕ (−q) = ϕ∗ (q) and θ (−q) = θ∗ (q). Since the expression under the average does
not depend on θ, the integration over θ is easier to do first. By completing the
square of the θ part in the action,

S = − 1

βL

∑
q

[
− vK

2π
k2

(
θ (q) +

iωϕ (q)

uKk

)(
θ (−q) +

iωϕ (−q)

uKk

)

− ω

2πvK
ϕ (q)ϕ (−q)− vk2

2πK
ϕ (q)ϕ (−q)

]
, (2.60)

the shifted field θ̃ (q) = θ (q) + iωϕ(q)
uKk

can be integrated as a Gaussian integral. The
resulting factor cancels with the same in the denominator reducing Eq. (2.57) to an
integral over only one field ϕ,

〈Tϕ (q1)ϕ (q2)〉 =
1

Zϕ

∫
Dϕϕ (q1)ϕ (q2) e−Sϕ , (2.61)

where the partition function, Zϕ =
∫
Dϕe−Sϕ , and the reduced action is a function

of ϕ field only,

Sϕ =
1

βL

∑
q

1

2πK

[ω
v

+ vk2
]
ϕ∗ (q)ϕ (q) . (2.62)

The second Gaussian integral over ϕ finally gives

〈Tϕ (q1)ϕ (q2)〉 =
πKδq1,q2βL
ω2

v
+ vk2

. (2.63)

Substitution of the above result into Eq. (2.56) gives the following real space
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correlation function,〈
T (ϕ (r)− ϕ (0))2〉 =

1

βL

∑
q

πK
ω2

v
+ vk2

(2− 2 cos (q · r))

=
1

β

∑
ω

∫ ∞
0

dk

2π

πK
ω2

v
+ vk2

(1− cos (kx+ ωτ))

The thermodynamic limit of L→∞ was taken producing an integral over k in the
second line of the above expression. In the zero temperature limit the summation
over the bosonic Matsubara frequencies turns into an integral over the imaginary
axis,

∑
ω /β →

∫
dω/ (2π) and the sum over energies can be evaluated explicitly, see

[13] for details of the finite temperature technique, producing

〈
T (ϕ (r)− ϕ (0))2〉 = K

∫ ∞
0

dk

k

(
1− e−v|τ |k cos (kx)

)
. (2.64)

This integral is diverged for large k demanding a regularisation. It can be done
by inserting a factor of e−αk, where α > 0 is a small parameter, emulating a finite
bandwidth. This results in a finite integral,〈

T (ϕ (r)− ϕ (0))2〉 = K

∫ ∞
0

dk

k
e−αk

(
1− e−v|τ |k cos (kx)

)
=

K

2
ln

(
x2 + (v |τ |+ α)2

α2

)
. (2.65)

The second correlation function in Eq. (2.54) can be obtained immediately from Eq.
(2.65) using a symmetry of the model. The model in Eq. (2.44) is invariant under
the change of ϕ→ θ and K → 1/K. Performing this substitution in Eq. (2.65), we
get 〈

T (θ (r)− θ (0))2〉 =
1

2K
ln

(
x2 + (v |τ |+ α)2

α2

)
. (2.66)

Note that a finite α is still needed in order to have a finite expression here.
The third correlation function in Eq. (2.54) is calculated in a similar way in the

Fourier domain. Analogously to Eq. (2.56) we write

〈Tθ (r)ϕ (0)〉 =
1

(βL)2

∑
q1q2

〈ϕ (q1) θ (q2)〉 eiq1·r

= − 1

βL

∑
q

iπωk

v2 + ω2/k2
eiq·r, (2.67)

where the expectation value was calculation following the same procedure as between
Eq. (2.57) and Eq. (2.63). The summation over q turns into two integrals: one is a
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result of the continuum limit for k and another is a result of the zero temperature
limit for ω. It has to be noted before calculating of the remaining integrals that we
have used the bosonic time-ordering in evaluation of the averages in Eqs. (2.54),
which is defined as〈
Tψ (x, τ)ψ† (0, 0)

〉
= Y (τ)

〈
ψ (x, τ)ψ† (0, 0)

〉
+ Y (−τ)

〈
ψ† (0, 0)ψ (x, τ)

〉
, (2.68)

where Y (x) = 1 for x ≥ 0 and Y (x) = 0 for x < 0 is a step function. However the
original Green function in the first line in Eq. (2.53) is fermionic, which is defined
by as〈

Tψ (x, τ)ψ† (0, 0)
〉

= Y (τ)ψ (x, τ)ψ† (0, 0)− Y (−τ)ψ† (0, 0)ψ (x, τ) . (2.69)

The different sign in front of the second term in Eqs. (2.68,2.69) can be accounted
for by multiplying the whole Green function by a factor of

e−iπY (−τ)sign(x). (2.70)

It will be absorbed third line in Eq. (2.54) as a shift of −iY (−τ) sign (x) in Eq.
(2.67), see also the whole exponent of the Green function in Eq. (2.53),

〈Tθ (r)ϕ (0)〉 = −i
∫ ∞

0

dk

k
e−αk−vτksign(τ)−iπY (−τ)sign(x) sin (kxsign(τ))

= −i arg (vτ + ix+ αsign(τ)) , (2.71)

where in the first line the integral over the imaginary axis was already evaluated and
the bandwidth cutoff α was already introduced in the same way as in Eq. (2.65).
In the second line the last integral over k was evaluated.

Now, substitution of Eqs. (2.65,2.66,2.71) into Eq. (2.53) gives the zero temper-
ature Green function of the right movers as

GR (x, τ) = −e
ikF x

2πα

(
α2

x2 + (v |τ |+ α)2

)K+K−1

4

ei arg(vτ+ix+αsign(τ)), (2.72)

where the contribution of 〈θ (r)ϕ (r)〉 and 〈θ (0)ϕ (0)〉 to the exponent in Eq. (2.53)
is zero. For a non-zero interaction strength V0 6= 0 in Eq. (2.72) the Luttinger
parameter K 6= 1 and the exponent in the two-point correlation function is a non-
universal real number that depends on the interactions instead of the a universal
exponent, which is a hallmark of the Luttinger liquid physics. The K = 1 limit
of Eq. (2.72) recovers the free Green function for fermionic particles with linear
dispersion,

GR (x, τ) = −ie
ikF x

2π

1

x+ ivF τ + iαsign (τ)
, (2.73)

where for the free system v = vF according to Eq. (2.72), that can be calculated
straightaway in the fermionic language starting from the model in Eq. (2.7). The
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Figure 2.3: The occupation numbers n (k)from Eq. (2.74) as a function of the
momentum k. At the Fermi momentum kF it is continuous within the Luttinger
liquid theory, being a power-law around kF with the exponent (K +K−1) /2 −
1. This behaviour is qualitatively different from a discontinuity in two and three
dimensions given by the Fermi liquid theory, see Fig. 1.1(a).

real-time Green function can be recovered by Wick rotation τ → it in both Eqs.
(2.72,2.73). At finite temperatures, the Green function can be evaluated in the same
way but without taking the β →∞ limit in Eqs. (2.72,2.73).

Another correlation function that can be calculated using the bosonisation de-
scribed in this Section is the occupation numbers nk, an analog of the Fermi step in
the Fermi liquid theory. Within the strongly-correlated theory it can be expressed
directly using the two-point correlation function, see [13] for details of the definitions
within the Green function language, that is already evaluated in this Section,

n (k) =

∫
dxe−ikxGR (x, τ = −0)

= − 1

2πα

∫
dxei(kF−k)x

(
α2

x2 + α2

)K+K−1

4

ei arg(ix−α)

∼ |k − kF |
K+K−1

2
−1 , (2.74)

where the zero temperature Green function from Eq. (2.72) is substituted in the
second line and the third line is expanded in a Taylor series in a small |k − kF |.
Instead of a discontinuity at the kF in two and three dimension, see Fig. 1.1(a)
for the Fermi liquid result, in one dimension the height of the step is zero even at
zero temperature signalling that, indeed, the individual Fermi-like quasiparticles do
not survive. The occupation numbers in one dimension is a smooth function of k,
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which behaves as a finite power-law around the kF point, see Fig. 2.3. However, the
position of kF is not changed by the interactions even in one dimension due to the
Luttinger’s theorem.

The local density of states (LDOS) describes the tunnelling rate that is measured
by a tip, that is brought in contact with the one dimensional system. This observable
can be expressed again in terms of the two-point correlation function, see [13] for
details, as

ρ (ε− EF ) = − 1

π

∫
dtei(ε−EF )tImGR (x = 0, it)

∼ |ε− EF |(K+K−1)/2−1 , (2.75)

where again the zero temperature Green function from Eq. (2.72) is substituted
and the second line is expanded in a Taylor series in a small |ε− EF |. Close to
the Fermi energy the LDOS vanishes in a power-law fashion with a non-universal
exponent (K +K−1) /2−1 that depends on interaction strength V0 through K given
by Eq. (2.43). Note that ρ (EF ) = 0 does not mean that there are no states at the
Fermi energy—the ground state of a Luttinger liquid is still gapless—but it means
that the excitations around the Fermi energy are absolutely not single-particle like.
The other dynamical correlation functions as well as static observables of Luttinger
liquids can be evaluated in a similar way of doing bosonisation and integrating over
the bosonic fields as described in this Section, see [23] for a good overview of the
results.

2.3 Spin-charge separation
So far the spin degree of freedom of the fermionic particles was completely neglected.
But fermions do have a non-zero (half-integer) spin, with the most important ex-
ample being electrons—fermions with spin one-half. Since the wide relevance of this
case for practical applications, it is instructive to consider it in detail. Instead of
only one type of fermions on each subband of the left and the right movers, ckr in
Eq. (2.6), now there are two, cksr, where s =↑ corresponds to electrons with spin up
and s =↓ to electrons with spin down. The fermion-to-boson mapping of the spinful
model works in an almost identical way to the spinless case in the Section 2.1 with
only doubled number of the bosonic field, ϕ↑,↓ and θ↑,↓.

We reproduce this procedure briefly. The free particle part of the Hamiltonian
in Eq. (2.7) gains additional summation over the spin index s within each of the
left and the right movers subbands, see Fig. 2.1(b),

H0 =
∑

k, r = L,R
s =↑, ↓

vF (εrk − kF ) c†ksrcksr. (2.76)

Without interactions the two spin species are independent of each other. Thus, for
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each value of s the bosonisation procedure can be performed in exactly the same
way, like in Section 2.1, giving

H0 =
vF
2π

∑
s=↑,↓

∫
dx
[
(∇θs)2 + (∇ϕs)2] , (2.77)

where θs and ϕs are two pairs of the bosonic fields that satisfy the commutation
relation in Eq. (2.23) for the same s and just commute with each other for different
s.

Like in the previous subsection we consider only the delta-functional potential
profile, V (x) = V0δ (x), for illustration purposes. The total density in Eq. (2.33) is
the sum of the densities of the two spin species, ρ (x) = ρ↓ (x) + ρ↑ (x), giving the
interaction part of the Hamiltonian as

Hint = V0

∫
dx
[
2ρ↓ (x) ρ↑ (x) + ρ2

↑ (x) + ρ2
↓ (x)

]
. (2.78)

For the ρ2
↑ (x) and ρ2

↓ (x) terms describing interactions within the same species the
bosonisation procedure works exactly like in Section 2.1. Each density squared
operators splits into the left and the right movers part, ρs (x) = ρsL (x) + ρsR (x),
giving the same contributions as in the spinless case,

4V0

(2π)2

∫
dx (∇ϕs)2 , (2.79)

for each species in terms of the field ϕs that now has the spin index s. The first terms
in Eq. (2.78) describing interactions between the different spin species is bit different.
Using Eqs. (2.24,2.25) to express the density operators as ρs (x) = −∇ϕs/π its
contribution,

8V0

(2π)2

∫
dx∇ϕ↑∇ϕ↓, (2.80)

makes the whole Hamiltonian, H = H0 +Hint, non-diagonal,

H =

∫
dx
∑
s=↑,↓

[
vF
2π

(∇θs)2 +
vF
2π

(∇ϕs)2 +
4V0

(2π)2 (∇ϕs)2

]
+

8V0

(2π)2

∫
dx∇ϕ↑∇ϕ↓. (2.81)

The last hybridising term can be eliminated by a unitary rotation that introduces
the new mixed degrees of freedom for the charge
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θρ =
1√
2

(θ↑ + θ↓) , (2.82)

ϕρ =
1√
2

(ϕ↑ + ϕ↓) (2.83)

and for the spin

θσ =
1√
2

(θ↑ − θ↓) , (2.84)

ϕσ =
1√
2

(ϕ↑ − ϕ↓) (2.85)

fields. The resulting Hamiltonian is a sum of two copies of Eq. (2.44) in terms of
these variables

HTL =
vρ
2π

∫
dx

[
Kρ (∇θρ)2 +

1

Kρ

(∇ϕρ)2

]
+
vσ
2π

∫
dx

[
Kσ (∇θσ)2 +

1

Kσ

(∇ϕσ)2

]
, (2.86)

where the number of the Luttinger parameters Kρ,σ and vρ,σ also doubles. They are
identified from the prefactors in Eq. (2.81) by mean of the same definitions as in
Eqs. (2.40,2.41),

vρ = vF

√
1 +

4V0

πvF
, (2.87)

Kρ =
1√

1 + 4V0
πvF

, (2.88)

vσ = vF

√
1− 4V0

πvF
, (2.89)

Kσ =
1√

1− 4V0
πvF

. (2.90)

In the spinful case, the scattering between the branches of the left and the right
movers is a bit more delicate. Keeping the cross terms in Eq. (2.31) for both
species leads to an additional ∼

∫
dx cos

(
2
√

2ϕσ
)
term in Eq. (2.86) that generally

is not negligible. However, for the most relevant case of fermions with repulsive
interactions, i.e. electrons, this term flows to zero in the scaling analysis, see details
in [23], leading only to a renormalisation of the Luttinger parameters in Eqs. (2.87-
2.90), but does not result in any qualitative change of the ground state, i.e. it does
not open any gap.
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Figure 2.4: Spectral function of the right movers in a spinful Luttinger liquid for a
fixed k0 > 0 as a function of energy ε. Velocities of the spin vσ and charge vρ modes
are different for a finite interaction strength. The points of both linear dispersion
are marked with the dashed lines. The divergent power-laws around this point are
given by Eq. (2.91). For energies ε < k0vσ the spectral function is zero due the
kinematic constraint.

A remarkable consequence of the result in Eq. (2.86) is the complete separation
of the originally interacting particles with different spins into a decoupled pair of
bosonic modes. Each of these modes consists of both of the original particles with
both spin orientations but their charge (charge density waves or CDW) and their spin
(spin density waves or SDW) degrees of freedom are disconnected into completely
orthogonal collective excitations. Even more remarkably, the velocities of the CDW
and SDW modes are different, see Eqs. (2.87,2.89), when the interaction strength is
finite, which is entirely alien to the Fermi liquids in higher dimensions. This effect
is called spin-charge separation. Different velocities make it easily observable in
spectral properties, e.g. there will be two linear dispersions with different slopes in
the spectral function of one dimensional fermions at low energy.

The correlation function in the spinful case can be evaluate by the same means
of functional integral as described in Section 2.2. For the bosonised model in Eq.
(2.86) the functional integral has to be take over the two pairs of the bosonic fields.
The result for the two-point correlation function is analogous to Eq. (2.72) for each
of the spin and the charge degrees of freedom. Then, the spectral function of, for
instance, the right movers can be evaluated directly using the Green function via a
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general relation

AR (k + kF , ε+ EF ) = − 1

π

∫
dxdtei(kx−εt)ImGR (x, it) , (2.91)

see [13] for the definition. This calculation is done in the spinful case in detail in
[50, 51] giving

AR (k + kF , ε+ EF ) ∼ Y (ε− vσk)

|ε− vρk|
1
2
−γ |ε− vσk|

1
2
−2γ

, (2.92)

which is specified for the vicinity of the +kF point for the k > 0 and ε > 0 sector
here and where γ =

(
Kρ +K−1

ρ − 2
)
/8+(Kσ +K−1

σ − 2) /8. The two non-equal
velocities vρ 6= vσ result in two divergencies along these dispersions, see a plot of
the spectral function Eq. (2.92) in Fig. 2.4, where it is visualised as a function of
ε for a fixed value of q > 0. The shape of these peaks is a power-law instead of the
usual Lorentzian manifesting a completely different nature of the spin and density
wave excitations in the Luttinger liquid theory from the quasiparticles of the Fermi
liquid in Fig. 1.1(b). Two different velocities of the Luttinger liquid were directly
observed in transport measurements of the electronic spectral function in [27, 28].
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Chapter 3

Nonlinear Luttinger liquids

The rigorous fermion to boson mapping described in the previous chapter, on which
the bosonisation technique and the resulting Tomonaga-Luttinger model are based,
assumes strictly linearity of the spectrum at the Fermi points in Eq. (2.6). Any finite
curvature in the original fermionic spectrum lifts the Lorentz invariance making the
bosons in form of the charge density waves not the the exact eigenstates, e.g. see
Fig. 2.2 where the fermionic spectrum will become non-equidistant and thus not
Bose like. At least close to the Fermi points it is tempting to treat a weak non-linear
term as a perturbation in hope that the exact eigenstates in this regime are not very
different from the CDW of the exactly linear model in Eq. (2.6). This route gives
rise to an additional three-body interaction terms that is proportional to a finite
curvature 1/m [42]. The perturbative analysis of this 1/m term in the basis of the
linear CDWs fails already in the leading order producing a divergent bosonic self-
energy on the mass shell [30]. No robust methods of resuming these singularities
has been developed so far.

It is instructive to take a step back at this point and to consider the original model
of interacting fermions. Any two-body interaction changes the delta-functional ex-
citation spectrum of the free particles (centred at the single particle parabola) into a
continuum since removal of a single particle from the system affects all other particles
involving many degrees of freedom and producing the continuum. In two and three
dimensions this continuum covers the whole energy-momentum space since it is al-
ways possible to create an excitation at an infinitesimally small energy at all finite
momenta by connecting two points on a circle or on a sphere by a finite vector of
the length |k| < kF . One dimension is special due to only two Fermi points. Thus,
there is a minimal energy of removing a single particle at a finite k corresponding
to taking out just this one particle without touching the rest, see the hole in Fig.
3.1(a). This leads to a forbidden regions on the energy-momentum plane, see white
regions in Fig. 3.1(a), which are separated from the many-body continuum of the
excitations by the dispersion of this single hole with the minimal energy, see thick
red line in Fig. 3.1(a).

A hole state deep under the Fermi surface reminds of another problem—x-ray
scattering in metals, where the hole is created by adsorption of a high energy x-
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Figure 3.1: (a) Dispersion of an interacting one-dimensional system. White is the
kinematically forbidden region (see explanation in the text) and grey is continuum
of the many-body excitations. The thick red line separates the border between
the two, the states on the border corresponds to removing a single particle (a hole
at k1) from the many-particle state. (b) Splitting of the fermionic dispersion into
two subbands: for the heavy hole with the velocity k1/m and for the excitations
around the Fermi energy with the velocity vF , see the Hamiltonian in Eq. (3.4) and
explanation in the text.

ray photon. This problem is known to have a power-law singularity close to the
Fermi level that originates from the interactions between the deep hole and the
quasiparticles around the Fermi energy. The direct perturbation theory in the inter-
action in the x-ray problem is also known to be divergent [52, 53] and for which the
way of handling these divergencies was proposed by Nozieres and De Dominicis in
[31, 54] in the form of the heavy impurity model consisting of the Fermi liquid qua-
siparticles interacting with a localised state deep under the Fermi level; this model
can be digonalised exactly. An analogous construction in one dimension can be done
[10, 32, 33] by starting from the fermionic model1

H =

∫
dx

[
− 1

2m
ψ†∂2

xψ + V0ρ
2 (x)

]
, (3.1)

which corresponds to the model in Eq. (2.1) with V (x) = V0δ (x) in the real space
and where the fermionic field operator is

ψ (x) =
1√
L

∑
k

cke
ikx. (3.2)

1Here we follow the construction in [32] and the notations there.
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Then, it can be projected into two subbands: one for the deep hole and another for
the excitations around the Fermi point, say for positive total momenta around +kF ,
see a sketch of the bands in Fig. 3.1(b). Correspondingly the field operators in Eq.
(3.1) splits into

ψr (x) =
1√
L

∑
|q|<k0

eiqxcqR; ψd (x) =
1√
L

∑
|k−q|<k0

ei(q−k)xcqR, (3.3)

where k0 is the size of both of the subbands, each of them is much smaller than the
Fermi energy, k0 � kF .

Then, the spectrum of the both subbands can be linearised in order to obtain a
linear model,

HR =

∫
dx

[
ψ†r (x) (−ivF∂x)ψr (x) + V0ρ

2
r (x)

+ ψ†d (x)

(
k2

2m
− i k

m
∂x

)
ψd (x) + V0ρd (x) ρr (x)

]
(3.4)

where the dispersion of the threshold is the free particle dispersion, k2/2m, the
velocity of the impurity band is k/m, the velocity at the Fermi energy is vF , and
the density operators are ρr (x) = ψ†r (r)ψr (r) and ρd (x) = ψ†d (x)ψd (x). There is
no V0ρ

2
d term since there is no second impurity that can interact with the first one.

Unlike the x-ray model, the impurity in Eq. (3.4) has to be mobile since the total
momentum of the both subbands still has to conserved when excitations are created
in proximity to the edge. The other difference is a one-dimensional spectral threshold
which is a line on the momentum-energy plane characterised by a dispersion instead
of just the Fermi energy in the x-ray problem requiring a extra input parameter
the momentum k in the Hamiltonian. The construction in Eq. (3.4) is also strictly
speaking valid only in the weak interaction regime, in which the dispersion of the
threshold is close to that of the free particles.

This linearised model in Eq. (3.4) can be solved without further approximations.
The ψr operator in the first and the second term of Eq. (3.4) can be bosonised using
the technique described in Section 2.1 producing a Tomonaga-Luttinger model—a
free bosonic model. The coupling in the fourth term of Eq. (3.4) can be eliminated by
a unitary rotation in the two-by-two space of the two subbands leaving the third term
as a free model for a single fermion. The expectation value for the observables, then,
can be evaluated as a pair of Gaussian integrals over the two free fields, similarly to
the procedure described in Section 2.2. This already provides a way of accounting
for the non-linear spectrum away from the Fermi energy in a non-perturbative way
that resolves the problem of a finite mass in the Tomonaga-Luttinger model. The
parabolicity of the original fermionic spectrum is incorporated in the third term in
Eq. (3.4) as the dispersion of the spectral threshold, k2/2m, while the dispersion of
the dynamical variables is linearised in order to account for the fluctuations around
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the edge. We, however, will not follow this microscopic analysis here but will consider
a more general model that can be defined phenomenologically, motivated by this
microscopic approach, in the next section.

3.1 Mobile impurity model
Instead of starting from the fermionic model in Eq. (2.1) the mobile impurity model
can be constructed starting from the Tomonaga-Luttinger model in Eq. (2.44). Here
we will follow the review [34]. A deep hole state can be added to HTL assuming that
the hole state is sufficiently far in the energy domain from the Fermi level so it is
a distinct from the low-energy excitations, similarly to the construction in Fig. 3.1.
The dispersion of this hole is now an arbitrary input parameter of the model, εth (k).
The coupling to the CDW of Luttinger liquid is of the density-density type exchange
processes are forbidden by a larger energy difference between the hole band and the
Fermi energy. The density operators can be expressed through the bosonisation
expressions in Eqs. (2.24,2.25) in terms of the gradients of the θ and ϕ fields and
there is an arbitrary coupling constants of these field to the mobile impurity density
ρd (x).

Adding up of these three terms the phenomenologically defined mobile impurity
model reads [11, 55],

HnLL = HTL +

∫
dx d† (x)

(
εth (k)− i∂εth (k)

∂k
∂x

)
d (x)

+

∫
dx (Vθ∇θ + Vϕ∇ϕ) ρd (x) , (3.5)

where the spinless Tomonaga-Luttinger model is given by HTL in Eq. (2.44), d (x)
is the Fermi operator of a single fermion,

{
d (x) , d† (x′)

}
= δ (x− x′), the density

operator of the impurity is ρd (x) = d† (x) d (x), the bosonic fields θ and ϕ satisfy
[ϕ (x) ,∇θ (x′)] = iπδ (x− x′), ∂kεth (k) is the velocity of the deep hole band, ana-
logously to Fig. 3.1, and Vθ and Vϕ are two arbitrary couplings originating from the
unknown interaction strengths of the deep hole with the left and the right movers
of the Luttinger liquid—they will be fixed in a moment.

The two coupling constants Vθ and Vϕ are not free parameters but are related to
other parameters of the model. They can be derived from considering at least two
different physical properties. One is the translation invariance of the system. The
velocity of the bosonic excitations is given by 〈∇θ〉 /π, see discussion after Eq.(2.47),
and it has to be compensated by the velocity within the d-band, see Fig. 3.1, since
the total velocity of the whole system still has to be k/m, protected by the Galilean
invariance. This fixes the interaction strength in front of ∇θ as

Vθ =
k

m
− ∂εth (k)

∂k
. (3.6)
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Another property is change of the energy of the whole system with a small change
of its density, δρ = ∇θ/π, see again the discussion after Eq. (2.47). Such a variation
adds the term Vϕπδρ to the model in Eq. (3.5) that should be equal to ∂εth (k) /∂ρ+
∂µ/∂ρ, where the last term can be expressed through the Luttinger parameters2
using the bosonisation technique described in Section 2.1. This procedure gives

Vϕ =
1

π

∂εth (k)

δρ
+

v

K
, (3.7)

where ∂εth (k) /∂ρ is derivative of the dispersion of the spectral edge with respect
to the density of the particles.

The structure of the model in Eq. (3.5), together with Eqs. (3.6,3.7), is thus
a generic way of accommodating a spectral non-linearity for arbitrary interactions
and for arbitrary dispersion of the spectral threshold. This way of defining the non-
linear model has the advantage of being valid for arbitrary non-linear parameters,
unlike the derivation before Eq. (3.4). The input parameters, the pair of the linear
Luttinger liquid v and K and the dispersion of the spectral threshold εth (k), can
have arbitrary values within the non-linear Luttinger liquid model. For a given mi-
croscopic model the low energy parameters v and K can be evaluated (or measured)
in the usual way, see [23]. The additional parameter—the dispersion of the spectral
edge—can be obtained similarly, see a sketch of a generic situation in Fig. 3.2. It
consists of the electron and the hole parts for a given momentum between the ±kF
points and is 2kF periodic due to the translation invariance of the model.

Although, the model is Eq. (3.5) is not restricted by the linear constraint of
the Tomonaga-Luttinger model it is still valid only in the proximity of the spectral
edges, see green regions in Fig. 3.2, since the spectrum of the mobile impurity
was linearised; increasing the energy away from the edges means exploring larger
and larger deviations in the position of the deep hole away from the point of the
linearisation, rendering the linear approximation invalid. The input parameter k
also has to be sufficiently different from the Fermi points k = ±kF . Otherwise the
processes of emitting and absorbing the mobile impurity by the CDW around the
Fermi energy become active, and the density-density interaction in Eq. (3.5) has to
be extended by adding the exchange terms making the whole model in Eq. (3.5)
inapplicable.

In the case of electrons with spin-1/2, phenomenological construction of the
mobile impurity model can be done in a similar way [56, 57]. There will be two
types of the bosonic fields, for the charge and the spin degrees of freedom—see their
introduction for the linear Tomonaga-Luttinger model in Section 2.3. In the absence
of the external magnetic field the mobile impurity couples only to the charge fields

2See more details on definition of the chemical potential within the Luttinger liquid theory in
[23].
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Figure 3.2: Applicability region of the mobile impurity model in Eq. (3.5) encircled
with the green lines. They are in proximity of the spectral edges and are away
from the Fermi points. There are two spectral threshold for a given k: εth,p (k)
in the particle sector and εth,h (k) in the hole sector. They are symmetrical with
respect to the ε = EF line and are 2kF periodic along the momentum axis due to
the translation invariance.

due to the symmetry of the two spin orientations,

HnLL = HTL +

∫
dx d† (x)

(
εth (k)− i∂εth (k)

∂k
∂x

)
d (x)

+

∫
dx (Vθ∇θρ + Vϕ∇ϕρ) ρd (x) , (3.8)

where the spinful Tomonaga-Luttinger model is given by HTL in Eq. (2.86), θρ(σ)

and ϕρ(σ) are the bosonic field of the CDW (SDW) satisfying [ϕα (x) ,∇θβ (x′)] =
iπδαβδ (x− x′), and the other parameters are the same as in the spinless non-linear
model in Eq. (3.5). The coupling constants Vθ and Vϕ are also not independent
parameters. They can be related to the linear Luttinger parameter and the disper-
sion of the spectral edge by considering the velocity of the whole system and the
variation of the total energy with the density, as in the spinless case, giving

Vθ =
k√
2m
− ∂εth (k)√

2∂k
, (3.9)

Vϕ =
∂εth (k)√

2∂ρ
+

vσ√
2Kσ

, (3.10)

where vσ and Kσ are the Luttinger parameters of the spin density mode. The mobile
impurity model is not restricted only to fermions but it can be constructed for other
one-dimensional systems, e.g. spin chains [58] and bosonic models [59]. A general
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overview and corresponding references are given in the review in [34].

3.2 Power-law singularities around spectral edges
The model in Eq. (3.5) can be diagonalised using a unitary rotation in the two-by-
two space of the Tomonaga-Luttinger model and the mobile impurity. Then, the
expectation values for the observables can be evaluated using the Gaussian integrals
over the free fields, like for the linear Luttinger liquid case in Section 2.2. The
diagonalisation is performed via the e−iUHnLLe

iU rotation, where the rotation matrix
can be found in the perturbation theory analysis from the condition [H,U ] = 0 as

U =

∫
dx
[
C+

(√
Kθ + ϕ/

√
K
)

+ C−

(√
Kθ − ϕ/

√
K
)]
ρd, (3.11)

where the coefficients are

C± =
1

2
√
K

(
K

(
k

m
− ∂εth (k)

∂k

)
± 1

K

(
1

π

∂εth (k)

δρ
+

v

K

))
, (3.12)

where the coupling constant from Eqs. (3.6,3.7) were already substituted.
The averages with respect to the free model after the rotation can be evaluated

as Gaussian integrals in two types of the fields. We will consider only the spectral
function here. It can be defined using the Green function as [13]

A (k, ε) = − 1

π
ImG (k, ε) signε, (3.13)

where the real-frequency Green function is a Fourier transform of the time-ordered
two-point correlation function, G (k, ε) = −i

∫
dxdt exp (iεt− ikx) 〈Tψ (x, t)ψ (0, 0)〉.

The fermionic excitation gives the dominant contribution to the spectral function
close to the spectral threshold [11, 32, 33]. Thus, its most singular part can be
expressed through the correlation function of the mobile impurity operator as

A (k, ε) ∼
∫
dtdxei(εt−kx)

〈
d† (x, t) d (0, 0)

〉
(3.14)

where the time evolution of the mobile impurity hole operator is given by the model
in Eq. (3.5), d (x, t) = exp (−iHnLLt) d (x) exp (iHnLLt), and the expectation value
has to be taken also with respect to the whole model in Eq. (3.5).

The same procedure as was already described in Section 2.2 gives a power-law
function in energy,

A (k, ε) ∼ 1

|ε± εth (k)|α± , (3.15)
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where the exponent is

α± = 1− 1

2

(
2n
√
K − C+ − C−

)2

− 1

2

(
1± 1√
K

+ C+ − C−
)2

, (3.16)

± refer to the particle (hole) sector on the energy-momentum plane, n is the integer
number of translations of principal region in the momentum variable from −kF to
kF , see Fig 3.2, and C± are given in Eq. (3.12).

The spectral function of the spinful fermionic model in Eq. (3.8) can be evaluated
in the same way [56, 57]. Due the spin-charge separation the spectral function for
spin-up and -down electrons is the same. For repulsive interactions V0 > 0 the
velocity of the SDW is slower, see Eqs. (2.87,2.89). Thus, the spectral threshold
εth (k) is given by the spin modes in this case and the spectral function3 is

As (k, ε) ∼ 1

|ε± εth (k)|α± , (3.17)

where the right hand side is independent of the spin index s =↑, ↓ and the exponent
is

α± =
1∓ 1

2
− 1

2

(
(2n+ 1)

√
Kc√

2
− C+ − C−

)2

− 1

2

(
1√
2Kc

− C+ − C−
)
. (3.18)

Here the coefficient of the rotation matrix, which diagonalises the spinful model in
Eq. (3.8) in the two-by-two space of the mobile impurity and the charge density
modes, are given in term of curvature of the spectral edge as

C± =

k−kF
m
√
Kc
±√Kc

(
2
π
εth(k)
∂ρ

+ ∂εth(k)
∂k

)
2
√

2
(
∂εth(k)
∂k
∓ kF

mKc

) , (3.19)

where the coupling constants from Eqs. (3.9,3.10) were already substituted.
Both exponents, in the spinless case in Eq. (3.16) and in the spinful case in

Eq. (3.18), depend on momentum k through a finite curvature of the spectral edge
in addition to the interaction strength through the Luttinger parameters in the
usual linear Tomonaga-Luttinger model. For the both of the fermionic model the
dispersions of the spectral edges can be calculated microscopically and is close to a
parabola with a good accuracy [35, 36],

εth (k) = µ+
k2
F

2m∗
± (k − kF )2

2m∗
, (3.20)

where the effective mass is m∗ = mK and m∗ = mKσ in the spinless and in the
spinful case respectively and ± refer to the particle and to the hole branch of the
spectral edge. Substitution of Eq. (3.20) in Eqs. (3.16,3.18) gives the explicit

3See details of this calculation in [57].
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spinless spinful

particle (α+ ) 1− K
2

(
1− 1

K

)2 −Kρ
4

(1−D− (k))2 − Kρ
4

(
1
Kρ

+D+ (k)
)2

hole (α− ) 1− K
2

(
1− 1

K

)2
1− Kρ

4
(1−D− (k))2 − Kρ

4

(
1
Kρ
−D+ (k)

)2

Table 3.1: Explicit momentum dependence of threshold exponents in the non-
linear Luttinger models for fermions with repulsive interaction in the prin-
cipal range n = 0: the left column is the spinless and the right column
is the spinful case. The upper raw is for the particle edge and the bot-
tom raw is for the hole edge. The explicit momentum function in the spinful
case are D− (k) = (k − kF )

(
kF/K

2
ρ + k/K2

σ

)
/
(
k2/K2

σ − k2
F/K

2
ρ

)
and D+ (k) =

(k − kF ) (kF/ (KρKσ) + k/ (KσKρ)) /
(
k2/K2

σ − k2
F/K

2
ρ

)
.

dependencies of the exponents on the momentum, see Table. 3.1. In the spinless
case the momentum dependence cancels out but in the spinful case it remains. The
latter can be measured directly using the already available technique of tunnelling
spectroscopy in quantum wires defined electrostatically on top of a semiconductor
heterostructure, like in experiments in [28, 38].
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Chapter 4

Bethe ansatz

This chapter contains a brief introduction into the Bethe ansatz technique. In
this approach many-body Hamiltonians in one dimension are diagonalised directly
without any approximations, like linearisation of the dispersion or separation of the
whole many-body spectrum into subbands. Thus, all energy regimes of the model
can be analysed using the same method and on the same footing. However, since
all microscopic details about the many-body excitations are retained, the practical
calculations of physically measurable observables require quite a complicated math-
ematical machinery that took a rather long time to develop. The first complication
is the exponentially large Hamiltonian that need to be diagonalised, the size of the
Fock space is ∼ 2N where N is the number of particles. It was resolved by redu-
cing the diagonalisation problem to a system of only N non-linear equations for N
parameters [60] that allows to take the thermodynamic limit. Another big complic-
ation is a non-factorised form of the N -particle wave functions in real space. This
problem was resolved by construction of the algebraic Bethe ansatz [61] permitting
evaluation of the many-body matrix elements.

A peculiarity of Bethe ansatz is in the first step of its construction, on which
the form of the many-body functions has to be guessed. The fact that they are the
eigenfunction of the Hamiltonian, orthogonality between them, and completeness of
the basis that they form is proven only post priori, complicating generalisation of this
method to other systems. Although, after the original discovery for the Heisenberg
spin chains [60], the Bethe ansatz wave functions were constructed for bosons with
contact interactions in the form of the Lieb-Liniger model [62, 63], fermions with
the next-neighbour interactions [41], and for the Hubbard model in one dimension
by nesting two Bethe wave functions [64]. These cover all principal systems with
short range interactions in one dimension providing a way—though a somewhat
complicated one—to check rigorously any more universal theory that still contains
an approximation, like the Tomonaga-Luttinger model or the mobile impurity model
described in Chapters 2 and 3, and to search for new still undiscovered many-body
theories.

In the following two sections, a construction of the Bethe wave is described for a
spin system, using the XXZ model as an example, and introduction in the algebraic
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Bethe ansatz is given for the same system.

4.1 Set of non-linear equations as eigenvalue prob-
lem

The XXZ model is a generalisation of the Heisenberg model for a chain of spins,
where an asymmetry ∆ = 0 . . .∞ between the couplings in the xy−plane and in
z-direction is introduced. For an external magnetic field B that is also parallel to
the z-axis it reads [41]

H = J

L∑
j=1

(
S−j S

+
j+1 + S+

j S
−
j+1

2
+ ∆SzjS

z
j+1

)
+B

L∑
j=1

Szj , (4.1)

where Sj are the spin-1/2 operators that obey the angular momentum commutation
relation

[
Sαj , S

β
j′

]
= iδjj′e

αβγSγj , S
±
j = Sxj ±iSyj , J is the exchange coupling constant,

and L is the number of spins in the chain. Here we assume the periodic boundary
condition, Sj+L = Sj.

The model in Eq. (4.1) has z-project of the total spin, Sz =
∑L

j=1 S
z
j , as a

conserved quantity [H,Sz] = 0, and therefore its expectation value 〈Sz〉 is a good
quantum number. Thus, its eigenfunctions can be written in each sector with the
given total number of spin flips with respect to reference state, say with all spins
pointing down, that corresponds to the values of 〈Sz〉 = −L/2, . . . , L/2 as

Ψ =
∑

j1<···<jN

aj1...jNS
+
j1
· · ·S+

jN
|⇓〉 , (4.2)

where N is the number of flips (or “particles”) and the summation runs over an order
set of coordinates of N particles, j1 < · · · < jN , since the S+

j operators commute for
different spins and the product of two or more Szj operators for the same spin gives
zero. The amplitudes aj1...jN describe a wave function in a given sector.

For a single spin flip, 〈Sz〉 = −L/2 + 1, the third term in Eq. (4.1) gives a
constant since only one spin cannot interact with itself. Thus, the first two terms
give just a free hopping model, see the sketch in Fig. 4.1(a), which eigenstates are
the plain waves—magnons,

aj = eiqj. (4.3)

The eigenenergy of the state above can be found from the eigenvalue problem, HΨ =
EΨ. Acting of H in Eq. (4.1) on Ψ in Eq. (4.2) with N = 1 and projecting the
result on each individual spin,

〈
⇓ |S−j H|Ψ

〉
, gives the same expression for all j,

J

2
(aj−1 + aj+1) +

(
B

(
−L

2
+ 1

)
+
J∆L

4

)
aj = Eaj. (4.4)

Substitution of aj from Eq. (4.3) in the above equation confirms that Eq. (4.3)
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Figure 4.1: Sketches of representative spin configurations for the eigenvalue problem:
(a) a single spin on with no neighbours for N = 1, (b) there is one neighbour for
N = 2 and two-body scattering matrix, and (c) there are two neighbours for N = 3
and three-body scattering matrix. The dashed lines mark allowed jump and the
crossed lines mark forbidden jump.

is an eigenstate and gives the corresponding eigenenergy as

E = J (cos q −∆) +B +

(
J∆

2
−B

)
L

2
. (4.5)

At the moment q is an arbitrary parameter. It can be fixed using the periodic bound-
ary condition that implies aj+L = aj and gives the usual quantisation condition for
free particles,

q =
2πI

L
, (4.6)

where I is an integer number from 0 to L− 1.
For two spin flips, 〈Sz〉 = −L/2+2, the third term in Eq. (4.1) already becomes

relevant since it describes an interaction between two magnons. When two spins are
away from each other, i.e. j2 − j1 > 1, the eigenvalue problem still can be satisfied
by a product of two plain waves, eiq1j1eiq2j2 , suggesting the following ansatz for the
eigenfunctions,

aj1j2 = A1e
i(q1j1+q2j2) + A2e

i(q2j1+q1j2), (4.7)

where the two coefficients A1,2 are free parameters since the statistics of the two-
magnon wavefunctions is not fixed yet. The eigenvalue equation for this wave func-
tion for j2 − j1 > 1,

J

2
(aj1−1,j2 + aj1+1,j2) +

(
B

(
−L

2
+ 2

)
+
J∆L

4

)
aj1j2 = Eaj1j2 , (4.8)

J

2

(
aj1,j2−1 + aj1,j2+1

)
+

(
B

(
−L

2
+ 2

)
+
J∆L

4

)
aj1j2 = Eaj1j2, (4.9)
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is satisfied by Eq. (4.7) giving the following eigenenergy,

E = J
2∑
j=1

(cos qj −∆) + 2B +

(
J∆

2
−B

)
L

2
. (4.10)

For the j2 = j1 + 1 case the eigenvalue problem reads, see the sketch in Fig.
4.1(b), as

J

2
(aj1−1,j2 + aj1,j2+1) +

(
B

(
−L

2
+ 1

)
+
J∆L

4

)
aj1j2 = Eaj1j2 . (4.11)

Luckily, there are still available free parameters A1,2 in the ansatz in Eq. (4.7),
which can be selected so that Eq. (4.11) is satisfied,

A1

A2

= −e
i(q1+q2) + 1− 2∆eiq1

ei(q1+q2) + 1− 2∆eiq2
, (4.12)

and so that the diagonalisation problem is solved for all j1, j2. Reparametring these
coefficients A1,2 in a symmetrical way

A1 = eiϕ/2, A2 = e−iϕ/2, (4.13)

where the phase A1/A2 = exp (iϕ) is given by the r.h.s. of Eq. (4.12), we identify
the so-called two-body scattering phase ϕ.

The periodic boundary condition, aj,L+1 = a1,j, becomes a bit more complicated
due to the ordered sum of coordinates in the wavefunction in Eq. (4.2). Application
of it in the two-flip case admixes the scattering phases into the quantisation condition
as

q1L− 2ϕ = 2πI1, (4.14)
q2L+ 2ϕ = 2πI2, (4.15)

where I1 and I2 are two non-equal integer numbers and ϕ is the scattering phase
in Eq. (4.12) that depends on q1 and q2 in a non-linear way making the system
of two equations non-linear. Although, the sum of Eqs. (4.14,4.15) gives the free
quantisation condition for the total momentum Q = q1 + q2 as QL = 2π (I1 + I2),
protected by the total translation invariance of the model in Eq. (4.1) that is not
broken by the interactions.

In the three-flip case, 〈Sz〉 = −L/2 + 3, the extra complication is represented
by the configuration of three spins next to each other, see the sketch in Fig. 4.1(c).
However, in one dimension the coordination number is two. Thus, one spin can
have maximum two neighbours and the three-body scattering matrix factorises into
a product of only two-body scattering matrices, i.e. it satisfies the Yang-Baxter
equation [65]. Then, generalisation of the eigenfunctions for arbitrary N follows the
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two-body case in Eqs. (4.7,4.12),

aj1...jN =
∑
P

exp

(
i
∑
l

qPljl + i
∑
l<l′

ϕPl,Pl′
2

)
, (4.16)

where
∑
P is the sum over all permutations of N quasimomenta ql and the two-body

scattering phases between every pair of magnons l and l′ are

eiϕij = −e
i(qi+qj) + 1− 2∆eiqi

ei(qi+qj) + 1− 2∆eiqj
. (4.17)

The eigenenergy is found from the eigenvalue problem as

E = J
N∑
j=1

(cos qj −∆) +NB +

(
J∆

2
−B

)
L

2
. (4.18)

The periodic boundary condition gives the following set of N non-linear quantisation
equations,

qjL−
∑
l 6=j

ϕjl = 2πIj, (4.19)

due to the scattering phases in Eq. (4.18), where Ij is a set of N non-equal integer
numbers. The total momentum of all magnons, Q =

∑N
j=1 qj, is a conserved quantity

satisfying the free quantisation condition that can be checked by adding up all lines
in Eq. (4.18).

The quantisation equations in Eqs. (4.18) are commonly called the coordinate
Bethe ansatz. They reduce the original exponential complexity of diagonalisation of
the Hamiltonian matrix to solving only a linear number of equations, for the price
of non-linearity in this system of equations. Nevertheless, methods of taking the
continuum limit for Eq. (4.18) are available, see the book in [41], allowing explicit
calculations of the thermodynamic quantities.

4.2 Many-body matrix elements: Algebraic Bethe
ansatz

The many-body states Ψ in the coordinate representation in Eq. (4.2,4.16) are not
factorisable into a product for different particles like free Bose or Fermi wavefunction
in the second quantisation representation, making calculations of the expectation
values for the observables in this representation almost intractable. Even numerical
evaluation of an N -fold integral becomes quickly unfeasible as N grows. However,
evaluation of the matrix element becomes manageable using the algebraic form of
Bethe ansatz [61], in which Bethe states do factorise in terms of operators with given
commutation relations. Then, these commutation relations can be used for explicit
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calculations, almost like in the usual second quantisation formalism. In this section
we will follow the book in [61].

The many-body wave functions can be written down using operators that satisfy
a Yang-Baxter algebra as

|u〉 =
N∏
j=1

C (uj) |⇓〉 , (4.20)

where uj are N auxiliary parameters and C (u) is one of the four matrix elements
of the transition matrix

T (u) =

(
A (u) B (u)
C (u) D (u)

)
, (4.21)

which is defined in an auxiliary two-by-two space. This T -matrix satisfies the Yang-
Baxter equation

R (u− v) (T (u)⊗ T (v)) = (T (v)⊗ T (u))R (u− v) . (4.22)

Here we use the following R-matrix that corresponds to the spin Hamiltonian in
Eq.(4.1),

R (u) =


1

b (u) c (u)
c (u) b (u)

1

 , (4.23)

where b (u) = sinh (u) / sinh (u+ 2η) and c (u) = sinh (2η) / sinh (u+ 2η).
The entries of Eq. (4.22) give commutation relations between the matrix ele-

ments of T . Here we write down four of them that will be used later,

[Bu, Cv] =
c (u− v)

b (u− v)
(AuDv − AvDu) , (4.24)

AuCv =
1

b (u− v)
CvAu −

c (u− v)

b (u− v)
CuAv, (4.25)

DuCv =
1

b (v − u)
CvDu −

c (v − u)

b (v − u)
CuDv, (4.26)

[Au, Dv] =
c (u− v)

b (u− v)
(CvBu − CuBv) . (4.27)

We have introduced the subscript u and v as a shorthand of the argument, e.g.
Au ≡ A (u), above.

The transfer matrix τ (u) = TrT (u) = A (u) + D (u) contains all of the con-
served quantities of the model in Eq. (4.1) including the Hamiltonian. Thus if |u〉 is
a eigenstate of τ (u) then it is an eigenstate of the Hamiltonian. The eigenvalue equa-
tion, τ (u) |u〉 = Tu |u〉 where Tu is a scalar quantity – the corresponding eigenvalue,
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can be solved using the commutation relations in Eqs. (4.24-4.27). The results of
acting with the Au and Du operators on the state |u〉 in Eq. (4.20) are obtained by
commuting them from left to right through the product of C (uj) operators,

Au

N∏
j=1

C (uj) |0〉 = au

N∏
j=1

1

buj
C (uj) |0〉 −

N∑
j=1

aj
cuj
buj

C (u)
N∏

l=16=j

1

bjl
C (ul) |⇓〉 , (4.28)

Du

N∏
j=1

C (uj) |0〉 = du

N∏
j=1

1

bju
C (uj) |0〉+

N∑
j=1

dj
cuj
buj

C (u)
N∏

l=16=j

1

blj
C (ul) |⇓〉 , (4.29)

where the vacuum eigenvalues of the operators, Au |⇓〉 = au |⇓〉 and Du |⇓〉 = du |⇓〉,
are

au =
coshL (u− η)

coshL (u+ η)
and du = 1. (4.30)

Since the right hand side of Eqs. (4.28,4.29) contains terms that are not propor-
tional to the original state multiplied by a scalar, an arbitrary Bethe state is not an
eigenstate of the transfer matrix τ for an arbitrary set of the auxiliary parameters
uj. However, the second terms in Eqs. (4.28,4.29) can be made zero by selecting
specific sets of uj that are solutions of the following set of non-linear equations,

aj
dj

=
N∏

l=16=j

bjl
blj
, (4.31)

where we have used the shorthand with the subscripts, i.e. aj ≡ a (uj) and bjl ≡
b (uj − ul). Substitution of the expressions for aj and dj from Eq. (4.30) and for
bjl from Eq. (4.23) gives the following Bethe equation and the eigenvalue of the
transfer matrix τ ,

cosh (uj − η)L

cosh (uj + η)L
=

N∏
l=16=j

sinh (uj − ul − 2η)

sinh (uj − ul + 2η)
, (4.32)

Tu = au

N∏
j=1

1

buj
+ du

N∏
j=1

1

bju
. (4.33)

The Bethe ansatz equations—in the coordinate representation in Eq. (4.1)—are
obtained under substitution of

uj = ln

[√
1− eiqj−2η

1− e−iqj−2η

]
− iqj

2
(4.34)
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and
η =

acosh∆

2
(4.35)

into Eq. (4.32).
The scalar product between two Bethe states 〈v| and |u〉 can be calculated using

the commutation relations in Eqs. (4.24-4.27). The multiplication of the bra and
ket states in the form of Eq. (4.20) is evaluated by commuting each operator B (vj)
from left to right through the product of C (uj) operators and then by using the
vacuum eigenvalues of the generated A and D operators from Eq. (4.30). When
uj is a solution of Eq. (4.32) and vj is an arbitrary set of auxiliary parameters the
result can be written in a compact form as a determinant of an N ×N matrix – the
so-called Slavnov’s formula, [66]

〈v|u〉 =

∏N
i,j=1 sinh (vj − ui)∏

j<i sinh (vj − vi)
∏

j<i sinh (uj − ui)
det T̂ , (4.36)

where matrix elements are Tab = ∂uaT (vb). Under substitution of T (u) from Eq.
(4.23) these matrix elements read

Tab =
coshL (vb − η)

coshL (vb + η)

sinh (2η)

sinh2 (vb − ua)

N∏
j=16=a

sinh (vb − uj + 2η)

sinh (vb − uj)

− sinh (2η)

sinh2 (ua − vb)

N∏
j=16=a

sinh (uj − vb + 2η)

sinh (uj − vb)
. (4.37)

The normalisation factor of Bethe states in Eq. (4.20) can be evaluated by taking
the v→ u limit of Eq. (4.36), [41, 61]

〈u|u〉 = sinhN (2η)
N∏

i 6=j=1

sinh (uj − ui + 2η)

sinh (uj − ui)
det M̂, (4.38)

where the matrix elements are

Mab =

{
−L sinh 2η

cosh(ua+η) cosh(ua−η)
−∑j 6=a

sinh 4η
sinh(ua−uj−2η) sinh(ua−uj+2η)

, a = b,
sinh 4η

sinh(ub−ua+2η) sinh(ub−ua−2η)
, a 6= b.

(4.39)

The local spin operators Sαj can be expressed in the non-local operators of the
algebraic Bethe ansatz A,B,C, and D in Eq. (4.21) by means of the so-called F -
matrix [67], which is a representation of a Drinfeld twist [68]. This procedure gives
the following explicit relations for all of the three spin operators [69, 70]
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S+
j = τ j−1

ξ Cξτ
L−j
ξ , (4.40)

S−j = τ j−1
ξ Bξτ

L−j
ξ , (4.41)

Szj = τ j−1
ξ

Aξ −Dξ

2
τL−jξ , (4.42)

where ξ = −iπ/2 + η.
Then, any correlation function can be evaluated by means of Eqs. (4.36,4.40-

4.42) in terms of determinants of only N -by-N matrices. For example, for the
matrix element of the S+

1 operator, needed for evaluation of the spectral function,
one obtains [69, 70]

〈
v|S+

1 |u
〉

= i

∏N+1
j=1 cosh (vj − η)∏N
j=1 cosh (uj + η)

sinhN+1 (2η) det M̂∏N
j<i=2 sinh (uj − ui)

∏N+1
j<i=2 sinh (vj − vi)

,

(4.43)
where |u〉 and 〈v| are a pair of the eigenstates of the Hamiltonian in Eq. (4.1) and
the matrix elements of M̂ are

Mab =
1

sinh (ub − va)

(
N∏

j=16=b

sinh (ub − uj + 2η)

sinh (ub − uj − 2η)

N+1∏
j=16=a

sinh (ub − vj − 2η)

−
N+1∏
j=16=a

sinh (ub − vj + 2η)

)
, (4.44)

for b < N + 1, and

Mab =
1

cosh (va − η) cosh (va + η)
, (4.45)

for b = N + 1. The expressions of the type like above can be evaluated numerically
for large systems or even analytically in some regimes, giving the full access to the
correlation functions in the thermodynamic limit without any approximation in one
dimension.
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Chapter 5

Magnetoelasticity

Magnetoelasticity was discovered in 1842 by James Joule in the form of the mag-
netostriction effect in iron [71]. A sample of magnetic material changes its shape
when its magnetisation changes. Phenomenologically this effect can by understood
by constructing the simplest rotational invariant out of the variables involved. Mag-
netisation M is a vector and deformation û is a second rank tensor. Thus, the
simplest scalar combination is quadratic in M and linear in û, making the inter-
action term between the two V = κM · û ·M , which has to be a scalar since it
describes the interaction energy and where κ is a coupling constant. Since magnet-
isation is usually coupled to the crystalline anisotropy, the magnetostriction effect
also exhibits hysteresis.

On the macroscopic level, this effect causes a loss of energy in ferromagnetic
cores due to frictional heating. It is also responsible for the low-frequency humming
sound that is produced by transformers. Alternating current generates a changing
magnetic field, which in turn changes the shape of transformer’s core periodically,
making it emit acoustic waves. On the microscopic level the classical magnetostric-
tion has to be affected by quantum effects. In the next two section we will discuss
the microscopic origin of the magneto-elastic coupling and some of its observable
quantities in the quantum regime that can be measured in ultrasound experiments.
This chapter focuses on the one-dimension version of the effect, where the reduced
dimensionality amplifies the quantum fluctuations in the strongest way possible.

5.1 Microscopic origin
Microscopically magnetostriction originates from the change of the exchange integral
that is responsible for the Heisenberg interaction, see the sketch in Fig. 5.1(a), when
distance between two neighbouring atoms is changed, see the sketch in Fig. 5.1(b).
For small deformations, e.g. caused by a phonon, the exchange integral can be
expanded in a Taylor series in small changes of the distance between the atoms with
respect to its equilibrium value given by the lattice parameter b. The zeroth term
in such an expansion is the usual coupling constant in the Heisenberg model and
small corrections in the first, in the second, and so on orders are the spin-phonon
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Figure 5.1: (a) A schematic overlap between a pair of orbitals of neighbouring atoms
that corresponds to the exchange coupling constant between the spins on these atoms
in the Heisenberg model. (b) A small deviation in the distance between the atoms
from its equilibrium value that changes the exchange integral and is responsible
microscopically from the magneto-elastic coupling.

couplings. In one dimension the coupling term reads

V =
∑
j

(
J1 (xj+1 − xj) + J2 (xj+1 − xj)2)Sj · Sj+1, (5.1)

where the coupling constants J1 and J2 are the derivatives of the exchange energy
with respect to distance between the atoms evaluated at the lattice spacing,

Jn =
1

n!

dnJ (x)

dxn

∣∣∣∣
x=b

, (5.2)

and xj+1−xj are small deviations caused by a deformation. In the quantum regime
two subleading terms of the expansion are needed, unlike in the classical regime,
due to peculiarities of the quantum fluctuations.

In the full quantum regime deformation field xj also has to be quantised forming
phonon modes and the total Hamiltonian consists of three parts, [72, 73]

H = Hm +Hph + V, (5.3)

where the Heisenberg model describing magnetism is

Hm = J
∑
j

Sj · Sj+1, (5.4)

J ≡ J0 is the exchange integral in equilibrium, Sj are the spin operators, the free
phonon model describing the deformations is

Hph =
∑
k

ωka
†
kak, (5.5)

the dispersion on the equidistant lattice is ωk = 2ωD |sin (k/2)|, ωD is Debye energy,
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Figure 5.2: Scheme of an ultrasound experiment in an effectively one-dimensional
magnetic insulator. The length of the magnetic chains is L. Inducer injects a phonon
at a given time. Collector detects it recording the propagation time t and amplitude
of the signal.

ak are the bosonic operators, the position operator is

xj =
∑
k

√
b

mv0 |k|L
(
ak + a†k

)
e−ikj, (5.6)

v0 is the sound velocity, and V is the spin-phonon coupling in Eq. (5.1).
The Heisenberg Hamiltonian Hm in Eq. (5.4) can be analysed using the nonop-

erative methods described in Chapters 2-4. The phonon Hamiltonian Hph is already
diagonal, see Eq. (5.5). And the coupling V can be treated perturbatively since the
energy scale of the phonons, Debye energy ωD, is typically very different from the
energy of the magnons, exchange energy J . Thus, the whole model in Eq. (5.3) can
be analysed, including its thermodynamic observables and the expectation values of
relevant operators, completely on the quantum mechanical footing in one dimension.

5.2 Observables in the quantum regime
A way of probing the magnetoelastic effects in the quantum regime is provided
by ultrasound in magnetic insulators. At low temperatures and at low ultrasound
powers only a few phonons are excited and the magnet is close to its ground state.
The spin chains can realised in anisotropic three-dimensional magnets, which are
effective one-dimensional in a finite windows of temperature, e.g. KCuF3 [74] or
Cs2CuCl4 [75], in which the chains are oriented along the direction of the strongest
exchange coupling.

In an ultrasound experiment, a pair of piezolements are attached on the opposite
sides of a sample perpendicular to the directions of the spin chains, see the sketch of
an experiment in Fig. 5.2. One piezoelement (inducer in Fig. 5.2) injects a phonon
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on one side of the chain, then the phonon propagates through the sample, and is
detected on the the other end by the other piezoelement (collector in Fig. 5.2). Two
quantities can be measure in such a setup. One is propagation time, t, of the phonon
over a fixed distance, L, that gives the phonon velocity

v =
L

t
. (5.7)

The other is the phonon attenuation on the collector,

A =
Icollector
Iinducer

. (5.8)

Both quantities are finite in a non-magnetic crystal: there is a finite sound ve-
locity, v = vph, and there are phonon relaxation mechanisms due to their scattering
off non-magnetic impurities and dislocations in a crystal, A < 1. However, in a
magnetic crystal both quantities are magnetic-field dependent, v (B) 6= v (B = 0)
and A (B) 6= A (B = 0). The magnetic-field sensitive parts come purely from the
magnetic subsystem that is strongly affected by the magnetic field. These contribu-
tions are described microscopically by the model in Eq. (5.3). The renomalisation of
sound velocity, v (B)− v (0), in Eq. (5.7) is given the first magnetoelastic constant
J1 in Eq. (5.1) and attenuation of the phonon amplitude, A (B)−A (0), in Eq. (5.8)
by the second constant J2 in Eq. (5.1) [40]. The one-dimensional regime in mag-
netic insulators is readily available in experiments on Cs2CuCl4 [75, 76], CsNiCl3
[77], KCuF3 [78], and a metal organic coordination polymer Cu(II)-2,5-bis(pyrazol-
1-yl)-1,4-dihydroxybenzene [79]. Since in the experimentally relevant regimes the
magnetic subsystem itself is strongly correlated, the phonons are essentially free
excitations, and the coupling between them is perturbative, the ultrasound can also
serve as a probe of strong correlations in one-dimensional spin systems, similarly to
the neutron-scattering technique.

This chapter gives a broader physical context and provides a motivation for the
microscopic theory of magneto-elasticity in one dimension that is constructed in the
paper [40] reprinted in the appendix.

585858



Chapter 6

Conclusions

The general aim of this work is advancing the microscopic understanding of the
many-body physics, which is still a major open problem. At low energy the effective
theory is already established on firm grounds in the form of Landau’s Fermi liquid
in two and three dimensions and in the form of Luttinger liquid in one dimension.
However, the higher energy scales remain mainly unexplored. The only successful
attempt so far emerged only recently, in the last decade, in the form of the mobile
impurity model (also called the non-linear Luttinger liquid theory) in one dimension,
which still describes only proximity of the spectral edges but not arbitrary many-
body excitations at high energy. This result gave an inspiration for this work.
The choice of the reduced dimension (one dimension) was motivated by at least
somewhat simplified version of the problem, which, e.g., enables the microscopic
many-body technique of Bethe ansatz, allowing to tackle the enormous complexity
of the many-body systems in full in this case.

The first step was the analysis of the spectral edge mode for a variety of one-
dimensional models with short-range interactions that bounds a continuum of many-
body excitations. Explicit diagonalisation by means of Bethe ansatz techniques,
described in Chapter 4, showed that this mode has an almost perfect parabolic dis-
persion in all cases [35, 36]. Based on this emergent phenomenon, the spectral edge
mode can be described empirically by a free, nonrelativistic particle with effective
mass identified from the low-energy theory as a free electron mass strongly renorm-
alised by interactions via the dimensionless Luttinger parameter K (Kσ for particles
with spin). However, unlike a free particle, the spectral edge mode is not protected
by a symmetry, thus deviations from the quadratic dispersion may develop—the
biggest discrepancy (. 20%) occurs for Fermi particles with spin and a very large
interaction strength. The empirical model remains robust for finite sound velocities
of the collective modes at low energies v (vσ) > v1 , where v1 = 2π/ (mL) is the
quantum of momentum.

The relevance of the Luttinger (low-energy) parameters beyond the low-energy
limit implies that they can be extracted using a much wider range of experimental
data using the whole energy window from the bottom of the band to the Fermi
energy. However, the dispersion of the spectral edge mode itself cannot be used as
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a qualitative feature to rule out interaction effects since the interactions between
particles do not change the parabolic shape of the single-particle dispersion. The
biggest deviations could be observed for strongly interacting spinful fermions (Kσ &
10), e.g., electrons in semiconductors at low densities or cold Fermi atoms in a
one-dimensional trap that would require a good resolution of the experiment.

This result complements the mobile impurity model, which was developed by
Glazman and co-workers as a description of one-dimensional systems above the
spectral edge at high energies and is summarised in Chapter 3. The parabolicity of
the dispersion of the edge mode removes an arbitrary input parameter (curvature of
the dispersion) that leaves only the few Luttinger parameters and the bare electron
mass as a minimal set of necessary ingredients to model excitations above the spec-
tral edge at arbitrary energies. Within such a framework, for example, exponents
of the spectral function are expressed explicitly in terms of only a few Luttinger
parameters. The explicit result in the case of fermions is obtained in the paper [36]
and is quoted in Section 3.2

The main result of this work is identification of a hierarchy of modes as a general
structure in the many-body excitations outside of the low energy regime. It was
shown [37, 38] that the hierarchy, which emerges in systems of interacting fermions in
one dimension at high energy, is controlled by the system length—the corresponding
form factors are proportional to different powers of R2/L2, where R is the particle-
particle interaction radius and L is the length of the system, in marked contrast to
the well-known fermionic quasiparticles of a Fermi liquid and hydrodynamic modes
of a Luttinger liquid at low energy. The dynamic response functions have been
obtained for a model of spinless fermions with short-range interactions using the
exact diagonalisation methods of Bethe ansatz for the spectrum and the form factors
of the system. Analysing the spectral function in detail, it has been found that the
first-level (strongest) mode in long systems has a parabolic dispersion, like that of
a renormalized free particle. The second-level excitations produce a singular power-
law line shape for the first-level mode and different kinds of power-law behavior at
the spectral edges. The threshold exponents predicted by the mobile impurity model
were reproduced by the second-level excitation of the hierarchy around the spectral
edges.

Using the same many-body matrix elements obtained microscopically, the local
density of states (LDOS) has also been calculated, which provides a more conveni-
ent way to analyse how the hierarchical structure at high energy changes into the
hydrodynamic modes of the Luttinger liquid at low energies. It has been shown, via
a full Bethe-ansatz calculation, that the LDOS is suppressed at the Fermi energy in
a power-law fashion in full accord with the prediction of the Tomonaga-Luttinger
model. Away from the Fermi point, where the Lorentz invariance of the linear dis-
persion is reduced to Galilean by the parabolicity of the spectrum, the LDOS is
dominated by the first (leading) level of the hierarchy. The transition from one
regime to the other was demonstrated to be a smooth crossover.

This new result has already been confirmed experimentally, in tunnelling spec-
troscopy measurements on GaAs-AlGaAs double-quantum-well heterostructures [38,
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39]. The quantum wires were formed in/out the top well by electrostatic gates and
momentum-resolved tunnelling of electrons in the upper layer from/to a 2D electron
gas in the lower layer probes the spectral function for spinful fermions. Control
of the bias between the two wells provides the energy and magnetic field applied
perpendicular to the wires provides the momentum resolution in this setup, see [28]
for experimental details. A well-resolved spin-charge separation was observed at
low energy with appreciable interaction strength—a distinct effect of the spinful
Luttinger liquid described in Section 2.3. The ratio of charge and spin velocities is
upto vc/vs ≈ 1.8 confirming that the interaction energy is of the order of the kin-
etic energy in these experiments. At high energy, in addition to the spin and charge
curves, there is only a small structure just above kF , which amplitude decays rapidly
away from the kF point, in 10µm-long wires. This is no surprise since the amplitude
of the second-level excitations is suppressed by at least four orders of magnitude
with respect to the clearly observed first-level excitations, R2/L2 ∼ 10−4. In an
order of magnitude shorter wires (1µm-long) the suppression factor is two orders
of magnitude weaker, R2/L2 ∼ 10−2, and a complete second order mode is clearly
observed [39]. The same experimental setup can be used to measure the spectral
edge exponents in the spectral function predicted by the non-linear Luttinger liquid
theory, which is described in Chapter 3.

An application of hierarchy of modes was a necessary ingredient in construc-
tion of a microscopic theory of magnetoelasticity, introduced in Chapter 5, in one
dimension [40]. It was done using the diagonalisation methods of Bethe ansatz,
described in Chapter 4. The matrix elements for the four-point correlation function
that couples the strongly-correlated spins to phonons dynamically have been derived
and it has been shown that the contribution of the static correlation function to the
renormalisation of the sound velocity is parametrically larger than the dynamical
correlation functions. Also it has been shown that the resonant decay of phonons in
the many-body spin continuum vanishes very fast, as the fourth power of the length
in long chains. However, another mechanism has been identified, hybridisation of
the phonons with the magnetic excitations at high energy via the dynamical cor-
relation function, that remains finite in the thermodynamic limit. The many-body
excitations of the spin chain that are involved in this mechanism are at high energy
and are away from the spectral edges. The hierarchy provides the only tool for eval-
uating the principal contribution to the phonon attenuation, which otherwise would
not be tractable due to exponential complexity of the Fock space at high energy.

The hybridisation mechanism has already been confirmed experimentally in
ultrasonic measurements on high-quality single crystals of Cs2CuCl4 in its one-
dimensional regime [40]. The observed magnetic-field dependent part of the at-
tenuation has the same magnetic field dependence as predicted by the hybridisation
mechanism.

This work describes techniques that are used in the papers and is complementary
to them. While I have tried to give a overall picture with at least a bit of detail,
some topics (like the main result of the hierarchy of modes) were discussed only
briefly or (like bosonic systems) were left out almost completely. For a more in-
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depth discussion of these topics the reader is referred to the original research papers,
which are reproduced in the appendix.
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Interactions between electrons in one dimension are fully described at low energies by only a few parameters of
the Tomonaga-Luttinger model, which is based on linearization of the spectrum. We consider a model of spinless
fermions with short-range interaction via the Bethe-Ansatz technique and show that a Luttinger parameter
emerges in an observable beyond the low-energy limit. A distinct feature of the spectral function, the edge that
marks the lowest possible excitation energy for a given momentum, is parabolic for arbitrary momenta and the
prefactor is a function of the Luttinger parameter, K .

DOI: 10.1103/PhysRevB.88.115142 PACS number(s): 71.10.Pm, 03.75.Kk, 73.21.−b

I. INTRODUCTION

The effects of interactions between fermions in one dimen-
sion are mainly understood at low energies within the scope
of the Tomonaga-Luttinger model.1 This framework is based
on the linear approximation to the single-particle spectrum
around the Fermi energy and provides, via the bosonization
technique,1 a generic way to calculate various correlation func-
tions. Understanding of interacting fermions beyond the low-
energy limit still presents a challenge. Studies are currently
focused on dynamical response functions,2–7 e.g., the spectral
function which can be measured by momentum-resolved
tunneling of electrons in semiconductors,8,9 by angle-resolved
photoemission in correlated materials10 and by photoemission
spectroscopy in cold atoms.11 Recently significant theoretical
progress was achieved in this direction by making a connection
between Luttinger liquids and the Fermi edge singularity
problem.12 As a result, power-law singularities were found
at the edge of the spectral function at zero temperature and
their powers were related to the corresponding curvature.13

The edge marks the smallest energy at a fixed momentum with
which a particle can tunnel into the system. At low energies
the edge disperses linearly with a slope which is the sound
velocity of collective modes v defined by parameters from the
Tomonaga-Luttinger model;14 a small quadratic correction to
the linear slope at low momenta was found in Ref. 3. In this
paper we calculate the position of the edge for the spinless
fermions with a short-range interaction at arbitrary energies
and show that a Luttinger parameter is still relevant at large
energies.

Our strategy is to consider the exact diagonalization of the
model on a lattice via the Bethe-Ansatz approach. Then we
analyze the spectral function in the continuum regime—a com-
bination of the thermodynamic limit and a small occupancy of
the lattice15—which corresponds to the continuum model with
a contact interaction. In this regime we find that the position of
the edge is parabolic for arbitrary momenta and the prefactor
is a function of the dimensionless Luttinger parameter K [see
Eq. (10)], which is defined in the low-energy domain of the
Tomonaga-Luttinger model. Our result could be directly ob-
served in experiments on spin-polarized particles such as elec-
trons in ferromagnetic semiconductors16 using the setups of
Refs. 8 and 9 or polarized cold atoms using the setup of Ref. 11.
In closely related models of spin chains,1 the position of the
edge depends on the Luttinger K in an analogous way, but for a

weakly polarized chain, for example, the parabolic function of
momentum becomes a cosine. With the parabolic shape found
in this paper, the phenomenological nonlinear Luttinger liquid
theory13 gives a divergent power of the edge singularity.

In the continuum regime the Luttinger parameter K is
bounded and the smallest K for large interaction strengths
is almost degenerate with its noninteracting value K = 1. We
use the Bethe-Ansatz approach for a finite-range interaction
potential beyond nearest neighbor in the limit V = ∞ and
show that the regime of strong interaction effects (correspond-
ing to the minimum value of K = 0 in the Tomonaga-Luttinger
model) can only be accessed by a microscopic model with the
interaction range at least of the order of the average distance
between particles.

The paper is organized as follows. Section II contains a
definition of the model of spinless fermions on a lattice and the
spectral function. In Sec. III we analyze the edge of the spectral
function for next-neighbor interaction in the low (Sec. A) and
high (Sec. B) regimes. In Sec. IV we consider a finite-range
interaction in the limit of infinite interaction strength. In the
Appendix we give numerical data that clarify the calculations
in Secs. III and IV.

II. MODEL

Spinless fermions on a one-dimensional lattice with L sites
interact via a two-body potential Vi as

H = −t

L∑
j=1

(c†j cj+1 + c
†
j cj−1) +

L,∞∑
j=1,i=1

Vic
†
j cj c

†
j+icj+i ,

(1)

where t is a hopping amplitude and operators cj obey Fermi
commutation relations {ci,c

†
j } = δij .17 Below we consider

periodic boundary conditions cL+1 = c1 to maintain the
translation symmetry of the finite length chain and consider
only repulsive interactions, Vi > 0.

The spectral function describes the tunneling probability
for a particle with momentum k and energy ε, A(k,ε) =
−ImG(k,ε) sgn(ε − μ)/π , where μ is the chemical potential
and G(k,ε) = −i

∑
j

∫
dtei(kj−εt)〈T (e−iH t cj e

iHt c
†
1)〉/L is a

Fourier transform of the single-particle Green function at zero
temperature. To be specific, we discuss only a particular region,
kF < k < 3kF and ε > μ. The spectral function in this domain
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reads18

A(k,ε) = L
∑
f

|〈f |c†1|0〉|2δ(k − Pf )δ(ε + E0 − Ef ), (2)

where E0 is the energy of the ground state |0〉, and Pf and Ef

are the momenta and the eigenenergies of the eigenstates |f 〉;
all eigenstates are assumed normalized.

III. NEXT-NEIGHBOR INTERACTION

The model of Eq. (1) can be diagonalized using the
Bethe Ansatz when the interaction potential is restricted to
the nearest neighbor only, Vi = V δi,1.19 In the coordinate
basis, |ψ〉 = ∑

j1<···<jn
aj1...jn

c
†
j1

. . . c
†
jn

|vac〉, where |vac〉 is
the fermionic vacuum, a superposition of plain waves, aj1...jn

=∑
P ei

∑n
l=1 kPl

jl+i
∑n

l<m=1 ϕPl ,Pm , is an n particle eigenstate and
H |ψ〉 = E|ψ〉 with the eigenenergy

E = −2t

n∑
j=1

cos(kj ) + 2tn . (3)

Here a constant 2tn was added for convenience, the phase
shifts

ei2ϕjm = − ei(kj +km) + 1 + V
t
eikj

ei(kj +km) + 1 + V
t
eikm

(4)

are fixed by the two-body scattering problem, and
∑

P is a
sum over all permutations of n integer numbers. The periodic
boundary condition quantizes all single-particle momenta
simultaneously,

Lkj − 2
∑
m

ϕjm = 2πλj , (5)

where λj are integer numbers. The sum P = ∑
j kj is a

conserved quantity—the total momentum of an n particle state.
The solutions of the nonlinear system of equations Eq. (5)

can be classified in the limit of noninteracting particles. Under
substitution of the scattering phase 2ϕjm = π for V = 0,
Eq. (5) decouples into a set of independent quantization
conditions for plain waves,

kj = 2πλj

L
. (6)

The corresponding eigenstates are Slater determinants which
vanish when the momenta of any two particles are equal. Thus
all eigenstates are mapped onto all possible sets of n nonequal
integer numbers λj with −L/2 < λj � L/2. In the absence
of bound-state formation, these solutions are adiabatically
continued under a smooth deformation from V = 0 to any
finite value of V . This permits us to use the free-particle
classification to label many-particle states for an arbitrary
interaction strength.

The limit of infinitely strong repulsion corresponds to free
fermions of a finite size. The scattering phase ϕjm = kj −
km + π for V = ∞ makes Eq. (5) a linear system of coupled
equations. In the continuum regime they decouple into a set of

single-particle quantization conditions,

kj = 2πλj

L − n
. (7)

Here the length of the system is reduced by the exclusion
volume taken by the finite size of the particles; see also Eq. (12)
for a finite-range interaction below.

The adiabatic method we are using breaks down when a
bound state is formed at a finite interaction strength while
sweeping from V = 0 to V = ∞. Such states occur only
when some of the quasimomenta of the solutions at V = 0
are |kj | > π/2 (see Appendix and Ref. 20). The bound states
can be observed, for instance, in the dynamics of a spin chain
following a quench.21 In the continuum regime there is a wide
range of model parameters where Eq. (7) is applicable: for
momenta and energies in the spectral function smaller than
π/2 and smaller than half bandwidth respectively.

The ground state is a band filled from the bottom up to
the momentum kF = π (n − 1)/L using the classification of
Eq. (6). Here n is assumed odd for simplicity. Eigenstates
involved in the form factors of the spectral function have a
fixed number of particles n + 1. All other eigenstates do not
contribute to Eq. (2), as the number of particles is a conserved
quantity.

In this paper, we are concerned with the location of the
support of the spectral function (the lowest value of energy for
which the spectral function is not zero) as opposed to its value,
so we ignore the matrix elements in Eq. (2), assuming them to
be nonzero for all f which satisfy the number constraint. Two
δ functions in k and in ε map directly the total momenta and the
eigenenergies of all many-body states |f 〉 with n + 1 particles
into the shape of the spectral function. For a fixed value of
k, the edge of the support is the smallest eigenenergy of all
states |f 〉, with Pf = k. Using the classification in Eq. (6),
these states can be parametrized by a single variable �P [see
the sketch in Fig. 2(b) and in the Appendix].

A. Low energies

At low energies the model of spinless fermions Eq. (1)
is well approximated by the Tomonaga-Luttinger model with
only two free parameters.1 The first parameter is the slope of
the linearized spectrum of excitations at kF . For the states from
Fig. 2(b) it is

v = L(E2 − E1)

2π
, (8)

where E1 and E2 are energies of the states with �P = 0 and
�P = 2π/L, respectively. The second Luttinger parameter
can be extracted as K = vF /v,22 where vF = 2tπ (n − 1)/L is
the Fermi velocity of the noninteracting system. The numerical
evaluation of K as a function of the interaction strength V

is presented in Fig. 1. For small V the function is linear,
K = 1 − 2n/L × V/t + O(V 2/t2). For large V it approaches
a lower bound such that K = K(∞) + 2n/(L − n) × t/V +
O(t2/V 2), where

K(∞) =
(

1 − n

L

)2

(9)
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FIG. 1. The numerical evaluation of the Luttinger parameter K as
a function of next-neighbor interaction strength V using Eqs. (3), (5),
and (8), full ellipses; L = 100 and n = 11. We compare it with the
bound on K at infinite interaction strength from Eq. (9), thick dashed
line. Small and larger V asymptotes are K = 1 − 2n/L × V/t and
K = K(∞) + 2n/(L − n) × t/V , thin dashed lines.

was computed using the values of quasimomenta for V = ∞
in Eq. (7).

The Luttinger parameter K measures the effects of inter-
actions where for noninteracting particles K = 1. At V = ∞
the interaction potential is a hard-wall interaction with a finite
interaction range, which still leaves some room for nonzero
kinetic energy, thus limiting the maximum value of K .

B. High energies

The main aim of this paper is a calculation beyond low
energies. In the nonlinear region the position of the edge of the
spectral function is given by the momentum dependence of the
states of Fig. 2(b), εedge(k) = Ek − E0, where Ek corresponds
to the states with �P = kF + 2π/N − k. For all values of V

FIG. 2. (a) We show the main result of this paper, that the edge
of the support of the spectral function satisfies Eq. (10). Numerical
results at intermediate coupling (V = 1.9t) are shown as open circles
and compared to the analytical result, Eq. (10), shown as a full line
for L = 400 and n = 39. The asymptotes in the weak-coupling limit
from Eq. (6) and the strong-coupling limit from Eq. (7) are shown
as thin and thick dashed lines, respectively. (b) Sketch of the sets
of quasimomenta, using classification Eq. (6), that correspond to the
edge states; parameter �P corresponds to different momenta k.

we find it to be a parabolic function of momentum,

εedge(k) = mv2
F

K
− (k − 2mvF )2

2mK
, (10)

where m = (2t)−1 is the bare single-electron mass and the
Luttinger parameter K is determined by the slope at k = kF . In
the limiting cases V = 0 and V = ∞, it is calculated explicitly
using the expressions for quasimomenta in Eqs. (6) and (7).
The crossover for intermediate values of V is calculated
using the numerical solution of the Bethe equations [Eq. (5)]
and is perfectly fitted by the same parabolic formula [see
Fig. 2(a)]. At k = kF , Eq. (10) gives the chemical potential
μ = mv2

F /(2K), since the ground state for n + 1 particles is
constructed by adding an extra particle to the ground state |0〉
at the lowest possible momentum above kF , which is the state
in Fig. 2(b) with �P = 0.

The many-body states that mark the edge of the spectral
function outside of the region kF < k < 3kF are parametrized
by a single variable similarly to Fig. 2(b) (see Appendix for
details). In the upper half of the energy-momentum plane
ε > μ the result in Eq. (10) is repeated along the momentum
axis with the period 2kF . So εedge(k) becomes mv2

F /K −
(k − 2jmvF )2/(2mK) + �μj in regions (2j − 1)kF < k <

(2j + 1)kF , with an additional shift �μj for |j | > 1. The latter
is given by the recurrence relation �μj+1 = �μj + 2|j |vF /K

with the initial value �μ1 = 0. In the continuum regime of
interest, j � n, �μj is only a small finite size correction
to μ. In the “hole region” ε < μ, the position of the edge is
obtained by reflection of εedge(k) with respect to the line ε = μ

(see Appendix).
A link between Luttinger liquids and the Fermi-edge

singularity problem was very recently established as a tool
to analyze interactions beyond the linear approximation in one
dimension.12 This has led to the development of a phenomeno-
logical theory of nonlinear Luttinger liquids where power-law
singularities, A(ε,k) ∼ θ [ε − εedge(k)]|ε − εedge(k)|−α , were
found above the edge of the support. Their exponents were
related to the curvature of εedge(k) for arbitrary momenta.12

Substitution of Eq. (10) in the formula of Imambekov and
Glazman from Ref. 13 yields

α = 1 − K

2

(
1 − 1

K

)2

. (11)

The Luttinger K of the model Eq. (1) (see Fig. 1) gives a
divergent exponent smaller than 1 and larger than a limiting
value calculated for K(∞) from Eq. (9). Thus the form factors
in Eq. (2) are nonzero around the edge, thereby justifying our
assumption about matrix elements in the spectral function.

IV. FINITE-RANGE INTERACTION

A further consequence of the non-linearity of the free
particle dispersion is the bound on the Luttinger parameter
K in Eq. (9). It has to be treated with care analogously to
the point-splitting technique for field theoretical models,23 in
which a small interaction range must be introduced to couple
a pair of fermions which cannot occupy the same point in
space, and then the limit of zero range is taken. For the
model on a lattice with next-neighbor coupling, the interaction
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(a) (b)

(c) (d)

FIG. 3. The numerical solutions of Bethe equations, Eq. (5) of the main text, for kj as a function of interaction strengths V for n = 12
particles and L = 100, full lines. The thin dashed lines at large V correspond to asymptotes from Eq. (7) of the main text. The states are
classified according to Eq. (6) of the main text: (a) λj = {−5, −4, −3, −2, −1,0,1,2,3,4,10}; (b) λj = {−6, −4, −3, −2, −1,0,1,2,3,4,9};
(c) λj = {−7, −6, −3, −2, −1,0,1,2,3,4,12}; (d) λj = {−5, −4, −3, −2, −1,0,1,2,3,6,32,33}. A bound state forms out of a pair of
quasimomenta with kj > /π/2 above a finite value of V . The thick dashed line marks the value of k = π/2, and the inset is the imaginary parts
of all quasimomenta kj .

range vanishes in the continuum regime (n � L) compared to
the average distance between particles; therefore K(∞) → 1,
i.e., degenerate with its value for the noninteracting system
K(0) = 1. However, the interaction range between fermions
in physical systems is usually finite, e.g., the screening length
for electrons in a metal or a semiconductor, making K not equal
to 1. We, therefore, now consider a model with finite range.

We consider the limiting case of V = ∞ when the
interaction range (screening length) spans a large number
of lattice sites r . The Hamiltonian Eq. (1) with the po-
tential Vi = V θ [i − 1]θ [r−], where θ [i] (θ [i] = 1 for i �
0 and θ [i] = 0 for i < 0) is a Heaviside step function
and V → ∞, can be diagonalized in the coordinate basis,
|ψ〉 = ∑

j1<j2−r···<jn−r aj1...jn
c
†
j1

. . . c
†
jn

|vac〉, by a superposi-

tion of plain waves, aj1...jn
= ∑

P ei
∑n

l=1 kPl
jl+i

∑n
l<m=1 ϕPl ,Pm , with

2ϕjm = (kj − km)r + π . Application of the periodic boundary

condition yields, similarly to Eq. (5),

kj [L − r(n − 1)] + r

n∑
m=1�=j

km = 2πλj , (12)

which in the continuum regime gives a set of independent
quantization conditions kj = 2πλj/(L − rn). Finally, by re-
peating the same calculation used to obtain Eq. (9) we find

K(∞) =
(

1 − rn

L

)2

, (13)

where the term rn/L can be interpreted as a product of
screening length and particle density.

A microscopic model of spinless fermions needs to have
an interaction range of the order of the average distance
between particles to reach the K = 0 value that corresponds
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(a) (b)

(c) (d)

FIG. 4. Spectrum of the eigenstates, Eq. (3) of the main text, that are involved in the form factor in Eq. (2) of the main text for the ground
state with n = 19 particles, L = 200, and V � t , dots. Large dots are the states at the edge. The insets are sketches of sets of quasimomenta
that correspond to the edge states using the classification Eq. (6) of the main text. The positive half planes E − E0 > μ are the states with an
extra added particle: (a) momenta are from −3kF to kF , the energies at the edge at −3kF and −kF correspond to chemical potentials μ−1 and
μ0; (b) momenta are from kF to 5kF , the energies at the edge at kF , 3kF , and 5kF correspond to chemical potentials μ1, μ2, and μ3. The negative
half planes E0 − E < μ are the states with one particle removed: (c) momenta are from −3kF to kF ; and (d) momenta are from kF to 5kF .

to strong interaction effects in the Tomonaga-Luttinger model.
Specifically, for r = L/(2n), which allows some motion even
when V = ∞, the bound is K(∞) = 1/4. When r is increased
further, K(∞) approaches zero.

V. CONCLUSIONS

In conclusion, we have considered the exact diagonalization
of a model of spinless fermions on a lattice with next-neighbor
interactions via the Bethe-Ansatz approach. By analyzing the
spectral function in the continuum regime we have found that
the edge of its support has a parabolic shape for arbitrary
momenta and the prefactor is a function of the dimensionless
Luttinger parameter K , which is defined in the low-energy
domain. Additionally, we have extended our model with a finite
range of interactions in order to access the strongly interacting
regime (near K = 0) and have also found the parabolic shape
for the support (for V = ∞), which is still characterized by K .
This suggests that Luttinger parameters control physical prop-
erties at higher energies where nonlinearity cannot be ignored.
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APPENDIX: NUMERICAL DATA

Here we present results of numerical calculations. Figure 1
shows some of the solutions to the Bethe-Ansatz equations,
Eq. (5) of the main text, for different values of V . The states
are parametrized using Eq. (6) of the main text. The states
of Figs. 3(a)–3(c) have all |kj | < π/2. The state of Fig. 3(d)
contains a pair of |kj | > π/2 that leads to formation of a
bound state at a finite V . Figure 4 shows the extension of
the edge beyond the region kF < k < 3kF and ε > μ. The
eigenstates on the edge are marked by large dots and corre-
sponding sets of quasimomenta are sketched in each region as
insets.
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Spectral-edge mode in interacting one-dimensional systems
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A continuum of excitations in interacting one-dimensional systems is bounded from below by a spectral edge
that marks the lowest possible excitation energy for a given momentum. We analyze short-range interactions
between Fermi particles and between Bose particles (with and without spin) using Bethe-ansatz techniques and
find that the dispersions of the corresponding spectral edge modes are close to a parabola in all cases. Based on
this emergent phenomenon we propose an empirical model of a free, nonrelativistic particle with an effective
mass identified at low energies as the bare electron mass renormalized by the dimensionless Luttinger parameter
K (or Kσ for particles with spin). The relevance of the Luttinger parameters beyond the low-energy limit provides
a more robust method for extracting them experimentally using a much wider range of data from the bottom of
the one-dimensional band to the Fermi energy. The empirical model of the spectral edge mode complements the
mobile impurity model to give a description of the excitations in proximity of the edge at arbitrary momenta
in terms of only the low-energy parameters and the bare electron mass. Within such a framework, for example,
exponents of the spectral function are expressed explicitly in terms of only a few Luttinger parameters.

DOI: 10.1103/PhysRevB.90.014309 PACS number(s): 71.10.Pm, 03.75.Kk, 73.21.−b

I. INTRODUCTION

The low-energy properties of interacting particles in one
dimension are well described by the Tomonaga-Luttinger
model [1] based on the linear approximation to the spectrum
of the excitation at the Fermi energy. In this framework
various correlation functions that involve a continuum of
many-body excitations can be evaluated explicitly resulting
in a common power-law behavior—in contrast to higher
dimensions where the Fermi gas approximation with renor-
malized parameters (the Fermi liquid model) [2] remains
robust. In the last few decades different experimental re-
alizations of one-dimensional geometries were developed:
carbon nanotubes [3], cleaved edge [4] or gated [5] one-
dimensional channels in semiconductor heterostructures, and
cold atomic gases in cigar-shaped optical lattices [6] where
the predictions of the low-energy theory [7] have already been
observed and measurements of high-energy effects are already
possible.

Recently, a new theoretical understanding of the behavior at
high energies was achieved by making a connection between
the features of the dynamical response of the one-dimensional
systems and the Fermi edge singularity in x-ray scattering in
metals [8]. Application of the mobile impurity model [9] to the
Tomonaga-Luttinger model gives a description of excitations
at high energies incorporating dispersion of the spectral
edge as an input parameter; the edge marks the smallest
excitation energy at a fixed momentum. Within the resulting
theory correlation functions exhibit a common power-law
behavior where exponents are related to the curvature of
the spectral edge and the Luttinger parameters [10–13].
However, the theory for the edge mode itself remains an open
problem.

In this paper we analyze fundamental models of Fermi and
Bose particles with short-range interactions (with and without
spin) in one dimension using the available diagonalization
methods based on Bethe ansatz. We investigate the edge mode
of the spectral function—a dynamical response function that

generalizes the single-particle spectrum to the many-particle
systems—and find that its dispersion is close to a parabola
for all cases in the thermodynamic limit [14]. It is exactly
parabolic for fermions without spin and the biggest deviation
(�20%) occurs for fermions with spin and a very large
interaction potential. Based on this result we propose an
empirical model of a free, nonrelativistic particle for the
spectral edge mode, which describes a charge wave in the
spinless case and a spin wave in the spinful case (see a graphical
representation of the spectral function in Fig. 1). The effective
mass m∗ is identified at low energies as the bare electron
mass m strongly renormalized by the dimensionless Luttinger
parameter; m∗/m = K and m∗/m = Kσ in the spinless and
the spinful case, respectively. The position of the edge of
the spectral function in terms of this empirical model can

FIG. 1. (Color online) A schematic representation of a tunneling
process into a one-dimensional system for a particle with fixed
momentum k and energy E that is described by the spectral function.
Excitations of the system are (a) density waves or [(a) and (b)] spin
wave for particles with spin.
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be expressed as

εedge(k) = μ + k2
F

2m∗ − (k − k0)2

2m∗ , (1)

where μ is the chemical potential, kF is the Fermi momentum,
and k0 = 0 (kF ) for Fermi (Bose) particles.

The empirical model in Eq. (1) breaks down when the
effective mass becomes infinite. At low energies m∗ = ∞
is equivalent to zero sound velocity of the collective modes
v(vσ ). The characteristic threshold is given by the quantum of
the momentum v1 = 2π/(mL) in a system of a finite size L.
For slower velocities v(vσ ) � v1 the dispersion of the spectral
edge mode is not parabolalike and is not universal.

The parabolic shape of the spectral edge mode, which we
obtain in microscopic calculations for different models, can
be interpreted as emergence of “translational invariance.” The
kinetic energy of a single free particle is a parabolic function
of its momentum, enforced by the translational symmetry.
Finite system size discretizes the boosts for changing inertial
frames of reference in quanta of 2π/L. For a system consisting
of N particles the minimal boost of 2πN/L corresponds
to the 2kF periodicity in the momentum space; note that
interaction potentials are also Galilean invariant. However,
the total momentum of the whole many-particle system is
still quantized in the units of 2π/L that can be facilitated by
giving a boost to only a fraction of the particles j < N . The
state on the spectral edge with the momentum k = 2πj/L

corresponds to a hole left between N − j particles in the rest
frame and j particles which have received the minimal boost
(see Sec. III for details). The effective mass of the holelike
quasiparticle is strongly renormalized by interactions since
a partial boost is not a Galilean invariant transformation.
However, the parabolic dependence of the hole energy on
momentum—which is analogous to the kinetic energy of a
free particle—is common for different microscopic models
thus it is an emergent phenomenon.

Excitations above the spectral edge are well described at
high energies by the application of the mobile impurity model
to the Tomonaga-Luttinger theory which incorporates the
curvature of the spectral edge as an input parameter [15]. The
result in Eq. (1) removes this arbitrary input complementing
the model above. Within such a framework, for example, the
edge exponents of the spectral function are expressed explicitly
in terms of only a few Luttinger parameters and the bare
electron mass that provides a systematic way to classify them
for a wide range of microscopic parameters.

The rest of the paper is organized as follows. Section II
describes the model of one-dimensional particles interacting
via short-range potentials, the corresponding spectral function,
and discusses their general properties. In Sec. III we evaluate
momentum dependence of the spectral edge mode using the
Bethe-ansatz approach for Fermi particles in the fundamental
region. Section IV contains the effective field theory for
excitations above the spectral edge and calculates the edge
exponents of the spectral functions using the dispersion of the
spectral edge mode itself obtained in Sec. III. In Sec. V we
show that Bose particles have the same parabolic dispersion,
with the mass renormalized by the same Luttinger parameter K

of the spectral edge mode as the Fermi particles. In Sec. VI we
summarize the results and discuss experimental implications.

II. MODEL

We consider particles in one dimension interacting via a
contact two-body potential U as

H =
∫ L/2

−L/2
dx

(
− 1

2m
ψ†

α(x)�ψα(x) − ULρ(x)2

)
, (2)

where ψα(x) are the field operators of Fermi or Bose particles
at point x (with a spin α =↑ , ↓ for spinful particles), ρ(x) =
ψ†

α(x)ψα(x) is the particle density operator, L is the size of the
system, and m is the bare mass of a single particle. Below we
consider periodic boundary conditions, ψα(x + L) = ψα(x),
to maintain the translational symmetry of the finite length
system, restricting ourselves to repulsive interaction only, U >

0, and we assume � = 1.
The spectrum of excitations in the many-body case

is given by the spectral function which describes
the response of a strongly correlated system to a
single-particle excitation at energy ε and momentum
k, Aα(k,ε) = −Im Gαα(k,ε)sgn(ε − μ)/π , where μ is
a chemical potential and Gαβ(k,ε) = −i

∫
dx dtei(kx−εt)

〈T (e−iH tψα(x)eiHtψβ(0))〉 is a Fourier transform of Green
function at zero temperature. To be specific, we discuss
particlelike excitations, ε > μ. The spectral function in this
domain reads [16]

Aα(k,ε) =
∑
f

|〈f |ψ†
α(0)|0〉|2δ(ε − Ef + E0)δ(k − Pf ),

(3)

where E0 is the energy of the ground state |0〉, and Pf and Ef

are the momenta and the eigenenergies of the eigenstate |f 〉;
all eigenstates are assumed normalized.

Galilean invariance defines a fundamental region for the
spectrum of excitations on the momentum axis. A minimal
boost for changing an inertial frame of reference for N particles
is 2πN/L which is twice the Fermi momentum kF = πN/L.
In momentum space this boost corresponds to 2kF periodicity.
We choose the fundamental region as −kF < k < kF for the
Fermi and as 0 < k < 2kF for Bose particles.

Under a 2kF translation, the form factors in Eq. (3)
do not change and the energies acquire simple shifts. The
interaction term in Eq. (2) is invariant under the transfor-
mation x → x + 2πtj/(mL), where j is the number of the
translation quanta, since the latter can be absorbed into a
change of the integration variable. The transformation of
the momentum operator, −i∇ → −i∇ + 2πj/L, in the the
kinetic term results in a constant energy shift, E → E +
2πjP/(mL) + 2π2j 2N/(mL2), of the Hamiltonian but keeps
its matrix structure, and therefore, eigenstates unaltered. Thus
the spectral function can be extended to arbitrary momenta by
simultaneous translation of the momentum and of the energy
variables starting from the fundamental region.

Here, we are concerned with a distinctive feature of the
spectral function—the edge that marks the lowest possible
excitation energy for a given momentum. To identify its
location we need to obtain only the many-body spectrum of
the model due to a singularity [15] that guarantees large values
of the form factors in the proximity of the spectral edge. The
two δ functions in Eq. (3) directly map the total momenta Pf
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and the eigenenergies Ef of all many-body states |f 〉 into the
points of the spectral function k and ε. We are going to identify
the states that have the smallest energy for each momentum
and study how the dispersion of the spectral edge mode, which
they form, depends on the interaction strength.

III. FERMIONS

A. Spinless

The zero range profile of two-body interaction potential in
the model in Eq. (2) has zero matrix elements for the Fermi
particles without spin due to the Pauli exclusion principle.
A model of interactions in this case requires a finite range
of interactions which is usually introduced by the point-
splitting technique [17] developed to address the problem in
the low-energy limit. Here we will use a different approach
of introducing a lattice with the next-neighbor interaction
between particles. The lattice counterpart of the model
in Eq. (2) is the Hamiltonian H = −∑L/2

j=−L/2(ψ†
j ψj+1 +

ψ
†
j ψj−1)/(2m) − U

∑L/2
j=−L/2 ψ

†
j ψjψ

†
j+1ψj+1, where j is the

site index on the lattice and the operators ψj obey the Fermi
commutation relations {ψi,ψ

†
j } = δij .

The model above can be diagonalized using
the Bethe-ansatz approach [18]. In the coordinate
basis a superposition of N plane waves, � =∑

P,j1<···<jN
e
i
∑N

l=1 kPl
jl+i

∑N
l<l′=1 ϕPl ,Pl′ ψ

†
j1

· · ·ψ†
jN

|vac〉, is an
eigenstate, H� = E�, with the corresponding eigenenergy

E = 1

m

N∑
j=1

[1 − cos(kj )]. (4)

Here |vac〉 is the vacuum state, the scattering phases are fixed
by the two-body scattering problem

ei2ϕll′ = − ei(kl+kl′ ) + 1 − 2mUeikl

ei(kl+kl′ ) + 1 − 2mUeikl′
, (5)

and
∑

P is a sum over all permutations of N quasimomenta.
The periodic boundary condition quantizes the set of N

quasimomenta simultaneously,

Lkj − 2
∑
l �=j

ϕjl = 2πIj , (6)

where Ij is a set of nonequal integer numbers. The total
momentum of N particles, P = ∑

j kj , is a conserved quantity.
The continuum model in Eq. (2) corresponds to the low-

density (long-wavelength) limit of the lattice model. In this
limit the scattering phases in Eq. (5) are linear functions of
quasimomenta, 2ϕll′ = (kl − kl′)/[1 + (mU )−1] + π , and the
nonlinear system of equations in Eq. (6) becomes linear. In
the thermodynamic limit we solve it using perturbation theory
and obtain an independent quantization condition for each
quasimomentum as solutions of the Bethe equations in the
leading 1/N order,

kj = 2πIj

L − N

1+ 1
mU

. (7)

Thus all N -particle eigenstates can be labeled by all possible
sets of integers Ij similarly to Slater determinants for free

FIG. 2. (Color online) A set of quasimomenta from Eq. (7) that
corresponds to the edge mode of the spectral function for Fermi
particles without spin. The momentum of each many-particle state is
given by k = −kF + �P .

fermions. The latter is possible as long as no bound states
exist, which is the case for any value of interaction strength
U � 0 in this limit [18].

The eigenstates contributing to the spectral function satisfy
the number of particle constraints, i.e., fixed to be N + 1. The
lowest energy state for a fixed momentum −kF + �P is given
by the set of integers in Fig. 2. At low energies the system
is in the universality class of Luttinger liquids. Its properties
are fully determined by the linear slope of the spectrum of
excitations at ±kF . Using the parametrization in Fig. 2, the
first Luttinger parameter (the sound velocity of the collective
modes) is a discrete derivative v = L(E2 − E1)/(2π ), where
E2 and E1 are the energies of the states with �P = 2π/L and
�P = 0.

For Galilean invariant systems the product of the first and
the second (dimensionless K) Luttinger parameters gives the
Fermi velocity of the noninteracting system [19], vK = vF

where vF = πN/(mL). By a straightforward calculation of
the eigenenergies in Eq. (4) using Eq. (7) for a pair of states
in Fig. 2 with �P = 0,2π/L we directly obtain the second
Luttinger parameter,

K =
(

1 − N

L
(
1 + 1

mU

)
)2

. (8)

The dispersion of the spectral edge mode is given by the
energies and the momenta of all states in Fig. 2. Starting from
the solutions for quasimomenta in Eq. (7) and repeating the
same calculation as before, we directly obtain the parabolic
function of momentum [20] in Eq. (1), where m∗/m = K

from Eq. (8) [21]. This calculation also gives the chemical
potential in Eq. (1) as the bare electron mass renormalized by
the Luttinger parameter K , μ = k2

F /(2mK).

B. Spinful

When Fermi particles have spin 1/2, the Pauli exclusion
principle suppresses only the interaction between the particles
with the same spin orientation in the model in Eq. (2). The
remaining part of the density-density interaction term consists
of a coupling between particles with opposite spin orientations.

This model can be diagonalized using the Bethe-ansatz
approach but the Bethe hypothesis has to be applied twice [22].
In the coordinate basis, a superposition of plane waves is an
eigenstate, H� = E�, of the model in Eq. (2),

� =
∫

· · ·
∫ L/2

−L/2
dx1 · · · dxN

∑
P,Q

APQei(P k)·(Qx)ψ
†
Q1

(x1) · · ·

×ψ
†
QN

(xN )|vac〉, (9)
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where the operators ψα(x) obey the Fermi commutation
rules {ψα(x),ψ†

β (x ′)} = δ(x − x ′)δαβ , kj are N quasimomenta,∑
P,Q is a sum over all permutations of two independent sets

of N integer numbers (P and Q), and the coefficients APQ are
chosen by a secondary use of the Bethe hypothesis,

APQ = sgn (PQ)
∑
R

⎛
⎝ ∏

1�l<l′�M

λRl
− λRl′ − imU

λRl
− λRl′

⎞
⎠ M∏

l=1

× imU

λRl
− kPzl

+ imU
2

zl−1∏
j=1

λRl
− kPj

− imU
2

λRl
− kPj

+ imU
2

. (10)

Here λl are spin degrees of freedom of M “up” spins with
respect to the reference ferromagnetic state of N “down” spins,∑

R is a sum over all permutations of M integer numbers, and
zl is the position of the lth spin ↑ in permutation Q. The
eigenenergy corresponding to the eigenstate in Eq. (9) is

E =
N∑

j=1

k2
j

2m
. (11)

The periodic boundary condition quantizes the set of N

quasimomenta kj (charge degrees of freedom) simultaneously,

Lkj −
M∑
l=1

ϕjl = 2πIj , (12)

where scattering phases ϕjl = log[(λl − kj − imU
2 )/(λl −

kj + imU
2 )]/i depend on the quasimomenta of both kinds (kj

and λl), Ij is a set of N nonequal integer numbers, and M

quasimomenta λl (spin degrees of freedom) satisfy another set
of nonlinear equations,

N∏
j=1

λl − kj − imU
2

λl − kj + imU
2

=
M∏

l′=1�=l

λl′ − λm − imU

λl′ − λm + imU
. (13)

The sum P = ∑N
j=1 kj is a conserved quantity—the total

momentum of N particles.
The system of nonlinear equations, Eqs. (12) and (13),

can be solved explicitly in the limit of infinite repulsion U =
∞ [23]. The quasimomenta λl diverge in this limit. Under
the substitution of λl = mU tan yl/2, the second system of
equations, Eq. (13), becomes independent of the first system
of equations, Eq. (12), in leading 1/U order,

eiNyl = (−1)N+M−1
M∏

l′=1�=l

ei(yl+yl′) + 1 + 2eiyl

ei(yl+yl′ ) + 1 + 2eiyl′
. (14)

The above Bethe equations are identical to that of a Heisenberg
antiferromagnet [18] where the number of particles N plays
the role of the system size. In one dimension a spin chain is
mapped into the model of interacting Fermi particles by the
Jordan-Wigner transformation [18]; Eq. (14) is identical to
Eqs. (5) and (6) where the interaction strength is set to mU =
−1. Thus all solutions of Eq. (14) can be labeled by all sets of
M nonequal integer numbers Jl similarly to the case of Fermi
particles without spin (see Fig. 2). The system of equations for
the quasimomenta kj in Eq. (12) in the U = ∞ limit decouples

FIG. 3. (Color online) Parametrization of many-body states for
fermions with spin using the U = ∞ limit in Eqs. (14) and (15).
Chargelike excitations correspond to different sets of Ij and spinlike
excitations correspond to different sets of Jj .

into a set of single-particle quantization conditions,

Lkj = 2πIj + 1 − (−1)M

2
π +

M∑
l=1

yl. (15)

Note that the independent magnetic subsystem, where quasi-
momenta yl satisfy Eq. (14), is translationally invariant, thus∑M

l=1 yl = 2π
∑M

l=1 Jl/N [as can be checked explicitly by
multiplying Eq. (14) for all yl]. Therefore, the quantization
condition in Eq. (17) depends only on two sets of integer
numbers, Ij and Jl .

All solutions of the original system of equations, Eqs. (12)
and (13) can be labeled by all sets of N + M integer numbers
Ij and Jl (see Fig. 3). The values of kj and λl that correspond
to these integers can be obtained in two steps. First, the
spin degrees of freedom yl that correspond to a set of Jl

are adiabatically continued under a smooth deformation of
Eq. (6) from U = 0, which is the free particle limit, to
U = −1/m, which coincides with Eq. (14). Note that the
long-wavelength solution in Eq. (7) cannot be used here
because the most interesting case of zero polarization for
spinful fermions corresponds to half-filling of the band for
the model in Eqs. (12) and (13) which is outside of the
limits of applicability of the low-density regime. The values
kj that correspond to a set of Ij and Jl are obtained directly
from Eq. (15). Secondly, the known values of kj and λl in
the U = ∞ limit are adiabatically continued under a smooth
deformation of Eqs. (12) and (13) to arbitrary value of the
interaction strength U .

The interaction effects are controlled by a single dimension-
less parameter that can be defined using the 1/U corrections in
the large U limit. Power series expansion of Eqs. (12) and (13)
up to the first subleading 1/U order, λl = mU tan yl/2 + y

(1)
l

and kj = k
(0)
j + 2k

(1)
j /(mU ), where yl and k

(0)
j are the solutions

of Eqs. (14) and (15), yields

N∑
j=1

(
k

(0)
j − y

(1)
l

)
cos2 yl = −2

M∑
l′=1�=l

y
(1)
l′ − y

(1)
l

(tan yl − tan yl′ )2 + 4

(16)
and

k
(1)
j = 2

L

M∑
l=1

(
k

(0)
j − y

(1)
l

)
cos2 yl. (17)

The first-order coefficients y
(1)
l can be expressed from Eq. (16)

in terms of zeroth-order coefficients k
(0)
j and yl . Then, in the
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FIG. 4. (Color online) Velocities of the collective modes for
fermions with spins at low energies as a function of the interaction
parameters γYG from Eq. (18). The red line corresponds to the holon
branch, the green line corresponds to the spinon branch, and the blue
dashed line marks a quantum of momentum v1 = 2π/(mL); L = 400,
N = 40, γYG = 3.44mU . Inset: Degree of double degeneracy [see the
definition in Eq. (19)] for the ground state in Fig. 3 with �k = �λ = 0
as a function of the interaction parameter γYG.

thermodynamic limit, the first-order corrections to the quasi-
momenta kj in Eq. (17) become k

(1)
j = 2k

(0)
j

∑M
m=1 cos2 yl/L.

This gives a condition of validity for the 1/U expansion of
the Bethe equations, 2k

(1)
j /(mUk

(0)
j ), which is independent of

both indices j and l.
We use the latter to define a single parameter,

γYG = mL

2N

U(
1 + 1

N

∑M
l=1 cos yl

) , (18)

that characterizes the degree of repulsion between fermions.
When γYG � 1 the particles with opposite spin orientations
scatter strongly off each other and when γYG  1 they interact
weakly with each other. For example, this is manifested in a
change of degeneracy of the quasimomenta kj that correspond
to the ground state of unpolarized Fermi particles, M = N/2.
We account for the degree of double degeneracy with respect
to spin 1/2 using

D = 2 − L
∑N−1

j=1 (kj+1 − kj )

πN
. (19)

This quantity is D = 1 when each momentum state of free
fermions is doubly occupied (U = 0) and is D = 0 when each
momentum state is occupied by a single particle (U = ∞).
The crossover from one regime to another occurs at γYG = 1
where D crosses the value of 1/2 (see inset in Fig. 4).

The ground state of the model in Eq. (2) has zero spin
polarization when the external magnetic field is absent, M =
N/2. To be specific we consider the ground states with even
values of N and M . Excited states contributing to the spectral
function satisfy the number of particles being constrained to
be N + 1. In the U = ∞ limit the lowest-energy eigenstates
for a fixed momentum P = −kF + �P are given by a set of
integers in Fig. 3 with �k = 0 and �P = �λ [24]. In the
opposite limit of free fermions, the lowest-energy eigenstates

for a fixed momentum P = −kF + �P are doubly degenerate
with respect to spin 1/2 and are given by the set of integers
in Fig. 3 for each spin orientation. The quasimomenta in both
limits are smoothly connected under adiabatic deformation of
Eqs. (12) and (13) from U = ∞ to U = 0 marking the edge
of the spectral function in Eq. (3) for arbitrary U .

At low energies the eigenstates are strongly mixed in
the spin sector due to spin-charge separation [7] implying
that A↑ (k,ε) = A↓ (k,ε). The excitations of the system are
spinons and holons which are well approximated by the spinful
generalization of the Tomonaga-Luttinger model with only
four free parameters vρ,σ and Kρ,σ . The pair of velocities is
the slopes of the linearized dispersions of the charge and spin
excitations at ±kF . Using the representation of the eigenstates
in Fig. 3 they are

vρ = L(E2 − E1)

2π
, vσ = L(E3 − E1)

2π
, (20)

where E1, E2, and E3 correspond to the energies of the states
with (�k = 0, �λ = 0), (�k = 2π/L, �λ = 0), and (�k =
0, �λ = 2π/L), respectively [25]. The numerical evaluation
of vρ,σ as a function of the interaction parameter γYG [26] is
presented in Fig. 4. For γYG = 0 both velocities coincide, vρ =
vs = vF . For large γYG � 1 the holon velocity doubles, vρ =
2vF , due to strong repulsion between particles with opposite
spin orientations [27], and the spinon velocity becomes zero,
vσ = 0, since it vanishes as ∼1/(m2U ) in this limit [18]. The
other pair of Luttinger parameters can be obtained directly for
Galilean invariant systems using vρ,σ and the Fermi velocity
Kρ,σ = vF /vρ,σ where vF = πM/L, without the need of a
second observable such as compressibility [7].

Beyond the linear regime the position of the edge of the
spectral function is given by following of the low-energy
spinon mode. Numerical evaluation shows that εedge(k) =
Ek − E0, where Ek corresponds to the states in Fig. 3 with
�k = 0 and k = −kF + �λ, is close to a parabola for all
values of γYG (see Fig. 5). For γYG = 0 the shape of the spectral
edge mode is exactly parabolic following the dispersion of
free Fermi particles. For γH � 1 deviations from a parabola
are largest. We quantify them by comparing the effective mass
m∗, obtained by the best fit of Eq. (1) at all energies, with the
spinon velocity vσ from Eq. (20), obtained at low energy [28].
The deviation (vσ − kF /m∗)/vσ decreases as the number of
particles N grows but it saturates at a finite value of ∼0.2 in
the limit N → ∞ [29] (see the inset in Fig. 5).

The edge of the spectral function in the complementary part
of the fundamental range, kF < k < 3kF , also has a parabolic
shape. The eigenstates with the smallest eigenenergies for
a fixed momentum k in this range are connected with
their counterparts in the −kF < k < kF range by a shift
of the spin variables λj → λj + 2π/L. Repeating the same
numerical procedure as before for εedge(k) = Ek − E0, where
Ek corresponds to the states in Fig. 3 with �k = 0 and
k = kF + �λ, we obtain the result in Eq. (1) with k0 = 2kF . In
the “hole region” ε < μ, the position of the edge of the spectral
function is obtained by reflection of εedge(k) with respect to the
line ε = μ.

The parabolalike behavior of the edge mode breaks down
in finite-sized systems in the ultrastrong interaction regime
when the spinon velocity vσ becomes smaller than its own
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FIG. 5. (Color online) Dispersion of the spectral edge mode
(extension of the spinon branch to high energies) for fermions with
spins for different values of the interaction parameter γYG = 0,1,6.88;
L = 400, N = 40. The blue triangles, green squares, and red ellipses
are the numerical solutions of Eqs. (12) and (13); the solid black lines
are the best parabolic fits by Eq. (1). Inset: Difference between the
slope of the parabolic dispersion at EF , which is given by the effective
mass m∗, and the velocity of spin waves at low energies, which is
obtained directly from Eq. (20) [(vσ − kF /m∗) /vσ ] as a function of
the number of particles N for γYG = 6.88. The solid black line is the
1/N fit, a + b/N , that gives a = 0.22 [29].

quantum set by the finite size of the system v1 = 2π/(mL) (see
the dashed line in Fig. 4). Correspondingly, the threshold for
entering this regime becomes γYG → ∞ in the thermodynamic
limit, as observed in Fig. 4 when v1 → 0. When vσ < v1,
the behavior of the system is dominated by doubling of the
period in the momentum space from 2kF to 4kF , which can be
seen explicitly from Eqs. (11) and (15) in the U = ∞ limit.
The doubling in the spinful case is a direct consequence of
Galilean invariance of the model in Eq. (2). However, it does
not manifest itself in the thermodynamic limit for finite spinon
velocities vσ > v1, for which the edge of the spectral function
is still 2kF periodic.

IV. EFFECTIVE FIELD THEORY

Eigenmodes above the spectral edge can be described by
“the mobile impurity model” [15] with two different types
of fields that account for all possible low-energy excitations
with respect to a state on the spectral edge with a given
momentum k in Figs. 2 and 3. One field is responsible
for bosonic excitations around ±kF whose behavior is well
approximated by the Tomonaga-Luttinger model. Another
field models the dynamics of the holelike degree of freedom,
as observed in Fig. 2 for a large �P . For a k away from
±kF creation of a second or removal of the existing holelike
excitation is associated with a significant energy cost, thus the
corresponding field describes a single Fermi particle.

The interaction between the deep hole and the excitations
at ±kF is of the density-density type since their corresponding
energy bands are separated by a large barrier. Bosonization of
the excitations at ±kF leaves two unknown coupling constants
between a pair of the canonically conjugated variables of the
Tomonaga-Luttinger model and a fermionic field of the deep

hole that can be identified by considering two different physical
properties [10,30]. One is translation invariance of the hybrid
system that can be represented as a motion of a fermionic
excitation in a bosonic fluid with the velocity u = 〈∇θ〉 /m.
Another is an observable that corresponds to the change of the
total energy with respect to long-range variations of the density,
which for the hybrid systems is given by δρ = −〈∇ϕ〉 /π .
Here ϕ and ∇θ are the canonically conjugated variables of the
Tomonaga-Luttinger model that correspond to the density and
the current of the hydrodynamic modes, respectively.

For a fixed value of k, the dynamics of the free Bose-
like and the free Fermi-like fields can be linearized for states
close to the spectral edge. Using the dispersion in Eq. (1)
for the Fermi-like field and the Luttinger parameters for the
Bose-like field, the mobile impurity model reads

H =
∫

dx

[
v

2π

(
K (∇θ )2 + (∇ϕ)2

K

)

+
(

k (K − 1)

m∗ ∇θ + v (K + 1)

K
∇ϕ

)
d†d

+ d†
(

k2

2m∗ − ik∇
m∗

)
d

]
, (21)

where −kF < k < kF is the total momentum of the system—
an input parameter of the model, m∗ = mK is the effective
mass of the deep hole, v and K are the Luttinger parameters
defined at ±kF , the fields θ and ϕ are the canonically conju-
gated variables [ϕ(x),∇θ (y)] = iπδ(x − y) of the Tomonaga-
Luttinger model, and the field d obeys the Fermi commutation
rules {d(x),d†(y)} = δ(x − y).

The Hamiltonian in Eq. (21) can be diagonal-
ized by a unitary transformation [8,10]. The rota-
tion e−iUHeiU , where U = ∫

dy[C+(
√

Kθ + ϕ/
√

K) +
C−(

√
Kθ − ϕ/

√
K)]d†d and C± = (2

√
K)−1[k(K − 1) ±

kF (K + 1)]/(k ± kF ), eliminates the coupling term between
the fields turning Eq. (21) into a pair of free harmonic models.
Then, the observables can be calculated in a straightforward
way as averages over free fields only.

The spectral function in Eq. (3) can be calculated using
the effective field model [8]. The original operators ψ† (x)
of Fermi particles of the model in Eq. (2) correspond to a
composite excitation consisting of two bosons and one fermion
in the field language of the model in Eq. (21) (see the state
in Fig. 2). The fermionic excitation gives a dominant contri-
bution to the spectral weight |〈f |ψ†(0)|0〉|2, thus at leading
order in |ε − εedge(k)| close to the spectral edge the spectral
function reads A(k,ε) = ∫

dt dx e−iεt 〈d†(x,t)d(0,0)〉 where
d (x,t) = e−iH td (x) eiHt and 〈· · · 〉 is the zero temperature
expectation value with respect to the model in Eq. (21). In
the diagonal basis the average is evaluated over free fields by
standard means. Following the steps of Ref. [10] we obtain
A (ε,k) ∼ θ [ε − εedge(k)]/|ε − εedge(k)|α , where the exponent
depends only on the Luttinger parameter K ,

α = 1 − K

2

(
1 − 1

K

)2

. (22)

This result is the same for the particle and the hole parts of the
spectrum. Here K is given by the analytic result in Eq. (8).

014309-6

818181



SPECTRAL-EDGE MODE IN INTERACTING ONE- . . . PHYSICAL REVIEW B 90, 014309 (2014)

Excitations above the spectral edge for Fermi particles with
spin can be described using the mobile impurity model in an
analogous way [13,24]. The number of bosonic fields doubles
due to the two spin orientations. Bosonization of the modes at
±kF gives a diagonal Tomonaga-Luttinger model in the basis
of spin and charge fields. Here there are four unknown coupling
constants between two pairs of the canonically conjugated
variables of the Tomonaga-Luttinger model and the Fermi-like
field of the deep hole. One pair of constants that corresponds
to the coupling to spinon modes is zero due to the symmetry
with respect to the spin orientation in the original microscopic
model in Eq. (2), where the external magnetic field is zero.
Another pair of the constants that correspond to the coupling
to holon modes can be identified by considering the same
physical properties as for the Fermi particles without spin.

Using the result in Eq. (1) and the Luttinger parameters, the
mobile impurity model reads

H =
∫

dx

[ ∑
α=ρ,σ

vα

2π

(
Kα (∇θα)2 + (∇ϕα)2

Kα

)

+ vσ − k
m∗√

2
(Kσ∇θρ + ∇ϕρ)d†d

+ d†
(

k2

2m∗ − ik∇
m∗

)
d

]
, (23)

where k is the total momentum of the system—an input
parameter of the model; m∗ = mKσ is the effective mass
of the deep hole; vρ , Kρ , vσ , and Kσ are the four Lut-
tinger parameters for the spin and the charge modes; the
bosonic fields θρ ,ϕρ ,θσ ,ϕσ are canonically conjugated vari-
ables [ϕα (x) ,∇θβ(y)] = iπδαβδ (x − y) of the Tomonaga-
Luttinger model; and the field d obeys the Fermi commutation
rules {d(x),d†(y)} = δ(x − y).

The diagonalization of the Hamiltonian in Eq. (23) can be
done by a unitary transformation in a very similar fashion to
the spinless case [13,24]. The rotation e−iUHeiU , where U =∫

dx[C+(
√

Kρθ + ϕ/
√

Kρ) + C−(
√

Kρθ − ϕ/
√

Kρ)]d†d
and C± = ∓√

Kρ8−5/2 (k − kF ) (K−1
ρ ∓ K−1

σ )/(k/Kσ ±
kF /Kρ), removes the coupling term in the Hamiltonian
in Eq. (23) allowing straightforward calculations of the
observables.

The spectral function in Eq. (3) can be evaluated within
the framework of the effective field model in the same
way. The original Fermi operators ψ†

α (x) in the form factor
|〈f |ψ†

α(0)|0〉|2 correspond to composite excitation consisting
of two bosons (one for spin and one for charge) and one
fermion in the field language of the model in Eq. (23) (see
the state in Fig. 3). The fermionic part gives the dominant
contribution to the spectral weight, thus the spectral function
reads A(k,ε) = ∫

dt dx e−iεt 〈d†(x,t)d(0,0)〉 where d (x,t) =
e−iH td (x) eiHt and 〈· · · 〉 is the zero temperature expectation
value with respect to the model in Eq. (23). In the diagonal
basis the average is evaluated over free fields by standard
means. Following the steps of Ref. [13] we obtain in proximity
of the edge A (ε,k) ∼ θ [ε − εedge(k)]/|ε − εedge(k)|α where
the exponent depends only on a pair of the dimensionless
Luttinger parameters and the momentum along the spectral

edge,

α = 1

2
± 1

2
− Kρ

4

⎛
⎝1 −

(k − kF )
(

kF

K2
ρ

+ k
K2

σ

)
(

k
Kσ

)2 − (
kF

Kρ

)2

⎞
⎠

2

− Kρ

4

⎛
⎝ 1

Kρ

±
(k − kF )

(
kF

KρKσ
+ k

KρKσ

)
(

k
Kσ

)2 − (
kF

Kρ

)2

⎞
⎠

2

. (24)

The result is different for the particle (+) and the hole (−)
sectors. The values of the Luttinger parameters obtained
numerically using Eq. (20) (see Fig. 4) give divergent values of
0 < α < 1 in the particle sector and cusplike positive powers
−1 < α < 0 in the hole sector.

V. BOSONS

While our primary interest lies in Fermi particles, for
completeness and to test the generality of our result we
consider Bose particles without spin [31]. In this case the
application of the Bethe-ansatz approach is very similar to
the case of Fermi particles without spin [18]. Our approach
of solving a discrete model is complementary to previous
approaches to this problem based around numerical solution
of the continuum form of the Bethe-ansatz equations and
a comparison with a mean-field-like result from the Gross-
Pitaevskii equation [32].

We closely follow the original approach of Lieb and
Liniger in Ref. [33]. In the coordinate basis a super-
position of N plane waves, � = ∫ · · · ∫ L/2

−L/2 dx1 · · · dxN∑
P e

i
∑

j kPj
xj e

i
∑

l<l′ ϕPlPl′ ψ† (x1) · · · ψ† (xN ) |vac〉, is an eigen-
state, H� = E�, of the model in Eq. (2) with the correspond-
ing eigenenergy E = ∑N

j=1 k2
j / (2m). Here the operators ψ (x)

obey the Bose commutation rules [ψ(x),ψ†(y)] = δ(x − y),∑
P is a sum over all permutations of N quasimomenta kj ,

and the scattering phases 2ϕll′ = log[(kl − kl′ + i2mU )/(kl −
kl′ − i2mU )]/i are fixed by the two-body scattering problem.

The periodic boundary condition quantizes a set of N

quasimomenta simultaneously,

kjL −
N∑

l=1�=j

2ϕjl = 2πIj , (25)

where Ij is a set of nonequal integer numbers. The total
momentum of N particles, P = ∑

j kj , is a conserved quantity.
The nonlinear system of equations, Eq. (25), can be solved

explicitly in the limit of infinite repulsion. The hard-core
bosons in this limit are identical to free fermions [34] which
decouples Eq. (25) into a set of plane wave quantization
conditions, kj = 2πIj/L. The corresponding eigenstates are
Slater determinants whose classification is identical to that of
free fermions—all many-body states correspond to all sets of
N nonequal integer numbers. These values of quasimomenta
kj can be adiabatically continued under a smooth deformation
of Eq. (25) by varying the interaction strength from U = ∞
to an arbitrary value of U .

The single parameter that controls the behavior of inter-
acting bosons can be obtained from the Bogoliubov theory in
the weak interaction regime [35]. This theory is valid when
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FIG. 6. (Color online) The sound velocity of the collective modes
for spinless bosons v at low energies as a function of the interaction
parameter γLL from Eq. (26) (red line) and the quantum of momentum
v1 = 2π/(mL) (blue dashed line); L = 200, N = 20, and γL =
0.2mU .

the interaction length is smaller than the kinetic energy of
particles, e.g., the high-density limit. The same parameter can
be generalized to arbitrary interaction strengths [33],

γLL = 2mUL

N
. (26)

When γLL  1 the interacting particles are like bosons and
when γLL � 1 the system is almost a free Fermi (Tonks-
Girardeau) gas.

The eigenstates contributing to the spectral function in
Eq. (3) satisfy the number of particles being constrained to
be N + 1. The lowest energy state for a fixed momentum
−kF + �P , where kF = πN/L, is given by the sets of
integer numbers in Fig. 2. At low energies the system is well
approximated by the Tomonaga-Luttinger model with only two
free parameters [7,32]. Using the parametrization in Fig. 2, the
first Luttinger parameter (the sound velocity of the collective
modes) is a discrete derivative v = L(E2 − E1)/(2π ), where
E1 and E2 are the energies of the states in Fig. 2 with �P = 0
and �P = 2π/L. For Galilean invariant systems the second
(dimensionless K) Luttinger parameter can be obtained from
the relation vK = vF where vF = πN/ (mL) [19]. Numerical
evaluation of v as a function of the interaction parameters γLL

is given in Fig. 6.
Beyond the linear regime the position of the edge of the

spectral function is given by the momentum dependence of
the states in Fig. 6, εedge(k) = Ek − E0 where Ek corresponds
to the states with k = �P . Numerical evaluation shows that
the shape of εedge(k) is close to a parabola for all values of
γLL (see Fig. 7). The biggest deviation from a parabola occurs
when γLL  1. We quantify it by comparing the effective mass
m∗, obtained by the best fit of Eq. (1), with v in Fig. 6, obtained
at low energies. The deviation (v − kF /m∗)/v increases as the
number of particles N grows but it saturates at a finite value
of ∼0.1 in the limit N → ∞ (see inset in Fig. 7).

As with Fermi particles with spin, for finite systems the
parabolalike behavior of the spectral edge mode breaks down
in the ultraweak interaction regime when the sound velocity of
collective modes at low energies mode becomes comparable
with its own quantum set by the finite size of the system v1 =

FIG. 7. (Color online) Dispersion of the spectral edge mode for
spinless bosons for different values of the interaction parameter γL =
0.5,1,∞; L = 200, N = 20. The blue triangles, green squares, and
red ellipses are the numerical solutions of Eq. (25), the solid black
lines are the best parabolic fits by Eq. (1). Inset: Difference between
the slope of the parabolic dispersion at EF , which is given by the
effective mass m∗, and the velocity of the sound modes, which is
obtained by direct evaluation of the energy of the first excited state
above the Fermi energy [(v − kF /m∗) /v] as a function of the number
of particles N for γLL = 0.5. The solid black line is the 1/N fit,
a − b/N , that gives a = 0.09.

2π/(mL) (see the dashed line in Fig. 6). Correspondingly,
the threshold for entering this regime becomes γLL → 0 in
the thermodynamic limit, as observed in Fig. 6 when v1 → 0.
When v ∼ v1 the edge of the spectral function is linear at all
energies, including the high-energy domain, with the slope that
is governed by the kinetic energy of a single free Bose particle.
These findings are consistent with the work in Ref. [32] where,
within their methodology, the authors find a breakdown in
parabolicity in the region of small γLL and a result consistent
with GPE.

VI. CONCLUSIONS

In this work, we have analyzed the spectral edge mode
for a variety of one-dimensional models with short-range in-
teractions that bounds from below a continuum of many-body
excitations. Explicit diagonalization by means of Bethe-ansatz
techniques shows this mode to have an almost perfect parabola
dispersion in all cases. Based on this emergent phenomenon,
the spectral edge mode can be described empirically by a
free, nonrelativistic particle with effective mass identified
from the low-energy theory as a free electron mass strongly
renormalized by interactions via the dimensionless Luttinger
parameter K (Kσ for particles with spin). However, unlike
a free particle, the spectral edge mode is not protected by a
symmetry, thus deviations from the quadratic dispersion may
develop—the biggest discrepancy (�20%) occurs for Fermi
particles with spin and a very large interaction strength. The
empirical model remains robust for finite sound velocities
of the collective modes at low energies v (vσ ) > v1, where
v1 = 2π/(mL) is the quantum of momentum.

The relevance of the Luttinger (low-energy) parameters
beyond the low-energy limit implies that they can be extracted
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using a much wider range of experimental data using the
whole energy window from the bottom of the band to
the Fermi energy. However, the dispersion of the spectral
edge mode itself cannot be used as a qualitative feature to
rule out interaction effects since the interactions between
particles do not change the parabolic shape of the single-
particle dispersion. The biggest deviations could be observed
for strongly interacting spinful fermions (Kσ � 10), e.g.,
electrons in semiconductors at low densities or cold Fermi
atoms in a 1D trap that would require a good resolution of the
experiment.

The main result of this paper, Eq. (1), complements the
mobile impurity model which was developed by Glazman and
co-workers as a description of one-dimensional systems above
the spectral edge at high energies. Our explicit expression for

the dispersion of the edge mode removes an arbitrary input
parameter (curvature of the dispersion) that leaves only the few
Luttinger parameters and the bare electron mass as a minimal
set of necessary ingredients to model excitations above the
spectral edge at arbitrary energies. Within such a framework,
for example, exponents of the spectral functions are expressed
explicitly in terms of only a few Luttinger parameters. The
results in Eqs. (22) and (24) provide a systematic way to
classify the edge exponents for a wide range of microscopic
parameters.
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Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral
weights of the excitations theoretically, and we observe evidence for second-level excitations exper-
imentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are
separated by powers ofR2=L2, whereR is a length scale related to interactions and L is the system length.
The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized
single particle. The second-level excitations produce a singular power-law line shape to the first-level mode
and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons
(fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic
dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable
interaction strength. We find structure resembling the second-level excitations, which dies away quite
rapidly at high momentum.

DOI: 10.1103/PhysRevLett.114.196401 PACS numbers: 71.10.Pm, 03.75.Kk, 73.63.Nm, 73.90.+f

The challenge of understanding interacting electrons is a
major open problem. Progress has so far relied on being
able to assume a linear relation between energy and
momentum that restricts our understanding to the low
energy and low momentum excitations where this assump-
tion is valid. This has led to the notion of a Fermi liquid [1]
and, in one dimension, a Luttinger liquid [2], where those
excitations are described as quasiparticles. In the case of the
Luttinger liquid, the quasiparticles are quite distinct from
the underlying electrons. In this Letter we have studied a
model of interacting fermions where we are not constrained
by linearization to low energies and find that the many-
body solutions can be characterized in a hierarchical
fashion by their “spectral weight”—a quantity determining
how the solutions connect to physical observables. At the
top of this hierarchy is an excitation that looks like a single
underlying fermion but with a new dispersion. We then
look for evidence of this hierarchy by undertaking experi-
ments of momentum-conserved tunneling in 1D quantum
wires of electrons. We see both the first and second levels of
this hierarchy, indicating that this characterization is a
robust feature of 1D interacting electrons. Despite its
differences from Luttinger-liquid behavior, we are able
to show how our hierarchy crosses over to the more familiar
Luttinger liquid at low energies.
Our theoretical approach is the full microscopic diago-

nalization of a model of spinless fermions with short-range
interactions and the evaluation of its spectral function via
Bethe ansatz methods. We find that the spectral weights of
excitations have factors with different powers of a ratio of
lengths, R2=L2 (which will be defined below) separating

them into a hierarchy. The dispersion of the mode formed
by excitations with zero power, which we call the first level,
is parabolic (see Fig. 1) with a mass renormalized by the
Luttinger parameter K [3]. The continuous spectrum of the
second-level excitations produces a power-law line shape
around the first-level mode with a singular exponent −1.
Around the hole edge (h0a in Fig. 1) the continuous
spectrum reproduces the spectral edge singularity predicted
by the very recently proposed mobile impurity model [4],

FIG. 1 (color online). The main features of spectral function for
spinless fermions in the region −kF<k<kF (kF<k<3kF) labeled
by 0(1). The gray areas mark nonzero values, pðhÞ shows the
particle(hole) sector, kF is the Fermi momentum, a; b; c, respec-
tively, identify the level in the hierarchy in powers 0,1,2 of
R2=L2, and ðr; lÞ specifies the origin in the range—modes on the
edge have no such label.
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but gives a different power-law behavior of the spectral
function around the opposite particle edge (p0b in Fig. 1).
Experimentally, we measure the momentum-resolved

tunneling of electrons (fermions with spin) confined to a
1D geometry in the top layer of a GaAs-AlGaAs double-
quantum-well structure from or to a 2D electron gas in the
bottom layer. Probing the spectral function for spinful
fermions in this setup we find the same general picture that
emerges from the calculation for spinless fermions. We
observe a single parabola (which particle-hole asymmetry
is manifested in relaxation processes [5]) at high energy,
together with well-resolved spin-charge separation (a dis-
tinct Luttinger-liquid effect) at low energy with appreciable
interaction strength (ratio of charge and spin velocities
vc=vs≈1.4) [6,7]. In addition, we can now resolve the
structure just above kF that appears to be the edge of the
second-level excitations (p1b). However, for higher k we
find no sign of the higher-level excitations, implying that
their amplitude must have become at least 3 orders of
magnitude weaker than for the first parabola (h0a). This
can only be explained by the hierarchy of modes developed
in the theory part of this Letter.
Spinless fermions.—We study theoretically the model of

interacting Fermi particles without spin in one dimension,

H ¼
Z L=2

−ðL=2Þ
dx

�
−

1

2m
ψ†ðxÞΔψðxÞ −ULρðxÞ2

�
; ð1Þ

where the field operators ψðxÞ satisfy the Fermi com-
mutation relations, fψðxÞ;ψ†ðx0Þg ¼ δðx − x0Þ, ρðxÞ ¼
ψ†ðxÞψðxÞ is the particle density operator, and m is the
bare mass of a single particle. Below, we consider the
periodic boundary condition ψðxþ LÞ ¼ ψðxÞ, restrict
ourselves to repulsive interaction U > 0 only, and take
ℏ ¼ 1. The response of a many-body system to a single-
particle excitation at momentum k and energy ε is described
by a spectral function that, in terms of the eigenstates, reads
as [8] Aðk; εÞ ¼ L

P
f½jhfjψ†ð0Þj0ij2δðε − Ef þ E0Þδðk−

PfÞ þ jh0jψð0Þjfij2δðεþ Ef − E0Þδðkþ PfÞ�, where E0

is the energy of the ground state j0i, and Pf and Ef are
the momenta and the eigenenergies of the eigenstates jfi;
all eigenstates are assumed normalized.
In the Bethe ansatz approach the model in Eq. (1) is

diagonalized by N-particle states parametrized with sets of
N quasimomenta kj that satisfy the nonlinear equations
Lkj −

P
l≠j ln½−ðeiðkjþklÞ þ 1 − 2mUeikjÞ=ðeiðkjþklÞ þ

1 − 2mUeiklÞ�=i ¼ 2πIj [9], where Ij are sets of non-
equal integers. The dimensionless length of the system L ¼
L=R is normalized by the short length scale R, which is
introduced using a lattice (with next-neighbor interaction)
as the lattice parameter (and interaction radius) R that
provides microscopically an ultraviolet cutoff for the
theory. The latter procedure at high energy is analogous
to the point-splitting technique [10] at low energy. Solving
the lattice equations in the continuum regime, which

corresponds to the thermodynamic (N;L → ∞, but N=L
is finite) and the long wavelength (N=L≪1 with N=L
finite) limits, we obtain [11]

kj ¼
2πIj

L − mUN
mUþ1

−
mU

mU þ 1

X
l≠j

2πIl
ðL − mUN

mUþ1
Þ2 : ð2Þ

The corresponding eigenenergy and total momentum
(protected by the translational invariance of the system)
are E ¼ P

jk
2
j=ð2mÞ and P ¼ P

jkj. Using the algebraic
representation of the Bethe ansatz we obtain the form factor
for the spectral function in the same regime as [11,17]

jhfjψ†ð0Þj0ij2 ¼ Z2N

L

Q
jðk0j − PfÞ2Q
i;jðkfj − k0i Þ2

×
Y
i<j

ðk0j − k0i Þ2
Y
i<j

ðkfj − kfi Þ2; ð3Þ

where Z ¼ mU=ðmU þ 1Þ=½L − NmU=ð1þmUÞ� and kfj
and k0j are the quasimomenta of the eigenstate jfi and the
ground state j0i.
This result is singular when one or more quasimomenta

of an excited state coincide with that of the ground state.
The divergences occur in the first term of Eq. (2) but the
second (which is smaller in 1=L) term provides a cutoff
within the theory, canceling a power of Z2∼L−2 per
singularity; when N quasimomenta kfj coincide with k0j ,
Eq. (3) givesLjhfjψ†ð0Þj0ij2 ¼ 1. We label the many-body
excitations by the remaining powers of L−2 [18], e.g., p0b:
pðhÞ indicates the particle (hole) sector, 0(1) encodes the
range of momenta −kF<k<kFðkF<k<3kFÞ, and a; b; c
reflect the terms L−2n with n ¼ 0; 1; 2. All simple modes,
formed by single particlelike and holelike excitations of the
ground state k0j , are presented in Fig. 1 and the spectral
function along them is evaluated in Table I. Note that the
thermodynamic limit involves both L → ∞ and the particle
number N → ∞ and the finite ratio N=L ensures that the
spectral weight of the subleading modes, e.g., the modes
p0b, h1b, and h1bðrÞ, is still apparent in the infinite
system.
Excitations around the strongest a modes have an

additional electron-hole pair in their quasimomenta, which
introduces an extra factor of L−2,

jhfjψ†ð0Þj0ij2 ¼ Z2

L
ðkf2 − kf1Þ2ðk01 − PfÞ2
ðkf1 − k01Þ2ðkf2 − k01Þ2

: ð4Þ

The energies of the electron-hole pairs themselves are
regularly spaced around the Fermi energy with slope vF.
However, degeneracy of the many-body excitations due to
the spectral linearity makes the level spacings nonequi-
distant. Using a version of the spectral function smoothed
over energy, ĀðεÞ ¼ R ϵ0=2

−ϵ0=2dϵAðεþ ϵ; kÞ=ϵ0, where ϵ0 is a
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small energy scale, we obtain ĀðεÞ ¼ Z22kFð3k2 þ k2FÞ=
ðmγKÞðεh0a − εÞ−1θðεh0a − εÞ and ĀðεÞ ¼ Z2ðkþ sgnðε−
εp1aðlÞÞkFÞ3=ðmγKÞjε − εp1aðlÞj−1, where γ ¼ 2π=L and
the dispersion of the a modes is parabolic, εh0aðkÞ ¼
εp1aðlÞðkÞ ¼ k2=ð2mKÞ, with the mass renormalized by
the Luttinger parameter K [3], around the h0a and
p1aðlÞ modes. The exponent −1 coincides with the
prediction of the mobile-impurity model [20], where the
spectral edge is an a mode, h0a.
Excitations around the b modes belong to the same level

of hierarchy as the modes themselves, Eq. (4), giving a
more complicated shape of the spectral function. Let us
focus on one mode, p0b. It has a new power-law behavior
characterized by an exponent changing with k from
ĀðεÞ∼ðε − εp0bÞ3 for k ¼ 0 to ĀðεÞ∼const − ðε − εp0bÞ
for k≈kF, where εp0bðkÞ ¼ k2F=ðmKÞ − k2=ð2mKÞ. This
is essentially different from predictions of the mobile-
impurity model. Here we observe that the phenomenologi-
cal model in Refs. [21] is correct only for the a-mode
spectral edge but higher-order edges require a different
field-theoretical description. The density of states is linear,
νðεÞ∼ðε − εp0bÞ, but level statistics varies from having a
regular level spacing (for k commensurate with kF) to an
irregular distribution (for incommensurate k), which is
another microscopic difference between the a and bmodes.
Now we use the result in Eq. (3) to calculate another

observable, the local density of states. This is independent
of position for the translationally invariant systems
and, in term of eigenmodes, is [8,22] ρðεÞ ¼
L
P

f½jhfjψ†ð0Þj0ij2δðε − Ef þ E0Þ þ jh0jψð0Þjfij2δðεþ
Ef − E0Þ�. The leading contribution for ε > 0 comes from
the a modes, ρðεÞ ¼ θðεÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mK=ε
p

, which gives the same
1=

ffiffiffi
ε

p
functional dependence as the free-particle model—

see red line in Fig. 2. Around the Fermi energy the
Tomonaga-Luttinger model predicts power-law suppres-
sion of ρðεÞ∼jε − μjðKþK−1Þ=2−1 [2] (blue region in Fig. 2)
signaling that the leading-order expansion in the
Ljhfjψ†ð0Þj0ij2 ¼ 1 result is insufficient. We evaluate
ρðεÞ numerically in this region using determinant repre-
sentation of the form factors for the lattice model instead of
Eq. (3) (inset in Fig. 2) [11,23]. Away from the point ε ¼ μ

the particle-hole symmetry of the Tomonaga-Luttinger
model is broken by the curvature of the dispersion of the
a modes. For ε<0 the leading contribution to ρðεÞ comes
from b modes. Using Eq. (4) we obtain ρðεÞ ¼ 2Z2k2F=
ðγμKÞ½2ð1 − 3jεj=μÞ ffiffiffi

μ
p

cot−1ð ffiffiffiffiffiffiffiffiffiffijεj=μp Þ= ffiffiffiffiffijεjp þ 6�θð−εÞ,
which contains another van Hove singularity ρðεÞ ¼
2πZ2k2F=ðγK

ffiffiffiffiffi
με

p Þ at the bottom the conduction band (green
line in Fig. 2).
Having established the theoretical framework for expect-

ing a hierarchy of modes in our calculation, we now turn to
experiment and the evidence from momentum-conserving
tunneling of electrons. Electrons, being spin-1=2, do not
directly correspond to the model above (and neither is there
a method known for calculating the necessary form factors
for spinful fermions). Nevertheless, the general picture that
emerges for the experiment is qualitatively the same as we
have established theoretically above and it provides addi-
tional support for the existence of a hierarchy.

TABLE I. Spectral weights Aðk; εαðkÞÞ along the a and the b modes for −kF<k<kF (kF<k<3kF) labeled by
x ¼ 0ð1Þ. Here α is the index of the mode, e.g., α ¼ h0a, and other terminology is the same as in Fig. 1; γ ¼ 2π=L
and Z ¼ mU=ðmU þ 1Þ=½L − NmU=ð1þmUÞ�.

x ¼ 0 x ¼ 1

pxa 1
hxa 1
pxb 16Z2k2Fk

2=ðk2 − ðkF þ γÞ2Þ2 4Z2γ2ðk − kF þ 3
2
γÞ2=ðk − kF þ γÞ2ðk − kF þ 2γÞ2

pxbðlÞ 4Z2ðkF þ kÞ2=k2F
pxbðrÞ 4Z2ðkF − kÞ2=k2F
hxb 4Z2ð3kF − k − γÞ2ðkF þ kÞ2=k2Fðk − kF þ γÞ2
hxbðlÞ 4Z2γ2=ðkþ kF þ 2γÞ2 Z2k2Fk

2=ððkþ γÞ2 − k2FÞ2
hxbðrÞ 4Z2γ2=ðk − kF − 2γÞ2

FIG. 2 (color online). The local density of states for spinless
fermions: red and green lines show the contribution of a and b
excitations and the blue line indicates the Luttinger-liquid regime.
Inset is a log-log plot around the Fermi energy: the blue points are
numerical data for N ¼ 71, L ¼ 700,mV ¼ 6 giving K ¼ 0.843,
and the dashed line is ρðεÞ ¼ constjε − μjðKþK−1Þ=2−1.
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Fermions with spin.— We study experimentally in a
high-mobility GaAs-AlGaAs double-quantum-well struc-
ture with electron density around 2×1015 m−2 in each layer.
Electrons in the top layer are confined to a 1D geometry by
split gates. Our devices contain an array of ∼500 highly
regular wires to boost the signal from 1D to 2D tunneling.
The small lithographic width of the wires, ∼0.18 μm,
provides a large energy spacing between the first and
second 1D subbands, allowing a wide energy window for
electronic excitations in the single-subband case—see
device schematic in Fig. 3(f) and more details in Ref. [7].
The 2DEG in the bottom layer is separated from the

wires by a d ¼ 14 nm tunnel barrier (giving a spacing
between the centers of the wave functions of d ¼ 34 nm). It
is used as a controllable injector or collector of electrons for
the 1D system [24]. A sharp spectral feature in the density
of states of the 2DEG produced by integration over
momenta in the direction perpendicular to the wires can
be shifted in energy by a dc bias between the layers, in
order to probe different energies. Also, an in-plane mag-
netic field B applied perpendicular to the wires changes the
longitudinal momentum in the tunneling between layers
by Δk ¼ eBd=ℏ, where e is the electronic charge, and so
probes the momentum. Together they reveal the dispersion
relation of states in each layer. In this magnetic field range
the system is still within the regime of Pauli paramagnetism
for the electron densities in our samples.
We have measured the tunneling conductanceG between

the two layers [see Fig. 3(f)] in detail in a wide range of
voltage and magnetic field, corresponding to a large portion
of the 1D spectral function from −kF to 3kF and from −2μ
to 2μ [Fig. 3(a)]. At low energy we observe spin-charge
separation [7]. The slopes of the charge (C) and spin (S)
branches—black dashed lines—are vc≈2.03×105 and
vs≈1.44×105 ms−1, respectively, with vc=vs≈1.4�0.1
[11]. This large ratio, together with a strong zero-bias
suppression of tunneling [7], confirms that our system is in
the strongly interacting regime.
Unavoidable “parasitic” (p’) tunneling from narrow 2D

regions connecting the wires to the space constriction [7],
superimpose a set of parabolic dispersions, marked by
magenta and blue dotted lines in Fig. 3(a) on top of the 1D
to 2D signal. Apart from them we observe a 1D parabola,
marked by the solid green line in Fig. 3(a), which extends
from the spin-excitation branch at low energy. The position
of its minimum gives the 1D chemical potential μ≈3 meV
and its crossings with the line Vdc ¼ 0, corresponding to
momenta −kF and kF, give the 1D Fermi momentum
kF≈8×107 m−1.
All other edges of the 1D spectral function are con-

structed by mirroring and translation of the hole part of the
observable 1D dispersion, the dashed green and blue lines
in Fig. 3. We observe a distinctive feature in the region just
above the higher Vdc ¼ 0 crossing point (kF): the 1D
peak, instead of just continuing along the noninteracting

parabola, broadens, with one boundary following the
parabola [p1aðlÞ] and the other bending around, analogous
to the replica p1b. This is observed in samples with different
wire designs and lengths [10 (a)–(d), and 18 μm (e)] and at
temperatures from 100 up to at least 300mK. The strength of
the p1b feature decreases as the B field increases away from
the crossing point analogously to that for spinless fermions in
Table I [25], though it then passes a p’ parabola. (b)
and (c) show the replica feature [26] for two different
positions of the p’ parabolas using a gate above most of
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FIG. 3 (color online). Measurement of the tunneling differential
conductance G ¼ dI=dV for two samples, each consisting of a
set of identical wires of length L ¼ 10 (a)–(d) and L ¼ 18 μm
(e), sketched in inset (f). (a) Intensity plot of dG=dVdc to 2μ. The
line is the 2D dispersion. The green solid line marks the amodes,
dashed green lines the b modes, and dashed blue the c modes
(as in Fig. 1); dotted magenta and blue lines are parasitic 2D
dispersions. Spin (S) and charge (C) modes are indicated with
black dashed lines. T ¼ 300 mK. (b) Enlargement of the replica
feature in (a) just above kF. It appears as a pale band (slowly
varying G) between the two green curves, after a red region
(sharp rise in G). (c) The same as in (b), but with the gate voltage
over most of the parasitic (p’) region changed to move the p’
parabolas. (d) G vs Vdc at various fields B from 3 to 4.8 T [from
(a)]; þ and × symbols on each curve indicate, respectively, the
voltages corresponding to the dashed and solid [p1b and p1aðlÞ]
green lines in (a) and (b), showing the enhanced conductance
between the two. (e) dG=dVdc for a second device, at
T<100 mK. The replica feature is similar to that shown in
(b) and (c) for the other sample.
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the p’ region, showing that the replica feature is independent
of the p’ tunneling. G is plotted in (d) on cuts along the Vdc
axis of (a) at various fields B from 3 to 4.8 T; between theþ
and × symbols on each curve is the region of enhanced
conductance, characteristic of the replicap1b. The amplitude
of the feature dies away rapidly, and beyond thep’ parabolas,
we havemeasured up to 8 Twith high sensitivity, and find no
measurable sign of any feature above the experimental noise
threshold. This places an upper limit on the amplitude of any
replica away from kF of at least 3 orders of magnitude less
than that of the a mode (h0a).
Making an analogy with the microscopic theory for

spinless fermions above, we estimate the ratio of signals
around different spectral edges using the 1D Fermi wave-
length, λF ≈ 80 nm for our samples, as the short-range
scale. The amplitude of signal from the second (third)-level
excitations is predicted to be smaller by a factor of more
than λ2F=L

2 ¼ 6×10−5 (λ4F=L
4 ¼ 4×10−9), where the

length of a wire is L ¼ 10 μm. These values are at least
an order of magnitude smaller than the noise level of our
experiment. Thus, our observations are consistent with the
mode hierarchy picture for fermions.
In conclusion, we have shown that a hierarchy of modes

can emerge in an interacting 1D system controlled by the
system length. The dominant mode for long systems has a
parabolic dispersion, like that of a renormalized free
particle, in contrast with distinctly nonfreeparticle-like
behavior at low energy governed by the Tomonaga-
Luttinger model. Experimentally, we find a clear feature
resembling the second-level excitations, which dies away at
high momentum.
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The natural excitations of an interacting one-dimensional system at low energy are the hydrodynamic modes
of a Luttinger liquid, protected by the Lorentz invariance of the linear dispersion. We show that beyond low
energies, where the quadratic dispersion reduces the symmetry to Galilean, the main character of the many-body
excitations changes into a hierarchy: calculations of dynamic correlation functions for fermions (without spin)
show that the spectral weights of the excitations are proportional to powers of R2/L2, where R is a length-scale
related to interactions and L is the system length. Thus only small numbers of excitations carry the principal
spectral power in representative regions on the energy-momentum planes. We have analyzed the spectral function
in detail and have shown that the first-level (strongest) excitations form a mode with parabolic dispersion, like
that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to
the first-level mode and multiple power laws at the spectral edge. We have illustrated a crossover to a Luttinger
liquid at low energy by calculating the local density of states through all energy scales: from linear to nonlinear,
and to above the chemical potential energies. In order to test this model, we have carried out experiments to
measure the momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs
heterostructure. We observe a well-resolved spin-charge separation at low energy with appreciable interaction
strength and only a parabolic dispersion of the first-level mode at higher energies. We find a structure resembling
the second-level excitations, which dies away rapidly at high momentum in line with the theoretical predictions
here.

DOI: 10.1103/PhysRevB.93.075147

I. INTRODUCTION

Predicting the behavior of interacting electrons is a sig-
nificant open problem. Most progress to date has been made
at low energies where the linearization of the single-particle
dispersion led to the construction of Fermi [1] and, in one
dimension, to Luttinger-liquid theories [2] in which the natural
excitations are fermionic quasiparticles and hydrodynamic
modes, respectively. The only significant progress beyond
the linear approximation has been achieved via the heavy
impurity model, for Fermi [3–5] and Luttinger [6] liquids,
showcasing threshold singularities drastically different from
the low-energy behavior. In this paper, we investigate one-
dimensional (1D) fermions beyond the linear approximation
where the natural many-body excitations form a hierarchical
structure, which we have recently discovered [7], in sharp
contrast with the Fermi quasiparticles or hydrodynamic modes.
We obtain the dynamical structure factor, in addition to the
already known spectral function, and construct an inductive
proof for calculating the form factors that are necessary for the
dynamical response functions of the spinless fermion model.
Experimentally, we demonstrate control over the interaction
energy a 1D wire manifested as a change of the ratio of the
charge and spin velocities at low-energy scales. We find a new
structure resembling the second-level excitations, which dies
rapidly away from the first-level mode in a manner consistent
with a power law.

We analyze theoretically the dynamic response functions—
that probe the many-body excitations—for spinless fermions
with short-range interactions. Our approach is exact di-
agonalization via Bethe ansatz methods: the eigenenergies

are evaluated in the coordinate representation and form
factors—for the corresponding eigenstates—are derived in
the algebraic representation, via Slavnov’s formula [8]. On
the microscopic level, the excitations arrange themselves into
a hierarchy via their spectral weights—given by the form
factors—with different powers of R2/L2, where R is the

FIG. 1. Regions of the energy-momentum plane dominated by
two different principal regimes of the system (bottom): hydrodynamic
modes of the Luttinger liquid (top right) at low energies (marked with
cyan color in the bottom panel) and the hierarchy of modes (top left)
in the rest of the plane.
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particle-particle interaction radius and L is the length of the
system. As a result, only small numbers of states—out of an
exponentially large Fock space of the many-body system—
carry the principal spectral power in representative regions on
the energy-momentum plane, see Fig. 1, allowing an analytical
evaluation of the observables.

At small energy, this hierarchy crosses over to a hy-
drodynamic behavior, see Fig. 1, which we illustrate by
calculating the local density of states. At low energy, it is
suppressed in a power-law fashion according to the Tomonaga-
Luttinger theory. Away from the Fermi point where the Lorentz
invariance is reduced to Galilean by the parabolicity of the
spectrum, the local density of states is dominated by the
first(leading)-level excitations of the hierarchy. This produces
a 1/

√
ε van Hove singularity, where ε is the energy measured

from the bottom of the conduction band. At even higher
energies, the second-level excitations produce another 1/

√|ε|
van Hove singularity on the other side of the band edge, in the
forbidden for the noninteracting system region.

Using this framework, we study the response of the
correlated system to adding/removing a particle in detail, given
by the spectral function. The first-level excitations form a
parabolic dispersion, like a single particle, with a mass renor-
malized by the Luttinger parameter K [9]. The continuous
spectrum of the second-level excitations produces a power-law
line shape around the first-level mode with a singular exponent
−1. Around the spectral edges, the second-level excitations
give a power-law behavior of the spectral function. For the
hole edge, the exponent calculated microscopically reproduces
the prediction of the phenomenological heavy impurity model
in one dimension [6]. However, around the particle edge, the
second-level excitations give a power-law of a new type.

Experimentally, momentum-resolved tunneling of elec-
trons confined to a 1D geometry has been used to probe
spin-charge separation in a Luttinger liquid [11,12,38,39]. This
separation was observed to persist far beyond the energy range
for which the Luttinger approximation is valid [12], showing
the need for more sophisticated theories [37]. Particle-hole
asymmetry has also been detected in relaxation processes
[10]. In this paper, we measure momentum-resolved tunneling
of electrons in the upper layer of a GaAs-AlGaAs double-
quantum-well structure from/to a 2D electron gas in the lower
layer. This setup probes the spectral function for spinful
fermions. We observe a well-resolved spin-charge separation
at low energy with appreciable interaction strength—a distinct
effect of the spinful generalization of Luttinger liquid [2]. The
ratio of charge and spin velocities is vc/vs ≈ 1.8 [12]. At high
energy, in addition to the spin and charge curves, we can also
resolve the structure just above kF that appears to be the edge of
the second-level excitations. However, the amplitude decays
rapidly and for higher k we find no sign of the higher-level
excitations, implying that their amplitude must have become
at least three orders of magnitude weaker than for the parabola
formed by the first-level excitations. The picture emerging out
of these experimental results can only be explained—though
only qualitatively—by the hierarchy that we study for spinless
fermions.

The rest of the paper is organized as follows. In Sec. II,
we describe the one-dimensional model of interacting spin-
less fermions introducing a short-range cutoff via lattice.

Section III contains a procedure of finding the many-body
eigenenergy by means of the coordinate Bethe ansatz. In
Sec. IV, we evaluate the form factors needed for the dynamical
response functions. We give a construction of the algebraic
representation of the Bethe ansatz (Sec. IV A) and evaluate the
scalar product in this representation (Sec. IV B). We present
a calculation of the form factors for the spectral function and
the dynamical structure factor for a finite chain (Sec. IV C).
We take the limit of long wavelengths deriving polynomial
formulas for the form factors (Sec. IV d). Then, we analyze the
obtained form factors establishing the hierarchy of excitations
(Sec. IV e). Finally, we calculate the spectral function around
the spectral edges (Sec. IV f). In Sec. V, we illustrate the
crossover to a Luttinger liquid at low energy by evaluating
the local density of states at all energy scales. Section VI
describes experiments on the momentum-conserved tunnelling
of electrons in semiconductor wires. Section VII is dedicated
to low energies and in Sec. VIII, we analyze the measurements
at high energies connecting the experiment with the theory on
spinless fermions developed in this paper. The figures below
are marked with spinless and spinful logos (such as those
in Fig. 2 and 7, respectively) to indicate the structure of the
paper visually. Appendix A contains details of the derivation
of the Bethe equations in the algebraic representation. In
Appendix B, we derive the expectation value of the local
density operator.

II. MODEL OF SPINLESS FERMIONS

We study theoretically the model of interacting Fermi
particles without spin in 1D,

H =
∫ L

2

− L
2

dx

(
− 1

2m
ψ†(x)�ψ(x) + ULρ(x)2

)
, (1)

where the field operators ψ(x) satisfy the Fermi commutation
relations, {ψ(x),ψ†(x ′)} = δ(x − x ′), ρ(x) = ψ†(x)ψ(x) is
the particle density operator, and m is the bare mass of a single
particle. Below, we consider periodic boundary conditions,
ψ(x + L) = ψ(x), restrict ourselves to repulsive interaction
U > 0 only, and take � = 1.

Nonzero matrix elements of the interaction term in Eq. (1)
require a finite range of the potential profile for Fermi particles.
Here, we will introduce a lattice with next-neighbor interaction
whose lattice parameter and interaction radius isR. The model
in Eq. (1) becomes

H =
L
2∑

j=− L
2

[−1

2m
(ψ†

j ψj+1 + ψ
†
j ψj−1) + Uρjρj+1

]
, (2)

where j is the site index on the lattice, the dimensionless length
of the system is L = L/R, the operators obey {ψj ,ψ

†
j } = δij ,

and ρj = ψ
†
j ψj .

The long-wavelength limit of the discrete model corre-
sponds to the model in Eq. (1), while the interaction radius R
provides microscopically an ultraviolet cutoff in the continuum
regime. For the N -particle states of the lattice model, we
additionally impose the constraint of low particle density,
N/L � 1, to stay within the conducting regime; a large
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occupancy N ∼ L might lead to Wigner crystal physics
at sufficiently strong interactions that would localize the
system. This procedure is analogous to the point splitting
regularization technique [15], which is usually introduced
within the framework of the Luttinger liquid mode in the linear
regime.

III. SPECTRAL PROPERTIES

The model in Eq. (2) can be diagonalized via the Bethe
ansatz approach, which is based on the observation that the
eigenstates are superpositions of plain waves. This method
is also called coordinate Bethe ansatz [13]. The eigenstates,
following Ref. [13], can be parameterized with sets of N

quasimomenta kj ,

� =
∑

P,j1<···<jN

e
i
∑

l kPl
jl+i

∑
l<l′ ϕPl ,Pl′ ψ

†
j1

. . . ψ
†
jN

|vac〉. (3)

Their corresponding eigenenergies, H� = E�, are E =∑N
j=1 (1 − cos kj )/m. Here, |vac〉 is the vacuum state, the

scattering phases are fixed by the two-body scattering problem,

ei2ϕll′ = − ei(kl+kl′ ) + 1 + 2mUeikl

ei(kl+kl′ ) + 1 + 2mUeikl′
(4)

and
∑

P is a sum over all permutations of quasimomenta.
The periodic boundary condition quantizes the whole set of N

quasimomenta simultaneously,

Lkj − 2
∑
l �=j

ϕjl = 2πIj , (5)

where Ij are sets of nonequal integer numbers.
Generally, the system of equations in Eq. (5) has to be

solved numerically to obtain the full spectral structure of
the observables. However, in the long-wavelength regime, the
solutions can be evaluated explicitly.

In this limit, the scattering phases in Eq. (4) are linear func-
tions of quasimomenta, 2ϕll′ = (kl − kl′)/(1 + (mU )−1) + π ,
which makes the nonlinear system of Bethe ansatz equations
in Eq. (5) a linear system [9]. Then, solving the linear system
for L 	 1 via the matrix perturbation theory up to the first
subleading order in 1/L, we obtain

kj = 2πIj

L − mUN
mU+1

− mU

mU + 1

∑
l �=j

2πIl(
L − mUN

mU+1

)2 . (6)

Note that this calculation is valid for any interaction strength
at low densities. The corresponding eigenenergy and total
momentum (protected by the translational invariance of the
system) are

E =
∑

j

k2
j

2m
(7)

and P = ∑
j kj .

The spectrum of the many-body states is governed by the
first term in Eq. (6). Reduction of the quantization length in the
denominator of the first term in Eq. (6) is an exclusion volume
taken by the sum of interaction radii of all particles. Thus all
N -particle eigenstates at an arbitrary interaction strength are
given straightforwardly by the same sets of integer numbers Ij

as the free fermions’ states, e.g., the ground state corresponds
to Ij = −N/2, . . . ,N/2.

For example, this result can be used to calculate the low-
energy excitations explicitly that define the input parameters
of the Luttinger-liquid model, the velocity of the sound wave v

and of the Luttinger parameter K . The first pair of the particle-
like excitations, when an extra electron is added just above the
Fermi energy, have IN+1 = N/2 + 1 and IN+1 = N/2 + 2.
The difference in their energies and momenta are E2 − E1 =
(2π )2N/[2m(L − mUN

mU+1 )
2
] and P2 − P1 = 2π/L. Evaluating

the discrete derivative, which gives the slope of the dispersion
around the Fermi energy, as v = (E2 − E1)/(P2 − P1) we
obtain

v = vF(
1 − NmU

L(1+mU )

)2 and K =
(

1 − NmU

L(1 + mU )

)2

,

(8)

where vF = πN/(mL) is the Fermi velocity and the relation
vK = vF between the Luttinger parameters for Galilean
invariant systems [14] was used.

IV. MATRIX ELEMENTS

Now we turn to the calculation of matrix elements.
However, first we need to select operators that correspond
to specific observables. Our interest lies in the dynamical
response functions that correspond to adding/removing a
single particle to/from a correlated system and to creating
an electron-hole pair excitation out of the ground state of a
correlated system. For example, the first type of dynamics can
be realized in experiments using semiconductor nanostructures
[11,12] where an electrical current, generated by electrons
tunneling into/from the nanostructure with their momentum
and energy under control, probe the system.

The response of the many-body system to a
single-particle excitation at momentum k and energy
ε is described by spectral function [16] A(k,ε) =
−Im[

∫
dxdtei(kx−εt)G(x,0,t)]sgn(ε − μ)/π . Here,

μ is the chemical potential and G(x,x ′,t) =
−i〈T (e−iH tψ(x)eiHtψ†(x ′))〉 is the Green function at
zero temperature. In terms of the eigenstates, the spectral
function reads

A(k,ε) = L
∑
f

|〈f |ψ†(0)|0〉|2δ(ε − Ef + E0)δ(k − Pf )

+L
∑
f

|〈0|ψ(0)|f 〉|2δ(ε + Ef − E0)δ(k + Pf ),

(9)

where E0 is the energy of the ground state |0〉, and Pf and Ef

are the momenta and the eigenenergies of the eigenstates |f 〉;
all eigenstates are assumed normalized.

The creation of an electron-hole pair out of the correlated
state at zero temperature at momentum k and energy ε

is described by a dynamical structure factor [16] S(k,ε) =∫
dxdtei(kx−εt)〈ρ(x,t)ρ(0,0)〉, where ρ(x,t) = e−iH tρ(0)eiHt

is the density operator evolving under the Hamiltonian to time
t and the average 〈. . . 〉 is taken over the ground state. In terms
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of the eigenstates, the dynamical structure factor reads

S(k,ε) = L
∑
f

|〈f |ρ(0)|0〉|2δ(ε − Ef )δ(k − Pf ). (10)

Thus we will be analyzing the expectation values of the
local operators ψ(0) and ρ(0). To proceed with this calculation,
we will borrow the result from Refs. [17,18] for Heisenberg
chains. Our strategy is to perform the full calculation for the
discrete model in Eq. (2) obtaining the matrix elements of ψj

and ρj as determinants. Then we will take the long-wavelength
limit to evaluate the form factors for the continuum model
explicitly, which will be the main technical result in the
theoretical part of this paper. Below, we will construct the
algebraic form of Bethe ansatz, use the Slavnov’s formula [8]
to express the scalar product and the normalization factors in
this representation, and finally calculate the matrix elements
of the local operators.

A. Algebraic Bethe ansatz

The wave functions of the N -particle eigenstates are
factorized in the algebraic representation, which allows the
general calculation of various scalar products between them.
Here, we will follow the construction in Ref. [13] for
XXZ spins chains changing basis from 1/2-spins to spinless
fermions.

The so-called R matrix acts on a tensor product V1 ⊗ V2

space and depends on an auxiliary parameter u, where V1 and
V2 are element-element subspaces, each of which consists of
two states |0〉j and |1〉j . It is a solution of Yang-Baxter equa-
tion R12(u1 − u2)R13(u1)R23(u2) = R23(u2)R13(u1)R12(u1 −
u2). For the lattice model in Eq. (2), the R matrix
reads

R12 = 1 − (1 − b(u))(c†1c1 + c
†
2c2)

− 2b(u)c†1c1c
†
2c2 + c(u)(c†1c2 + c

†
2c1), (11)

where

b(u) = sinh(u)

sinh(u + 2η)
, c(u) = sinh(2η)

sinh(u + 2η)
. (12)

Here, η is the interaction parameter, and the tensor product
space is defined using a fermionic basis |0〉j and |1〉j with

corresponding fermionic operators {ci,c
†
j } = δij that act in

these bases as c
†
j |0〉j = |1〉j . The latter will account for the

anticommuting nature of the lattice fermions on different sites
in contrast to the commutation relation of the spin operators
of a spin chain model [22,23]. All further calculations are
identical to spin chains where the anticommutation relations
of the Fermi particles are, however, automatically fulfilled.
This approach is more convenient than direct mapping of the
results for spin chains using Jordan-Wigner transformation
[19].

A two-states subspace of the R matrix can be identified
with the two-states fermionic subspace of the lattice site j

of the model in Eq. (2). Then, the quantum version of the
Lax operator (the so called L matrix) can be defined as Lj =
Rξj . In the auxiliary subspace ξ its matrix and operator forms

are

Lj =
⎛
⎝ cosh(u−η(2ρj −1))

cosh(u−η) −i
sinh 2ηc−

j

cosh(u−η)

−i
sinh 2ηc

†
j

cosh(u−η) − cosh(u+η(2ρj −1))
cosh(u−η)

⎞
⎠

= Aj (1 − c
†
ξ cξ ) + c

†
ξC

j + Bjcξ + Djc
†
ξ cξ . (13)

Here, the top left element of the matrix is a transition between
|0〉ξ and 〈0|ξ states of the auxiliary subspace, cj and ρj are
the fermionic operators of the lattice model in Eq. (2), and
Aj ,Bj ,Cj ,Dj label the matrix elements of Lj . The prefactor
in front of Lj was chosen such that for u = iπ/2 − η it
becomes a permutation matrix and for η = 0 the L operator is
diagonal.

By construction, the L operator satisfies the algebra
generated by the Yang-Baxter equation,

R(u − v)
(
Lj (u) ⊗ Lj (v)

) = (
Lj (v) ⊗ Lj (u)

)
R(u − v).

(14)
The entries give commutation relations between the matrix
elements of L matrix. Here, we write down three of them that
will be used later,

{
Bj

u,Cj
v

} = c(u − v)

b(u − v)

(
Dj

vA
j
u − Dj

uA
j
v

)
, (15)

Aj
uC

j
v = 1

b(v − u)
Cj

v Aj
u − c(v − u)

b(v − u)
Cj

uAj
v, (16)

Dj
uC

j
v = − 1

b(u − v)
Cj

v Dj
u + c(u − v)

b(u − v)
Cj

uDj
v . (17)

These relations can be also be checked explicitly by direct
use of the definition in Eq. (13) and the Fermi commutation
relations.

The transition matrix T (u) for a chain with L sites—the
so-called monodromy matrix—can be defined similarly to the
classical problem as

T (u) =
L∑

j=1

Lj (u). (18)

If all single-site L matrices satisfy Eq. (14) then the T

matrix also satisfies the same Yang-Baxter equation, e.g., see
proof in Ref. [13]. Therefore the matrix elements of T =
A(1 − c

†
ξ cξ ) + c

†
ξC + Bcξ + Dc

†
ξ cξ in the 2 × 2 auxiliary

space ξ obey the same commutation relations in Eqs. (15)–
(17). The transfer matrix for the whole chain,

τ = strT = A(u) − D(u), (19)

is the super trace of T matrix due to the fermionic definition of
the auxiliary space [22,23]. The latter gives a family of com-
muting matrices [τ (u),τ (v)] = 0, which contain all conserved
quantities of the problem including the Hamiltonian.

The vacuum state |0〉—in the Fock space of the model
in Eq. (2)—is an eigenstate of the transfer matrix τ . The
corresponding eigenvalue, τ (u)|0〉 = (a(u) − d(u))|0〉, is the
difference of the eigenvalues of the A and D operators which
can be obtained directly by use of the definitions in Eqs. (13)
and (18). Noting that for L = 2 Eq. (18) gives A(u)|0〉 =
a1(u)a2(u)|0〉 and D(0)|0〉 = d1(u)d2(u)|0〉, where a1(u) =
a2(u) = cosh (u + η)/ cosh (u − η) and d1(u) = d2(u) = 1,
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and generalizing this observation for arbitrary L one obtains

a(u) = cosh (u + η)L

cosh (u − η)L
, and d(u) = 1. (20)

A general state of N particles’—Bethe state–is constructed
by applying the operator C(u) N times with different values
of the auxiliary variable uj ,

� =
N∏

j=1

C(uj )|0〉, (21)

where a set of N values uj corresponds to N quasimomenta kj

in coordinate representation of Bethe states in Eq. (3). The state
in Eq. (21) with an arbitrary set of uj is not an eigenstate of the
transfer matrix τ . For instance, it can be seen by commuting
the operators A and D from left to right through all operators
C(uj ) that generates many different states according to the
commutation relations in Eqs. (16) and (17). However, the
contribution of all of the states that are nondegenerate with
� can made to be zero by choosing particular sets of uj that
satisfy the following set of equations

a(uj )

d(uj )
= (−1)N−1

N∏
l=1�=j

b(ul − uj )

b(uj − ul)
(22)

(see Appendix A for details).
Under the substitution of the vacuum eigenvalues a(uj )

and d(uj ) of A and D operators from Eq. (20) and b(ul −
uj )—which define the commutation relations Eqs. (16) and
(17)—from Eq. (12) this so-called eigenvalue equation above
becomes

cosh(uj − η)L

cosh(uj + η)L
= (−1)N−1

N∏
l=1�=j

sinh(uj − ul − 2η)

sinh(uj − ul + 2η)
. (23)

Thus all the sets of uj that satisfy the above equation give
eigenstates of the transfer matrix in the representation of
Eq. (21) with the corresponding eigenvalues τ (u)� = T (u)�,
where

T (u) = a(u)
N∏

j=1

1

b(uj − u)
− (−1)Nd(u)

N∏
j=1

1

b(u − uj )
.

(24)
This eigenvalue equation in the algebraic framework is the
direct analog of the Bethe ansatz equation (5) in the coordinate
representation. Direct mapping between the two is done by the
substitution of

eikj = cosh(uj − η)

cosh(uj + η)
, mU = − cosh 2η, (25)

in Eq. (5) and by taking its exponential.

The original lattice Hamiltonian can be obtained from
the transfer matrix τ (u) that contains all of the conserved
quantities of the problem. The logarithmic derivatives of τ (u)
give the global conservation laws by means of the so-called
trace identities, see Ref. [13]. The linear coefficient in the
Taylor series around the point u = iπ

2 − η is proportional to
the Hamiltonian itself. After restoring the correct prefactor,
the expression reads

H = − sinh η

2m
∂u ln τ (u)|u= iπ

2 −η. (26)

Substitution of the interaction parameter η from Eq. (25) in
terms of the particle-particle interaction constant U into the
right-hand side of the above relation recovers the lattice model
in Eq. (2).

B. Scalar product

The basic quantity on which the calculations of the
expectation values will be based on is the scalar product
of two wave functions. A general way of evaluating it is
based on the commutation relations in Eqs. (15)–(17) and
the vacuum expectation values of the A and D operators. The
result of such a calculation simplifies greatly if one of the Bethe
states is an eigenstate of the transfer matrix τ (u), as was first
shown by Slavnov [8]. Then, the same result was rederived
in Refs. [17,18] using the so-called factorizing F matrix [20],
which is a representation of a Drinfeld twist [21]. The latter
will not be used in this section but it will be needed later in
calculations of the matrix elements of the local operators.

Let |u〉 = ∏N
j=1 C(uj )|0〉 be an eigenstate of the transfer

matrix so that N parameters uj satisfy the Bethe equation
in Eq. (23); and let 〈v| = 〈0| ∏N

j=1 B(vj ) be another Bethe
state parametrized by a set of N arbitrary values vj . The
scalar product of these two states 〈v|u〉 can be evaluated
by commuting each operator B(vj ) through the product of
C(uj ) operators using the commutation relation in Eq. (15),
which generates the A and D operators with all possible
values of uj and vj . They, in turn, have also to be commuted
to the right through the remaining products of the C(uj )
operators. Finally, products of the A and D operators, which
act upon the vacuum state, just give products of their vacuum
eigenvalues a(uj ),d(uj ) and a(vj ),d(vj ) according to Eq. (20).
The resulting sums of products can be written, using the
relation between uj s in Eq. (23), in a compact form as a
determinant of an N × N matrix [8]:

〈v|u〉 =
∏N

i,j=1 sinh(vj − ui)∏
j<i sinh(vj − vi)

∏
j<i sinh(uj − ui)

det Ŝ, (27)

where the matrix elements are Sab = ∂ua
T (vb). Under a

substitution of the eigenvalues of the transfer matrix from

Eq. (24), these matrix elements read in explicit form as

Sab = −coshL(vb + η)

coshL(vb − η)

sinh(2η)

sinh2(ua − vb)

N∏
j=1�=a

sinh(uj − vb + 2η)

sinh(uj − vb)
− (−1)N

sinh(2η)

sinh2(vb − ua)

N∏
j=1�=a

sinh(vb − uj + 2η)

sinh(vb − uj )
. (28)

For N = 1, the result in Eqs. (27) and (28) follows directly from Eq. (15). For arbitrary N , the proof is more complicated: it
employs the residue formula [8] (the function 〈v|u〉 has first order poles when vi → uj ) and the recurrent relation for the scalar
product of N + 1 particles in terms of the scalar product of N particles, see also details in Ref. [13].
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The normalization factor of Bethe states can be obtained from Eq. (27) by taking the limit v → u. The first-order singularities,
(vb − ub)−1, in the off-diagonal matrix elements (28) are canceled by zeros in the numerator in Eq. (27). The diagonal a = b

matrix elements contain second-order singularities (vb − ub)−2 for v → u. However, the numerator also becomes zero when
v → u in the leading order. Its expansion up to the first subleading order cancels the second-order singularity of the denominator
giving a finite expression for the matrix elements in the limit. The normalization factor is found to be

〈u|u〉 = sinhN (2η)
N∏

i �=j=1

sinh(uj − ui + 2η)

sinh(uj − ui)
det Q̂, (29)

where the matrix elements are

Qab =
{−L sinh 2η

cosh (ua+η) cosh (ua−η) − ∑
j �=a

sinh 4η

sinh (ua−uj −2η) sinh (ua−uj +2η) , a = b,

sinh 4η

sinh (ub−ua+2η) sinh (ub−ua−2η) , a �= b.
(30)

The last formula was originally derived by Gaudin using
quantum-mechanical identities in the coordinate representa-
tion of Bethe ansatz [24]. Mapping of the resulting expression
in Ref. [24] to the algebraic representation by means of
Eq. (25) gives directly the result in Eqs. (27) and (28) with
a different prefactors due to different normalization factors
in the definitions of the states in Eq. (3) and of the states in
Eq. (21). We will use the algebraic form in Eq. (21) for the
calculation of the local matrix elements below.

C. Expectation values of local operators

Operators of the algebraic Bethe ansatz in Eqs. (13) and (18)
are nonlocal in the basis of the original fermionic operators of
the lattice model in Eq. (2). Thus the first nontrivial problem
in calculating the matrix elements of the local operators ψ

†
j

and ρ1 in the algebraic representation of Bethe states in
Eq. (21) is expressing the operators of our interest in terms
of the nonlocal A,B,C, and D operators from Eqs. (13) and
(18). Alternatively, these Bethe operators can be expressed
in terms of the local operators of the lattice model. The
latter approach is much more complicated since the product
of matrices in Eq. (18) is a large sum (exponential in the
number of sites in the chain) restricting severely the ability to
do explicit calculations using the fermionic representation in
practice.

An alternative way was found by constructing the F -matrix
representation of a Drinfeld twist [20]. In the F basis, the
monodromy matrix in Eq. (18) becomes quasilocal, i.e., its
diagonal elements A and D become direct products of diagonal
matrices on each site over all sites of the chain and the off-
diagonal B and C are single sums over such direct products.
Direct calculations become much easier in this basis. Specifi-
cally, analysis of A, B, C, and D operators leads to a simple
result for representing the ψj operator in terms of algebraic
Bethe ansatz operators, which then is shown to be basis

independent [17,18],

ψ
†
j = τ j−1

(
iπ

2
− η

)
C

(
iπ

2
− η

)
τL−j

(
iπ

2
− η

)
. (31)

Here, τ (u) = A(u) − D(u) is the supertrace of the monodromy
matrix and C(u) is its matrix element.

The transfer matrices in the right-hand side of the
above equation give only a phase prefactor in the expec-
tation values with respect to the Bethe states in Eq. (21).
Let |u〉 be an eigenstate of the transfer matrix with N

particles, let |v〉 be an eigenstate with N + 1 particles,
and let us consider the case of j = 1. Acting with the
τL−1(iπ/2 − η) operator on the eigenstates |u〉 gives the
eigenvalue

∏N
j=1 coshL−1 (uj − η)/ coshL−1 (uj + η) accord-

ing to Eq. (24). Then, using the mapping to the coordinate
representation in Eq. (25) and the Bethe equation in the form of
Eq. (5), this eigenvalue can be expressed as exp [iPu(L − 1)],
where Pu is the total momentum of the state uj , a quantum
number. Similar phase factors for j �= 1 are evaluated in an
analogous way and each of them cancels out under modulus
square in the form factor in Eq. (9) making the local form
factors independent of j in full accord with the translational
invariance of the system and the observable in Eq. (9). Thus
we will only calculate the value of 〈v|ψ†

1 |u〉.
Since C( iπ

2 − η)
∏N

j=1 C(uj )|0〉 is also a Bethe state

| iπ
2 − η,uj 〉, though it is not an eigenstate, the expectation

value can be calculated using the result for the scalar product
〈v|ψ†

j |u〉 = 〈v| iπ
2 − η,uj 〉. Substituting iπ

2 − η,uj in Eqs. (27)
and (28) explicitly, one obtains

〈v|ψ†
1 |u〉 = (−1)N+1i

∏N+1
j=1 cosh(vj − η)∏N
j=1 cosh(uj + η)

× sinhN+1(2η) det M̂∏N
j<i=2 sinh(uj − ui)

∏N+1
j<i=2 sinh(vj − vi)

,

(32)

where the matrix elements are

Mab = (−1)N−1

sinh(ub − va)

⎛
⎝ N∏

j=1�=b

sinh
(
ub − uj + 2η

)
sinh(ub − uj − 2η)

N+1∏
j=1�=a

sinh(ub − vj − 2η) +
N+1∏

j=1�=a

sinh(ub − vj + 2η)

⎞
⎠, (33)
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for b < N + 1, and

Mab = 1

cosh (va − η) cosh (va + η)
, (34)

for b = N + 1. Here, the Bethe equation, Eq. (23), was used to
express a(vj )/d(vj ) in the matrix elements, and some factors
in the matrix elements and the overall prefactor cancel out. This
result can be checked by a numerical evaluation of the sums
over the spacial variables using the coordinate representation
in Eq. (3) for a small number of particles N = 1,2,3, which
we have done.

The determinant results in Eqs. (29), (27), and (32) can
be checked by a numerical evaluation of the sums over
the spacial variables using the coordinate representation in
Eq. (3). However, the latter summation over many coordinates
has factorial complexity, which already limits numerical
calculations to a few particles on chains of a few dozen sites.
The results of the algebraic Bethe ansatz calculations have
a power-law complexity that allows general studies, at least
numerically, of systems with hundreds of particles on arbitrary
long chains without making any approximations, e.g., the
studies of correlation functions in one-dimensional systems
in Refs. [25–30].

D. The long-wavelength limit

We now turn to the evaluation of the long-wavelength
limit for matrix elements in the determinant form with
the aim of calculating the determinants explicitly. The re-
sulting expressions will then be used to study physical
observables.

Such an analysis is more convenient in the coordinate
representation. For small kj the nonlinear mapping in Eq. (25)
becomes linear, similarly to Bethe equation in Eq. (5) in
this limit. Then, a simple inversion of the linear function
gives

uj = i

2

√
mU + 1

mU − 1
kj and η = −1

2
acosh(mU ). (35)

Note that |uj | and kj are simultaneously much smaller than
one, while the interaction strength U can be of an arbitrary
magnitude.

We start from the expansion of the normalisation factor
in Eq. (29) up to the leading nonvanishing order in the
quasimomenta. We first substitute Eq. (35) in the matrix
elements in Eq. (30), then expand them up to the leading
nonvanishing order in kj � 1, and obtain the diagonal matrix
elements as follows:

Qaa = 2L
√

mU − 1

mU + 1
− 2(N − 1)mU√

m2U 2 − 1
(36)

and

Qab = 2mU√
m2U 2 − 1

, (37)

for a �= b. The off-diagonal matrix elements are small com-
pared to the diagonal entries as Qab/Qaa ∼ 1/L so the leading
contribution to the determinant is accumulated on the diagonal.
Also expanding the prefactor of Eq. (29) in small kj we
obtain the following expression for the normalisation in the
long-wavelength limit:

〈k|k〉 = 2N2
(−1)N (1 − mU )N

2(L − mUN
mU+1

)N

iN(N−1)
∏

i �=j (kj − ki)
, (38)

where kj are quasimomenta in the coordinate representation
of Bethe ansatz.

Our primary interest lies in the spectral function that
contains the local matrix element of ψ

†
j operators so here

we will focus on the determinant result in Eq. (32). Similarly
to the calculation of the normalization factor, we substitute
Eq. (35) into Eq. (33), which, however, becomes zero in the
zeroth order in kj . Expanding it up to linear order in kj we
obtain

Mab = 2mU (m2U 2 − 1)
N−1

2

∑N
j=1 ku

j − ∑N+1
j=1�=a kv

j

ku
b − kv

a

(39)

for b < N + 1, where �P = ∑
j ku

j − ∑
j kv

j is the difference
of two conserved quantities, the momenta of two states ku and
kv . The matrix elements in Eq. (34) are already nonzero in the
zeroth order in kj giving

Mab = 2

mU + 1
, (40)

for b = N + 1. Also expanding the prefactor in Eq. (32) and
rearranging the expressions by taking a common factor out of
the matrix elements we obtain〈

kv|ψ†(0)|ku
〉 = (−1)N+1iN

2
2N2+N+ 1

2

× 1 × (mU − 1)N
2+ 1

2 mNUND∏N
j<i

(
ku
j − ku

i

)∏N+1
j<i

(
kv
j − kv

i

) ,

(41)

where the entries of the matrix under the determinant, D =
detM̂, for b < N + 1 are

Mab = �P + kv
a

ku
b − kv

a

and Ma,N+1 = 1. (42)

All matrix elements are of the same order so the determinant
in Eq. (41) is a sum of a large number of terms unlike the
normalisation factor in Eq. (38). Doing the summation we
find an explicit expression in the form of a fraction of two

polynomials in quasimomenta of the initial and the final states,

D = (−1)N+1

∏
j

(
�P + ku

j

)
∏

i,j

(
kv
j − ku

i

) N∏
j<i

(
ku
j − ku

i

) N+1∏
j<i

(
kv
j − kv

i

)
. (43)

For N = 1, the result above is evaluated straightforwardly as a determinant of a 2 × 2 matrix with the matrix elements
in Eq. (42). For arbitrary N we prove it by induction. Using the Laplace development on the N + 1 row, the determinant
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for N + 1 particles can be expressed as a sum of minors given, in turn, by determinants for N particles, DN+1 =∑N+2
a=1 (−1)N+1+aMa,N+1minora,N+1, which—let us assume for purposes of the inductive method—are given by Eq. (43):

minora,N+1 = (−1)N+1

∏N
j=1

(
�P + ku

j

)
∏N,N+2

i=1,j=1�=a

(
kv
j − ku

i

) N∏
j<i

(
ku
j − ku

i

) N+2∏
j<i �=a

(
kv
j − kv

i

)
. (44)

Here, Ma,N+1 are given by the matrix elements in Eq. (42), N quasimomenta ku
j are labeled by j = 1, . . . ,N , and N + 1

quasimomenta kv
j are labeled by j = 1, . . . ,N + 2 with ath elements excluded. After taking a common factor in front of the

sum, the determinant for N + 1 particles becomes

DN+1 = (−1)N+2

∏N+1
j=1

(
�P + ku

j

) ∏N+1
j<i

(
ku
j − ku

i

) ∏N+2
j<i

(
kv
j − kv

i

)
∏

i,j

(
kv
j − ku

i

)
× 1

�P + ku
N+1

N+2∑
a=1

(
�P + kv

a

) ∏N+2
j=1�=a

(
kv
j − ku

N+1

) ∏N
j=1

(
ku
j − kv

a

)
∏N

j=1

(
ku
j − ku

N+1

)∏N+2
j=1�=a

(
kv
j − kv

a

) . (45)

The sum in the above expression gives, by direct calculation,∑N+2
a=1 · · · = �P + ku

N+1, which makes the whole second line
unity. The determinant is equal to the first line of Eq. (45),
which is also equal to the result in Eq. (43) for N + 1 particles.
Thus we obtained the same result for N + 1 particles starting
from Eq. (43) for N particles. Hence it is proved by induction.

Finally, the form factor in Eq. (9) is the modulus
squared of Eq. (41). Normalizing the initial and the final
state wave functions using Eq. (38) as |〈f |ψ†(0)|0〉|2 =
|〈kf |ψ†(0)|k0〉|2〈kf |kf 〉−1〈k0|k0〉−1

, we obtain

|〈f |ψ†(0)|0〉|2 = Z2N

L

∏N
j

(
k0
j − Pf

)2

∏N,N+1
i,j

(
k

f

j − k0
i

)2

×
N∏

i<j

(
k0
j − k0

i

)2
N+1∏
i<j

(
k

f

j − k
f

i

)2
, (46)

where Z = mU/(mU + 1)/(L − NmU/(1 + mU )), k
f

j and
k0
j are the quasimomenta of the eigenstate |f 〉 and the ground

state |0〉, respectively, and P0 = 0 for the ground state.
The calculation of 〈f |ρ(0)|0〉 is done in a similar way by

expressing the local density operator ρ1, within the framework
of the lattice model, in terms of the algebraic Bethe ansatz
operators A, B, C, D and, then, by using the Slavnov formula.
Details are given in Appendix B. In the long-wavelength limit,
we obtain

|〈f |ρ(0)|0〉|2 = Z2N−2

L2

P 2N
f∏N,N

i,j

(
k

f

j − k0
i

)2

×
N∏

i<j

(
k0
j − k0

i

)2
N∏

i<j

(
k

f

j − k
f

i

)2
, (47)

where the final states |f 〉 have the same number of excitations
N as the ground state |0〉, unlike in Eq. (46), and P0 = 0 for
the ground state as in Eq. (46).

These form factors in Eqs. (46) and (47) together with the
solution of Bethe equations in Eq. (6) is the main technical
result in the theory part of our work. We will analyze its
physical consequences in the next two sections. The similarity
between these two expressions means that the hierarchy of

modes we will identify below is a general feature of one and
two body operators.

E. Hierarchy of modes

The results in Eqs. (46) and (47) have one or more
singularities when one or more quasimomenta of an excited
state coincide with a quasimomentum of the ground state,
k

f

j = k0
j . Both results have a multiplicand Z2N ∼ L−2N that

becomes virtually zero in the thermodynamic limit, in which
L → ∞. Thus the product of these two opposite factors
produces an uncertainty in the limiting behavior (of the
0 × ∞ type) that has to be resolved. Since we are specifically
interested in a transport experiment in this paper, in which the
spectral function is measured, we will mainly focus on solving
the uncertainty problem for the result in Eq. (46).

The maximum number of singularities is N in the extreme
case, when the quasimomenta k

f

j of an excited state coincide
with all of the N quasimomenta of the ground state k0

j given in
Fig. 2(gs). The excited states of this kind are given in Fig. 2(a).
The divergences in the denominator of Eq. (46) occur only in
the leading order—the first term in Eq. (6)—but the subleading
order—the second term in Eq. (6)—already provides a self-
consistent cutoff within the theory. The interaction shift of the
quasimomenta at subleading order does not cancel for the extra
added particle in the excited state, making the factors in the
denominator of Eq. (46)

k
f

j − k0
j = mU

mU + 1

k
f

N+1 − k0
j

L − mUN
mU+1

, (48)

where in the right-hand side (r.h.s.), only the first term from
Eq. (6) is relevant for k

f

N+1 and k0
j . The numerator for the states

in Fig. 2(a) becomes

k0
j − Pf = k0

j − k
f

N+1. (49)

Substitution of Eqs. (48) and (49) in Eq. (46) for one particle,
say for j = N , cancels one factor Z2 ∼ L−2 and the other part
of the product for i �= j in the denominator of the first line of
Eq. (46) cancels partially the products in the second line of
Eq. (46). The expression for the remaining N − 1 particles is
the same as Eq. (46) but the numbers of terms in the products
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FIG. 2. Configurations of quasimomenta that solve the Bethe
equations in Eqs. (5) and (4) for the spinless fermions model in
Eq. (2): (gs) the ground state, (a) excitations that form the a level of
the hierarchy, and (b) excitations that form the b level of the hierarchy.

are reduced by one, N → N − 1, giving

|〈f |ψ†(0)|0〉|2 = Z2N−2

L

∏N−1
j

(
k0
j − Pf

)2

∏N−1,N
i,j

(
k

f

j − k0
i

)2

×
N−1∏
i<j

(
k0
j − k0

i

)2
N∏

i<j

(
k

f

j − k
f

i

)2
. (50)

Repeating the procedure N − 1 times, we cancel the remaining
Z2N−2 factor completely (with the rest of other terms) and
obtain

L|〈f |ψ†(0)|0〉|2 = 1. (51)

Corrections to this result originate from higher subleading
orders in the solutions to Bethe equations in Eq. (6) and are of
the order of O(L−1). This becomes much smaller than one at
the leading order of Eq. (51) in the thermodynamic limit.

Substitution of Eq. (51) in Eq. (9) gives the value of
the spectral function A(k,ε(k)) = 1. The energies and the
momenta of the excitations in Fig. 2(a) form a single line
on the spectral plane, like a single particle with dispersion
ε(k) = k2/(2m∗), where the effective mass is renormalized
by the Luttinger parameter K , m∗ = mK [47]. Note that,
since we still resolve individual levels here, the delta functions
in the definition of the spectral function in Eq. (9) become
discrete Kronecker deltas. Thus A(k,ε) at each discrete
point k,ε describes the probability of adding (removing) a
particle, which is non-negative and is bound by one from
above, instead of the probability density as in the contin-
uum case. Dimensional analysis makes this distinction clear
immediately.

The excitations that have one singularity less (N − 1 in
total) can be visualized systematically as an extra electron-
hole pair created in addition to adding an extra particle, see
Fig. 2(b). Staring from Eq. (46) and using the same procedure
as before Eq. (50) but N − 1 instead of N times, we obtain

|〈f |ψ†(0)|0〉|2 = Z2

L

(
k

f

2 − k
f

1

)2(
k0

1 − Pf

)2(
k

f

1 − k0
1

)2(
k

f

2 − k0
1

)2 , (52)

where k
f

1 , k
f

2 , and k0
1 are positions of two particles and one

hole in Fig. 2(b). Substitution of Eq. (52) in Eq. (9) gives
values of the spectral function A(k,ε) ∼ L−2 that are smaller
than the values for the excitations in Fig. 2(a) [in Eq. (9)] by

FIG. 3. The spectral function for interacting spinless fermions in
the region −kF < k < kF (kF < k < 3kF) labeled by 0(1). The grey
areas mark nonzero values. The green and the blue lines are modes
of the hierarchy labeled as follows: p(h) shows the particle (hole)
sector, kF is the Fermi momentum, a, b, c, respectively, identify the
level in the hierarchy in powers 0, 1, 2 of R2/L2, and (r,l) specifies
the origin in the range—modes on the edge have no such label.

a factor of L−2. For two singularities less (N − 2 in total), we
find A(k,ε) ∼ L−4 and so on.

This emerging structure separates the plethora of many-
body excitations into a hierarchy according to the remaining
powers of L−2 in their respective form factors. We label the
levels of the hierarchy as a, b, c reflecting the factors L−2n

with n = 0, 1, 2. While the leading a excitations form a
discrete single-particle-like dispersion, see h0a and p1a(l)
lines in Fig. 3, the spectral properties of the subleading
excitations are described by a more complicated continuum
of states on the energy-momentum plane. We will explore the
b excitations below.

All simple modes, formed by single-particle and holelike
excitations of the type in Fig. 2(b), in the range −kF < k <

3kF are presented in Fig. 3. We use the following naming
scheme: p(h) indicates the particle (hole) sector, 0(1) encodes
the range of momenta −kF < k < kF(kF < k < 3kF), a, b, c

reflect the terms L−2n with n = 0, 1, 2. The suffix (r) or (r)
marks a particlelike mode, e.g., the states with in Fig. 2(b) with
k

f

1 = −kF − γ , k0
1 = kF, and kF > Pf = −2kF + k

f

2 > −kF

forms the mode p0b(l). Holelike modes have no suffixes, e.g.,
the states in Fig. 2(b) with k

f

1 = −kF − γ , k
f

2 = kF + γ , and
−kF < Pf = −k0

1 < kF form the mode p0b. Simple modes
formed by excitations of lower levels of the hierarchy are
obtained by translation of the b modes constructed in this
paragraph by integer numbers of ±2kF . A couple of simple
modes formed by c excitations are presented on Fig. 3. They
have the same naming scheme as the b modes.

Now we evaluate values of the spectral function along
all simple b modes in the range −kF < k < 3kF. Let us
start from the p0b mode, see Fig. 3. Along this mode, the
spectral function is a bijective function of k, A(k,εp0b(k))
where εp0b(k) = k2

F/(mK) − k2/(2mK). The states that form
it belong to b excitations in Fig. 2(b) with k

f

1 = −kF − γ , kf

2 =
kF + γ , and k = Pf = −k0

1. Substituting this parametrization
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TABLE I. Spectral weights along the a and the b modes
for −kF < k < kF (kF < k < 3kF) labeled by x = 0(1). Ter-
minology is the same as in Fig. 3; γ = 2π/L and Z =
mU/(mU + 1)/(L − NmU/(1 + mU )).

x = 0 x = 1

pxa 1
hxa 1

pxb
16Z2k2

Fk2

(k2−(kF+γ )2)
2

4Z2γ 2(k−kF+ 3
2 γ )

2

(k−kF+γ )2(k−kF+2γ )2

pxb(l) 4Z2(kF+k)2

k2
F

pxb(r) 4Z2(kF−k)2

k2
F

hxb
4Z2(3kF−k−γ )2(kF+k)2

k2
F(k−kF+γ )2

hxb(l) 4Z2γ 2

(k+kF+2γ )2
Z2k2

Fk2

((k+γ )2−k2
F)

2

hxb(r) 4Z2γ 2

(k−kF−2γ )2

in Eq. (52), we obtain

A(k,εp0b(k)) = 16Z2k2
Fk

2

(k2 − (kF + γ )2)2
. (53)

The spectral function along all other b modes in Fig. 3 is
calculated in the very same way and the results (together with
a modes) are summarized in Table I.

The amplitude of the subleading b excitations does not
vanish in the thermodynamic limit, though it is proportional to
1/L. The limit involves both L → ∞ and the particle number
N → ∞ but keeps the density N/Lfinite. The spectral weights
of the subleading modes p0b, h1b, and h1b(r) from Table I
are proportional to the density squared for some values for k,

e.g., the modes p0b at k = kF gives

A(kF,εp0b(kF)) =
(

mU

1 + mU

)2
N2(

L − NmU
1+mU

)2 , (54)

see Table I for other modes, and are apparent in the infinite
system.

Assessing further the continuum of b excitations we
consider the spectral function and how it evolves as one moves
away slightly from the of the strongest a mode. Just a single
step of a single quantum of energy away from the a mode
requires the addition of an electron-hole pair on top of the
configuration of quasimomenta in Fig. 2(a). This immediately
moves such states one step down the hierarchy to b excitations.
Let us consider the spectral function as a function of energy
only making a cut along a line of constant k. The energies of
the electron-hole pairs themselves are regularly spaced around
the Fermi energy with slope vF. However, the degeneracy
of the many-body excitations due to the spectral linearity
makes the level spacings nonequidistant. We smooth this
irregularity using an averaging of the spectral function over
energy,

A(k,ε) =
∫ ε0

2

− ε0
2

dε

ε0
A(k,ε + ε), (55)

where ε0 is a small energy scale.
Then, using the parametrization of b excitations in Fig. 2(b)

in the vicinity of the principal parabola, we linearize the
energies of the extra electron-hole pairs around the Fermi
energy and of the particle around its original position. We then
substitute the resulting expressions for k

f

1,2 and k0
1 in terms of

the energy E from Eq. (7) in Eq. (52), similar to our procedure
of obtaining Eq. (53). Finally, we use the averaging rule in
Eq. (55) and obtain

A(k,ε) = Z22kF
(
3k2 + k2

F

)
θ (εh0a(k) − ε)

mγK(εh0a(k) − ε)
for − kF < k < kF, (56)

A(k,ε) = Z2[k + sgn(ε − εp1a(l)(k))kF]3

mγK|ε − εp1a(l)(k)| for kF < k < 3kF, (57)

where γ = 2π/L and εh0a(k) = εp1a(l)(k) = k2/(2mK) is the
parabolic dispersion of the a mode.

The result in Eqs. (56) and (57) can be interpreted as the line
shape of the a mode. However, it has an unusual form—namely
that of a divergent power law. The divergence at the parabola is
cut off by the lattice spacing recovering A(k,εh0a,p1a(k)) = 1
from Eq. (51). In Eq. (57), the line shape is asymmetric due
to different prefactors (k ± kF)3 above and below the line. In
Eq. (56), the higher energy part [ε > εh0a(k)] is absent due to
the absence of the excitation in this region, forbidden by the
kinematic constraint.

Not every simple mode marks a distinct feature. The states
at least on one side, above or below the mode in energy,
have to belong to a different level of the hierarchy than the
mode itself, which results in a divergence or in a jump of the
spectral function in the continuum of excitations. Otherwise,

the spectral function is continuous across all of the modes
that belong to the same level of the hierarchy as the excitations
around them. The a modes are distinct since excitations around
them belong to a different b level. All modes on the spectral
edges, p0b, p1b, h1b, and so on, are distinct since on one side
there are no excitations (due to the kinematic constraint) and
on the other side there is a finite density of states resulting in
a jump of the spectral function.

An example of an observable subleading mode in the
continuum is h0b(r). On the higher-energy side of this mode,
the excitations are described by the same type of states in
Fig. 2(b) but on the lower-energy side creation of an additional
electron-hole pair in the quasimomenta results in states that
have two noncancelled singularities in Eq. (46), which lowers
their corresponding level of the hierarchy to c from b. This, in
turn, results in an observable feature in the spectral function
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at the position of the h0b(r) mode. On the other hand, the
p0b(r) and h1b(l) modes in continuum are not detectable
since excitations on both sides around them belong to the
same b level of the hierarchy. Observability of all other modes
can be easily assessed in the same way by considering their
corresponding states in the form of Figs. 2(a) and 2(b) and
excitations around the modes.

The structure of the matrix element in Eq. (47) is quite
similar to the matrix element in Eq. (46). Thus the dynamical
structure factor exhibits the same hierarchy of excitations (and
modes formed by them) as the spectral function analysed in
detail in this section. The strongest excitations correspond
to only a single electron-hole pair, the first subleading level
corresponds to two electron-hole pairs, and so on.

Also, a similar hierarchy of excitations was observed in
numerical studies of spin chains, e.g., Refs. [25–27,31–33].
There, it was found that only a small number of electron-hole
pairs are sufficient to saturate the sum rules for the dynamics
response functions. For example, integration of Eq. (9) over
the energy and momentum,∫

dεdkA(k,ε) = L − N, (58)

gives the number of empty sites. If a sum over only a small
number of electron-hole pairs in the intermediate state f in
Eq. (9) is sufficient to fulfill this rule in Eq. (58) then a few
electron-hole pairs already account for a major part of all of
the spectral density and the states with more electron-hole pair
have vanishing spectral weights, as in the hierarchy of modes
established in this work. Our analytic work demonstrates how
this can arise in a Bethe ansatz solution, though the numerical
studies of spin chains were done at large fillings (L ∼ N ), for
which our result in Eq. (46) is not directly applicable.

F. Spectral edge modes

In this section, we consider another important role played
by the continuum of eigenstates, namely how they form the
spectral function close to the spectral edges. These edges
separate regions where there are excitations from regions
where there are none, see borders between white and grey
regions in Fig. 3. The recently proposed model of a mobile
impurity [34–37] gives a field-theoretical description of
the dynamic response functions around the spectral edges
predicting a general (divergent) power-law behavior A(k,ε) ∼
|ε − εedge(k)|−α , see Refs. [28,34–37,40–46]. For spinless
fermions, the exponent of the spectral function is given by
[47]

α = 1 − K

2

(
1 − 1

K2

)
(59)

for both the particle (p0b) and hole edges (h0a), where Eq. (8)
gives the Luttinger parameter K in terms of the microscopic
parameter of the model in Eq. (1). Here, we will compare
the field-theoretical result in Eq. (59) with the microscopic
calculation in Eqs. (6) and (46). We find agreement in many
cases, but interestingly we also find some cases where the
mobile impurity results are not consistent with the analytic
solution, suggesting this field-theoretical approach is not the
complete story.

The hole edge is an a mode, h0a, whereas the continuum
around it is dominated by b excitations. The spectral function
formed by these b excitations has already been calculated in
Eq. (56) giving the power-law behavior with the exponent
α = 1. Note that for spinless fermions the Luttinger parameter
K has only small deviations from 1 for arbitrary magnitude of
the short-range interactions, see Eq. (8). This makes the result
in Eq. (59) close to α = 1 for all values of U ; comparison
of small deviations (which are U -dependent) require a better
accuracy in evaluating Eq. (56). Thus the result of the
microscopic calculation coincides with the prediction of the
mobile-impurity model in Eq. (59) for the hole edge.

The particle edge is a b mode, p0b, and the excitations
around it belong to the same b level of the hierarchy as the
mode itself. Parameterizing the b excitations in this region of
the continuum as in Fig. 2(b) and using the averaging procedure
in Eq. (55) we obtain, repeating the same steps as before,
Eqs. (56) and (57),

A(ε) ∼ (ε − εp0b)3 (60)

for k ≈ 0 to

A(ε) ∼ const − (ε − εp0b) (61)

for k ≈ kF, where εp0b(k) = k2
F/(mK) − k2/(2mK). This is

a new power-law behavior characterized by an exponent α

changing essentially with k from α = −3 for k = 0 to α =
−1 for k ≈ ±kF and is different from the predictions of the
mobile-impurity model in Eq. (59). Here, we observe that the
phenomenological model in Refs. [34–36] is correct only for
the a-mode spectral edge but higher-order edges would require
a different field-theoretical description.

On a more detailed level, the difference between the particle
and the hole edges manifests itself in different statistics of level
spacings around the edges. An evaluation of the density of
states, ν(k,ε) = ∑

f δ(ε − Ef )δ(k − Pf ), is performed using
Ef from Eq. (7) for a fixed momentum k. For b excitations in
Fig. 2(b), we obtain the same results,

ν(k,ε) ∼ |ε − εp0b(h0a)(k)|, (62)

in the vicinity of both the particle p0b and the hole h0a edges.
However, the statistics of the level spacings

P(s,k) =
∑
f

δ(s − (Ef +1 − Ef ))δ(k − Pf ), (63)

where Ef are assumed sorted by their values, is different in
the two regions. For the hole edge, the energy levels are spaced
regularly and are governed by the slope of dispersion at the
Fermi energy ≈ v. This gives a bimodal P(s,k) with a sharp
peak at s = 0 (due to many-body degeneracy of almost linear
spectrum at EF) and at s ≈ vγ . For the particle edge, the
statistics of the level spacings varies from having a regular
level spacing [for k commensurate with kF in Fig. 4(a)] to an
irregular distribution [for incommensurate k in Fig. 4(b)].

The change in the characteristics of the underlying statis-
tics is another microscopic difference between the particle
(b-mode) and the hole (a-mode) edges that signals a difference
in underlying physics for the particles and for the holes spectral
edges beyond the low-energy region.

075147-11

100100100



O. TSYPLYATYEV et al. PHYSICAL REVIEW B 93, 075147 (2016)

(a)

(b)

FIG. 4. Distributions of level spacings in the vicinity
(max(Ef − εp0b(k))/εF = 1/100) of the particle mode p0b accumu-
lated along energy axis for the values of momenta (a) k = 0 and
(b) k = 0.4355kF; N = 2 × 103 and L = 2 × 105.

V. LOCAL DENSITY OF STATES

Now we turn to another macroscopic observable, the local
density of states (LDOS), which describes the probability of
tunneling a particle in or out of the wire at a given position
in space and at a given energy. Since the model in Eq. (1) is
translationally invariant, the LDOS depends only on a single
variable—energy, making it a more convenient quantity to
study qualitatively how the physical properties change from
low to high energies. In this section, we will show how the
power-law result of the Tomonaga-Luttinger model [2] at low-
energy crosses over into the hierarchy of mode-dominated
behavior at high energy.

The probability of local tunneling at energy ε

and at position x is described by [16] n(x,ε) =
−Im[

∫
dte−iεtG(x,x,t)]sgn(ε − μ)/π , where μ is the chem-

ical potential and G(x,x ′,t) = −i〈T (e−iH tψ(x)eiHtψ†(x ′))〉
is the two-point correlation function at zero temperature. In
terms of eigenmodes, it reads

n(ε) = L
∑
f

[|〈f |ψ†(0)|0〉|2δ(ε − Ef + E0)

+ |〈0|ψ(0)|f 〉|2δ(ε + Ef − E0)], (64)

where the coordinate dependence drops out explicitly, the
eigenenergy Ef has already been calculated in Eq. (7) and
the matrix elements |〈0|ψ(0)|f 〉|2 are given in Eq. (46). Note
that the definition in Eq. (64) is connected to the definition of
the spectral function in Eq. (9) via

n(ε) =
∫

dkA(k,ε). (65)

The leading contribution for ε > 0 comes from a excita-
tions. Substituting the matrix element for the a excitations
from Eq. (51), we sum over the single-particle-like excitations

FIG. 5. The local density of states for interacting spinless
fermions: the red and the green lines show the contribution of a

and b excitations and the blue line indicates the Luttinger-liquid
regime. Inset is a log-log plot around the Fermi energy: the points are
numerical data for N = 71, L = 700, mV = 6 giving K = 0.843,
and the dashed line is n(ε) = const|ε − μ|(K+K−1)/2−1.

[with ε = k2/(2mK)] that form the mode and obtain

n(ε) =
√

2mK

ε
θ (ε). (66)

This result gives the same 1/
√

ε functional dependence—see
red line in Fig. 5—and the same 1/

√
ε van Hove singularity

at the bottom of the band ε = 0 as the free-particle model.
For ε < 0, the leading contribution to n(ε) comes from b

excitations. Instead of performing a summation in Eq. (64)
over every b excitation in this region, we use an intermediate
result in Eq. (56) where the matrix elements of b excitations in
Eq. (52) are already smoothed over many eigenstates and the
relation in Eq. (65). Evaluating the integral over k in Eq. (65),
after the substitution of Eq. (52) into it, for ε < 0 we obtain

n(ε) = 2Z2k2
F

γμK
θ (−ε)

×
[

2

(
1 − 3|ε|

μ

)√
μ

|ε| cot−1

(√
|ε|
μ

)
+ 6

]
. (67)

There is a finite probability to find a particle below the
bottom of the conduction band—green line in Fig. 5—which
is allowed only due to interactions between many particles.
The factor Z is proportional to the interaction strength V —see
Eq. (46)—making n(ε) = 0 for ε < 0 in the free particle limit
of V = 0. At the bottom of the band below the ε = 0 point
in Fig. 5, the result in Eq. (67) contains another Van Hove
singularity,

ρ(ε) = 2πZ2k2
F

γK
√

μ|ε| , (68)

which also disappears when V = 0. The appearance of the
identical exponent as in Eq. (66) exponent 1/

√|ε| seems
coincidental.

Around the Fermi energy (the point ε = μ in Fig. 5), the
Tomonaga-Luttinger model predicts a power-law suppression
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of LDOS,

n(ε) ∼ |ε − μ|(K+K−1)/2−1, (69)

e.g., see the book in Ref. [2]. However, the result for the
a-mode in Eq. (66) is finite at this point, n(μ) = √

2mK/μ.
In order to resolve the apparent discrepancy, we evaluate n(ε)
numerically around the Fermi energy using the determinant
representation of the form factors in Eqs. (32) and (33) instead
of Eq. (46), which accounts for all orders in 1/L, and indeed
find a suppression of LDOS around ε = μ, see blue line
in the inset in Fig. 5. This signals that the leading-order
expansion in the L|〈f |ψ†(0)|0〉|2 = 1 result is insufficient at
low energies. Very close to the Fermi point (the linear region
of the single-particle dispersion) all 1/L orders of the Bethe
ansatz calculation are needed to reproduce the result of the
Tomonaga-Luttinger model, see dashed lines in the inset in
Fig. 5. However, away from the linear region, the particle-hole
symmetry of the Tomonaga-Luttinger model is broken by
the finite curvature of the dispersion and only the leading
1/L order in Eq. (46) is sufficient to account for the main
contribution there.

The general picture emerging in Fig. 5 is a power-law
crossover between different energy scales. At low energies
(blue region in Fig. 5) Eq. (46) breaks down and the
collective modes of the Tomonaga-Luttinger model are a better
description of the system. At high energies (the red and the
green regions in Fig. 5), the hierarchy of modes, which directly
follows from Eqs. (46) and (6), becomes the dominant physical
picture. For spinless fermions, the extent of the crossover
region is large due to only small deviations from K = 1 for
arbitrary short-range interactions. For very small exponents
[(K + K−1)/2 − 1] � 1, the power-law in Eq. (69) deviates
significantly from 1 only in an extremely narrow region around
ε = μ having a large window of energies where it overlaps
with the a-mode result in Eq. (66).

VI. EXPERIMENTS ON SPINFUL FERMIONS

So far, in this paper, we have established the theoretical
framework for expecting a hierarchy of modes in a interacting
system at high energy. Now we turn to a measurement of tun-
neling of electrons in a one-dimensional (1D) nanostructure,
which gives experimental evidence for the existence of the
hierarchy. Electrons have spin 1/2, which does not correspond
directly to the model of spinless fermions in Eq. (1), and there is
currently no known method for calculating the necessary form
factors for spinful fermions. However, the general picture that
emerges from the experiment is qualitatively the same as our
result in the theory part of this paper.

The design of our device [12] is based on a high-mobility
GaAs–AlGaAs double-quantum-well structure (blue and yel-
low layers in Fig. 6), with electron densities around 3 and
2 × 1015 m−2 in the upper and lower layers, respectively,
before application of gate voltages. Electrons in the upper
layer are confined to a 1D geometry (“wires”) in the x direction
by applying a negative voltage to split “finger” gates on the
surface (gold layer in Fig. 6).

Electrons underneath the gates are completely depleted,
but electrons below the gap between gates are squeezed into
a narrow 1D wire. The extremely regular wires are arranged

FIG. 6. Schematic of the device made out of a double-well
heterostructure. The dark blue and cream layers are the lower
and upper quantum wells, respectively. The lower layer hosts the
two-dimensional electron gas (2DEG). The wires are defined in the
upper layer by gating. The gold top layer represents metallic gates
deposited on the surface of the semiconductor heterostructure. The
array of parallel “finger” gates defines the 1D wires in the upper well.
The white lines represent air bridges joining the finger gates together.
Current is injected from the ohmic contact on the right solely into the
upper well through the constriction at top right in the diagram. The
constriction is formed and pinched off by a split pair of gates, and
charge is induced again in the upper well in the constriction by a gate
in the center of the channel. The current then flows into the 1D wires
via the narrow, nominally 2D, regions shown in light blue. Tunneling
to the 2DEG below is possible, and this gives a small “parasitic”
current in parallel with the tunnel current from the 1D wires. To tune
this tunneling off resonance in the regions of interest by changing the
density, a “p” gate is placed above the “p”’ regions and a voltage VP

is applied. Current is prevented from flowing from the upper well into
the left-hand ohmic contact by a barrier gate shown on the left, which
only depletes the upper well. The red arrow shows the direction of
the externally applied magnetic field B, which is in the plane of the
wells and perpendicular to the wires.

in an array containing ∼600 of them to boost the signal. The
small lithographic width of the wires, ∼0.18 μm, provides
a large energy spacing between the first and second 1D
subbands defined by spatial modes perpendicular to the wires
(∼3−5 meV, probably somewhat smaller than for overgrown
wires [11]). This allows a wide energy window for electronic
excitations in the single 1D subband that covers a range of a
few chemical potentials of the 1D system. The lower 2DEG
(blue in Fig. 6) is separated from the wires by a d = 14 nm
tunnel barrier. The wafer is doped with Si symmetrically in the
AlGaAs barriers above and below the pair of wells. The doping
is separated from the wells by spacer layers. The spacing
between the centres of the two quantum wells is nominally
d = 32 nm but we find a value of d = 35 nm fits the data
better, and this can be explained by the fact that the centres of
the wave functions will be slightly further apart owing to the
opposite electric fields in each well.

The 2DEG in the lower (dark blue) layer is used as a
controllable injector or collector of electrons for the 1D
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system [48,49]. The current I tunneling in the z direction
between the layers is proportional to the convolution of
the 1D and 2D spectral functions (a pair of peaks at kx =
±kF broadened in ky by the 1D confinement, and a circle,
respectively). An in-plane magnetic field B applied in the y

direction, perpendicular to the wires (show with a red arrow in
Fig. 6), produces a Lorentz force that changes the longitudinal
momentum kx acquired while tunneling between layers by
�k = eBd/�, where e is the electronic charge. Thus B shifts
the spectral functions in kx relative to each other, and so probes
the momentum. One spectral function can also be shifted
relative to the other in energy by applying a voltage V between
the layers, in order to probe the 1D and 2D dispersion relations
at different energies. The conductance G = dI/dV has a peak
when the sharp features in the spectral functions have a signifi-
cant overlap. At V = 0, this occurs when �k is equal to the sum
or difference of the Fermi wave numbers kF and k2 of the 1D
and 2D systems, respectively, so there are two peaks for B > 0,
at B± = �

ed
|k2 ± kF|. By sweeping B and V , one can map out

the dispersion relation of states in each layer. The range of
magnetic fields that we apply to the system is still within the
regime of Pauli paramagnetism for the electron densities in our
samples.

VII. LOW ENERGY

The results from two samples are presented, each consisting
of a set of identical wires of length L = 10 μm (sample A)
and L = 18 μm (sample B). First, we measure the tunneling
conductance G = dI/dB in a small range of voltages and
magnetic fields around V = 0 and B = B+ = 3.15 T that
corresponds to a region on the momentum-energy plane around
the Fermi point (ε = μ,k = kF), see Fig. 7. Below the Fermi
energy, we observe splitting of the single-particle line into
two lines with different dispersions—spin (S) and charge
(C) separation [11,12]—giving two different slopes vs and
vc (black dashed lines in Fig. 7). We assume that vs is the same
as for noninteracting electrons and so take it to be the gradient

FIG. 7. Intensity plot of dG/dB at low energies around the
Fermi point kF. Spin (S) and charge (C) dispersions are indicated
by dashed lines. The dotted lines indicate the parabolae expected in
the noninteracting model. The finger-gate voltage VF = −0.70 V and
the temperature T ∼ 300 mK (sample A).

of the parabola at V = 0. We estimate vc from the positions of
steepest gradient and hence obtain vs ≈ 1.2 × 105 ms−1 and
vc ≈ 2.3 × 105 ms−1 at the finger-gate voltage VF = −0.70 V.

Theoretically, the low-energy physics of the interacting
1D electrons is described well by a spinful generalization of
the Luttinger-liquid model [2]. Its excitations are collective
hydrodynamiclike modes that are split into charge-only and
spin-only excitations. For any finite strength of the interactions
between fermions, the two types of modes have linear
dispersions with different slopes vc and vs. In the absence of
interactions, the difference between the two velocities vanishes
in accordance with the free-electron model, in which the spin
degree of freedom does not affect the spectrum but results
only in the double degeneracy of the fermionic states. Thus
the ratio of vc/vs serves as a good measure of the interaction
strength. Since the Coulomb interaction between electrons is
repulsive, the charge branch always has a steeper slope vc � vs

(see Ref. [2]). Thus the ratio varies from 1 for free to ∞ for in-
finitely repelling particles. In our experiment, we measure the
tunneling of electrons and observe two peaks that we attribute
to the charge and the spin dispersions. The pair of velocities
above gives a large vc/vs ≈ 1.8 ± 0.1 (for VF = −0.70 V),
confirming that our system is in the strongly interacting regime.

VIII. HIGH ENERGY

Now we extend the ranges of the voltage and magnetic
field measuring the tunneling conductance G across the double
quantum well in Fig. 6 accessing a large portion of the 1D
spectral function from below −kF to 3kF and from −2μ to 2μ,
see Fig. 8. There is an unavoidable “parasitic” (“p”) tunneling
from narrow 2D regions (light blue strips in Fig. 6) that connect
the wires to the injector constriction. This superimposes a set
of parabolic 2D-2D dispersions on top of the 1D-2D signal,
which are marked by magenta and blue dotted lines in Fig. 8.

Apart from the parasitic and the 2D dispersion signals,
we observe only a single 1D parabola away from B = 0,
marked by the solid green line in Fig. 8. It extends from the
spin-excitation branch at low energy and the position of its
minimum multiplied by the electronic charge e gives the 1D
chemical potential μ ≈ 4 meV. The B− and B+ crossings with
the line V = 0, corresponding to momenta −kF and kF, give
the 1D Fermi momentum kF ≈ 8 × 107 m−1. All other edges
of the 1D spectral function are constructed by mirroring and
translation of the hole part of the observable 1D dispersion,
dashed green and blue lines in Fig. 8.

For positive voltages in the region just above the higher
V = 0 crossing point (B+, which corresponds to kF), we
observe a distinctive feature: the 1D peak broadens, instead
of just continuing along the noninteracting parabola, with
one boundary following the parabola [p1a(l)] and the other
bending around, analogous to the replica p1b. This is visible
in the conductance, but is most easily seen in the differentials,
particularly dG/dV (left column of Fig. 8). The broadening
is observed at temperatures from 100 mK up to at least 1.5 K,
and in samples with different wire designs (with or without air
bridges) and lengths: in Fig. 9, dG/dV is shown in detail for
the broadened “replica” region for the 10-μm wires already
presented (a)–(d), and for another sample with wires 18-μm
long [(e) and (f)]. G is plotted in Figs. 9(b) and 9(d) and f
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FIG. 8. Intensity plots of dG/dV (left column, in μS/mV) and dG/dB (right column, in μS/T) from below −kF to above 3kF and from
∼−2μ to ∼μ, for various finger-gate voltages: −0.60 [(a) and (b)], −0.65 [(c) and (d)], −0.68 [(e) and (f)], and −0.70 V [(g)–(j)]. The solid
black lines map out the dispersion of the lower (2D) layer. The green solid line marks a modes, thick and thin dashed green lines, p1b and h1b

modes, respectively, and dashed blue, higher-k modes (as in Fig. 3). Dot-dashed yellow (blue) and dotted white (cyan) lines show second and
third 1D subbands (2D dispersion measured by those subbands), respectively (though the third is empty, electrons can tunnel into it from the
2D layer and hence there are sometimes signs of its effects for V > 0, especially near B = 0). Dotted magenta and blue lines are “parasitic”
2D dispersions of the two layers. The voltage on the gate over this region VP = 0 V except for [(e) and (f)] (VP = 0.2 V) and [(i) and (j)]
(VP = 0.3 V), which shifts the parabolae to the right without changing the signal from the 1D wires. The lines have all been adjusted to take
account of the capacitive coupling between the layers. Spin (S) and charge (C) modes are indicated with black dashed lines. T ∼ 300 mK. See
Table II for the densities and the ratio vc/vs for each gate voltage.

on cuts along the V axis of the corresponding plots in the left
column at various fields B from B+ to 4.8 T—between the
“+” and “×” symbols on each curve is a region of enhanced
conductance characteristic of the replica p1b.

Filling of the second 1D subband changes significantly the
screening radius for the Coulomb interaction potential in the
first 1D subband. This is manifested by a change of the ratio
vc/vs when the occupation of the second subband is changed by
varying voltage of the finger gates VF in Figs. 8(a), 8(c), 8(e),
and 8(g), see Table II. The ratio vc/vs is a measure of interac-
tion energy. Thus the finger gates give a degree of experimental
control over the interactions within our design of the 1D
system. We use the maximum change of the ratio vc/vs for dif-
ferent finger gate voltages to estimate the relative change of the
interaction strength as (max(vc/vs) − min(vc/vs))/min(vc/vs)
obtaining a change of about 20%.

It also has to be noted that the “replica” is visible even when
a second subband is present in the 1D wires, see Figs. 8(a)–8(f).
In (a) and (b), it appears to go 25%–30% higher in voltage than

expected for a precise copy of the usual 1D parabola (even
allowing for capacitive correction) due to a contribution of the
second subband, which we do not analyze in detail here.

At even higher magnetic fields, the p1b line passes a “p”
parabola. Figures 9(a) and 9(c) [and the corresponding cuts (b)
and (d)] show the replica feature for two different positions of

TABLE II. Densities of the 2D layer (n2D) and of the 1D wires
(n1D), the 1D Fermi wave vector kF (all to about ±1%), and the ratio
of the charge and the spin velocities at low energies (to about ±5%),
extracted from the gradients of the S and C lines in Fig. 8, for different
finger-gate voltages VF.

VF (V) n2D (1015 m−2) n1D (107 m−1) kF (107 m−1) vc/vs

−0.60 1.67 5.68 8.9 1.5
−0.65 1.65 4.99 7.8 1.6
−0.68 1.52 4.79 7.5 1.5
−0.70 1.48 4.60 7.2 1.8
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FIG. 9. (Left) Intensity plots of dG/dV (in μS/mV), for various
finger-gate voltages and samples: [(a) and (b)] VF = −0.68 V, VP =
0.2 V, from Fig. 8(e), sample A, which had 10 μm-long wires (T ∼
300 mK); [(c) and (d)] VF = −0.70 V, VP = 0.3 V, from Fig. 8(i),
sample A; [(e) and (f)] a similar single-subband result from sample B
(18 μm-long wires, T < 100 mK). The replica feature just above kF

appears as a pale triangle (slowly varying G) between the two green
curves, after a red region (sharp rise in G). The replica feature for
sample B is somewhat weaker than that for sample A, in line with
the wire-length dependence predicted in this paper. Right column: G

vs V at various fields B from 3 to 4.8 T for the data in the matching
plots in the left column; “+” and “×” symbols on each curve indicate,
respectively, the voltages corresponding to the dashed and solid [p1b

and p1a(l)] green lines in the left column (and in Fig. 8), showing
the enhanced conductance between the two.

the “p” parabolae using a gate above most of the “p” region,
showing that the replica feature is independent of the “p”
tunneling. The amplitude of the feature dies away rapidly, and
beyond the “p” parabolae, we have measured up to 8 T with
high sensitivity, but find no sign of any feature that can be
distinguished from the decaying tails of the other features.

In the range of fields where the p1b feature is observed
its strength decreases as the B field increases away from
the crossing point analogously to the power law for spinless
fermions in Table I. On general grounds, it is natural to expect
that divergence of the spectral weight of a b mode toward an
a mode is a general feature, but there is no known method for
performing a microscopic calculation in the spinful case. A
similar feature should mark the h0b(r) mode (see Fig. 3 and
Table I) for negative voltages and for the magnetic field just
below the crossing point kF, but it would be very difficult to
resolve due to the overlaying spin and charge lines.

Making an analogy with the microscopic theory for spinless
fermions in the first part of this paper, we estimate the ratio
of signals around different spectral edges using the 1D Fermi
wavelength, λF ≈ 130 nm for our samples, as the short-range
scale R. The signal from the principal parabola, see Fig. 8(b),
gives the amplitude of the a mode as Ga ≈ 5 μS. Then

the amplitude of the signal from the second (third)-level
excitations is predicted to be smaller by a factor of more than
λ2

F/L
2 ∼ 2 × 10−4 (λ4

F/L
4 = 3 × 10−8), where the length of

a wire is L = 10 μm. These values Gaλ
2
F/L

2 ∼ 10−3 μS
(Gaλ

4
F/L

4 ∼ 10−7 μS) are at least two orders of magnitude
smaller than the background and noise levels of our experiment
Gnoise ∼ 10−2 μS, which places an upper limit on the
amplitude of any replica away from kF. Thus our observations
are consistent with the mode hierarchy picture for fermions.

In an effort to quantify the decay of the replica feature, we
have fitted the gradual background fall in conductance and the
noninteracting 1D and 2D peaks (solid green and blue lines in
Figs. 7–9) with a Gaussian and/or Lorentzian functions of B,
at each value of V > 0. The fitting parameters are then fitted
to smooth functions in order to represent the general behavior
of the peaks as a function of V . This idealized landscape is
then subtracted from the data, see Fig. 10(a), and the “replica”

FIG. 10. (a) and (b) The conductance for VF = −0.70 and
−0.68 V , respectively, for sample A, after subtraction of an idealized
landscape made up of fits or estimates of the noninteracting 1D-2D
and “p” parabolae (see text). The p1b replica is seen clearly as the red
region of enhanced conductance. (c) The conductance along the p1b

replica parabola, for the data in (a) (green crosses). The conductance
on p1b has a large contribution from the “p” region [the line in (a)
marked with blue dots, which is blurred to the left by multiple copies
at slightly different positions]. In order to correct for this contribution,
the conductance along a matching parabola shifted along the dotted
“p” line in (a) (shown as a dashed magenta line there), is subtracted
from the p1b data. This yields the points marked with blue circles,
which appears to be nonzero because of the enhancement at p1b.
The amplitude decays rapidly. There are many uncertainties in the
fitting of the other peaks, but the replica appears clearly and the
decay of the conductance is consistent with an inverse-square power
law G ∝ (k − kF)−α (labelled α = 2), which is the behavior predicted
by the theory for k > kF + γ where γ � kF (see Table I). (d) The
p1b conductance enhancement as shown with circles in (b). Three
different methods of fitting the background and the 1D and 2D peaks
are compared for each of two gate voltages as shown. The curves are
offset vertically for clarity. The lines marked with values of α are
guides to the eye. The data are all consistent with α = 2 ± 1.
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is then fairly easily observed in the remaining conductance. A
copy of a nearby region along the “p” curve is then subtracted
too, as an approximation to the rather diffuse signal arising
from the main “p” peak and smaller versions of it at slightly
different densities. This also reduces errors in the peak and
background fitting used in (a). We then plot the conductance
along the expected parabola [dashed line in (a)] as a function
of (k − kF)/kF = (B − B+)/((B+ − B−)/2). These data are
shown as circles in (c), where all the other contributions to
the conductance along the same parabola are shown. Here,
B+ = 3.17 T and kF = 7.2 × 107 m−1. It is very hard to be
sure that this procedure is reliable due to significant error
bars imposed by contributions from the various other peaks,
but it is clear that the replica feature dies away rapidly as a
function of k − kF, and it is consistent with the 1/(k − kF)2

law predicted for p1b in Table I for k − kF 	 γ . Though the
overall prefactor is unknown theoretically in the spinful case,
this singular power law may overcome the reduction factor
R2/L2 close to kF.

IX. CONCLUSIONS

In this work, we have shown that a hierarchy of modes
emerges in systems of interacting fermions in one dimension
at high energy controlled by the system length, in marked
contrast to the well-known fermionic quasiparticles of a Fermi
liquid and hydrodynamic modes of a Luttinger liquid at low
energy. We have obtained theoretically the dynamic response
functions for a model of spinless fermions with short-range
interactions using the exact diagonalisation methods of the
Bethe ansatz for the spectrum and the form factors of
the system. Analysing the spectral function in detail, we have
found that the first-level (strongest) mode in long systems has
a parabolic dispersion, like that of a renormalized free particle.
The second-level excitations produce a singular power-law line
shape for the first-level mode and different kinds of power-law
behavior at the spectral edges. Evaluating the form factor
necessary for the dynamical structure factor we have shown
that it has the same general form as the form factor of the
spectral function, manifesting the same hierarchy of modes.

Using the same many-body matrix elements obtained
microscopically, we have also calculated the local density of
states. It provides a more convenient way to analyze how the
hierarchy at high energy changes into the hydrodynamic modes
of the Luttinger liquid at low energies. We have shown, via a
full Bethe-ansatz calculation, that the LDOS is suppressed at
the Fermi energy in a power-law fashion in full accord with

the prediction of the Tomonaga-Luttinger model. Away from
the Fermi point, where the Lorentz invariance of the linear
dispersion is reduced to Galilean by the parabolicity of the
spectrum, the LDOS is dominated by the first (leading) level
of the hierarchy. We have demonstrated that the transition from
one regime to another is a smooth crossover.

We measure momentum-resolved tunneling conductance in
one-dimensional wires formed in the GaAs/AlGaAs double-
well heterostructure by an array of finger gates. In this setup,
we probe the spectral function of unpolarized electrons (spinful
fermions) and find a pronounced spin-charge separation at
low energy with a ratio of the spin and the charge velocities
up to 1.8, which confirms that our system is in the strongly
interacting regime. By varying the gate voltage that controls
the width of our 1D wires, we demonstrate control of the
interaction strength of about 20%; the deeper confining
potential of the wires populates higher 1D subbands as well
which in turn screens stronger Coulomb interactions in the
principal 1D band reducing the interaction strength. In 10 μm-
long wires, we find a clear feature resembling the second-level
excitations, which dies away rapidly at high momentum. A
qualitative fit shows that the feature decays in a fashion that
is consistent with the power-law prediction in this paper for
spinless electrons. Thus we have shown that the hierarchy
is apparently a generic phenomenon at least for one- and
two-point correlation functions of fermions without spin, and
for a transport experiment for fermions with spin.

Data associated with this work are available from [50].
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APPENDIX A: EIGENVALUE EQUATION IN THE
ALGEBRAIC FRAMEWORK

The eigenvalue of the transfer matrix τ (u) in Eq. (19) can
be evaluated using the commutation relations in Eqs. (16) and
(17). Let � be a Bethe state in the algebraic representation of
Eq. (21). The results of acting with A(u) and D(u) operators
on the state � are obtained by commuting these operators from
left to right though the product of C(uj ) in Eq. (21) and then
by using their vacuum eigenvalues in Eq. (20).

Let us consider the case of N = 2 and the operator A(u)
first. Commuting once by means of Eq. (16) gives

A(u)C(u2)C(u1)|0〉 =
(

1

b(u2 − u)
C(u2)A(u) − c(u2 − u)

b(u2 − u)
C(u)A(u2)

)
C(u1)|0〉. (A1)

Applying Eq. (16) the second time gives

A(u)C(u2)C(u1)|0〉 =
(

1

b(u2 − u)

1

b(u1 − u)
C(u2)C(u1)a(u) − c(u1 − u)

b(u1 − u)

1

b(u2 − u)
C(u2)C(u)a(u1)

)
|0〉

+
(

− 1

b(u1 − u2)

c(u2 − u)

b(u2 − u)
C(u)C(u1)a(u2) + c(u1 − u2)

b(u1 − u2)

c(u2 − u)

b(u2 − u)
C(u)C(u2)a(u1)

)
|0〉, (A2)
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where the vacuum eigenvalue of A(u), A(u)|0〉 = a(u)|0〉, was substituted explicitly. The second terms in the first and the second
lines of the above equation have the same operator form but different scalar factors. Summation of the two scalar factor, using
the explicit form of b(u) and c(u) from Eq. (12), yields

a(u1)

b(u2 − u)

[
c(u1 − u2)

b(u1 − u2)
c(u2 − u) − c(u1 − u)

b(u1 − u)

]
= − a(u1)

b(u2 − u1)

c(u1 − u)

b(u1 − u)
. (A3)

Thus the four terms can be rewritten as only three terms,

A(u)C(u2)C(u1)|0〉 =
⎛
⎝a(u)

2∏
j=1

C(uj )

b(uj − u)
−

2∑
j=1

a(uj )
c(uj − u)

b(uj − u)
C(u)

2∏
l=1�=j

C(ul)

b(ul − uj )

⎞
⎠|0〉. (A4)

Extension of the same procedure for N > 2 gives

A(u)
N∏

j=1

C(uj )|0〉 =
⎛
⎝a(u)

N∏
j=1

1

b(uj − u)
C(uj ) −

N∑
j=1

a(uj )
c(uj − u)

b(uj − u)
C(u)

N∏
l=1�=j

1

b(ul − uj )
C(ul)

⎞
⎠|0〉 (A5)

Commuting of the operator D(u) is done in the same way using Eq. (17) and yields

D(u)
N∏

j=1

C(uj )|0〉 =
⎛
⎝d(u)

N∏
j=1

−1

b(u − uj )
C(uj ) +

N∑
j=1

d(uj )
c(u − uj )

b(u − uj )
C(u)

N∏
l=1�=j

−1

b(uj − ul)
C(ul)

⎞
⎠|0〉. (A6)

Thus a Bethe state in Eq. (21) parametrized by an arbitrary
set of uj is not an eigenstate of the transfer matrix since
acting of the operator τ (u) on such a state does not only result
in multiplying by a scalar but also generates many different
states: the second terms in Eqs. (A5) and (A6). However, the
coefficients in front of each of these extra states can be made
zero by a specific choice of uj ,

a(uj )
N∏

l=1�=j

1

b(ul − uj )
− d(uj )

N∏
l=1�=j

−1

b(uj − ul)
= 0. (A7)

When a set of uj satisfies the system of equations above,
the corresponding Bethe state is an eigenstate of the transfer
matrix, τ (u)� = T (u)�, with the eigenvalue T given by the
first terms in Eqs. (A5) and (A6),

T (u) = a(u)
N∏

j=1

1

b(uj − u)
− d(u)

N∏
j=1

−1

b(u − uj )
. (A8)

Equation (A7) is the set of Bethe equations in the algebraic
representation, Eq. (22) of the main part of the text, and
Eq. (A8) gives the eigenvalue of the transfer matrix, Eq. (24)
of the main part of the text.

APPENDIX B: CALCULATION OF AVERAGES OF
THE LOCAL DENSITY OPERATOR ρ(0)

The calculation of the average of the local density operator
ρ(0) is done in the same way as for the field operator ψ†(0)
in Sec. IV C. We start from the lattice model in Eq. (2) and
the corresponding construction of the algebraic Bethe ansatz
in Sec. IV A.

The local density operator can be represented in terms of A

and D operators as [17,18]

ρ1 = −D

(
iπ

2
− η

)
τ

(
iπ

2
− η

)L−1

. (B1)

The action of the second factor in the above expression on an
eigenstate |u〉 just gives a phase factor—see an explanation
after Eq. (31)—that we will ignore since we are interested in
the modulus squared of this form factor. Then commuting the
operator D of the first factor in the equation above through all C
operators of the eigenstate |u〉—in the form in Eq. (21)—gives
the result in Eq. (A6).

The scalar product of Eq. (A6), where the auxiliary
parameter u is set to iπ/2 − η, with another eigenstate 〈v|
gives

〈v|ρ1|u〉 = (−1)N
N∏

j=1

cosh
(
uj − η

)
cosh

(
uj + η

) 〈u|v〉 + i(−1)N
N∑

b=1

sinh 2η

cosh (ub + η)

N∏
l=1�=b

sinh (ub − ul + 2η)

sinh (ub − ul)

〈
ub−1,

iπ

2
− η,ub+1|v

〉
,

(B2)

where 〈ub−1,
iπ
2 − η,ub+1| is a Bethe state which is constructed from the eigenstate u by replacing bth quasimomenta with

iπ/2 − η. Note that the properties 〈v|u〉 = 〈u|v〉, where uj satisfy the Bethe equations and vj is an arbitrary set of quasimomenta
[17,18], was used.
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The scalar product in the first line in Eq. (B2) is given by Eqs. (27) and (28) where u and v are swapped. Substitution of
u = ub−1,

iπ
2 − η,ub+1 in the same expressions for the scalar products in the second line of Eq. (B2) yields

〈
ub−1,

iπ

2
− η,ub+1|v

〉
= −i

sinhN (2η)
∏N

j=1 cosh(vj − η) det T̂ (b)∏
j<i sinh(vj − vi)

∏
j<i �=b sinh(uj − ui)(−1)b−1

∏N
j=1�=b cosh(uj + η)

, (B3)

where all matrix elements of T̂ (b) are

T
(b)
ab′ =

N∏
l=1�=b′

sinh(ub′ − ul + 2η)

sinh(ub′ − ul − 2η)

1

sinh(ub′ − va)

N∏
j=1�=a

sinh(ub′ − vj − 2η) − 1

sinh(ub′ − va)

N∏
j=1�=a

sinh(ub′ − vj + 2η) (B4)

for b′ �= b

T̂
(b)
ab′ = 1

cosh (va + η) cosh (va − η)
(B5)

for b′ = b.
After pulling a common factor out of the brackets in Eq. (B2) and absorbing the b-dependent prefactors in front of the

determinants in the second line of Eq. (B2) into the bth columns of the matrices under the determinants, the form factor in
Eq. (B2) reads as

〈v|ρ1|u〉 =
N∏

j=1

cosh(uj − η)

cosh(uj + η)

sinhN (2η)∏
j<i sinh(vj − vi)

∏
j<i sinh(uj − ui)

[
det T̂ +

N∑
b=1

det ˆ̃T (b)

]
. (B6)

Here the matrix elements of ˆ̃T (b), which are obtain by multiplying by the corresponding scalars, are

T̃
(b)
ab′ =

N∏
l=1�=b′

sinh(ub′ − ul + 2η)

sinh(ub′ − ul − 2η)

1

sinh(ub′ − va)

N∏
j=1�=a

sinh(ub′ − vj − 2η) − 1

sinh(ub′ − va)

N∏
j=1�=a

sinh(ub′ − vj + 2η) (B7)

for b′ �= b

T̃
(b)
ab′ = (−1)N

N∏
l=1�=b′

sinh(ub′ − ul + 2η)
N∏

j=1

cosh(vj − η)

cosh(uj − η)

sinh(2η)

cosh(va + η) cosh(va − η)
(B8)

for b′ = b. Note that T̃
(b)
ab′ = Tab′ for b′ �= b.

Finally, the summation over b in Eq. (B6) can be evaluated using a general matrix identity: det T̂ + ∑N
b=1 det ˆ̃T (b) =

det (T̂ + B̂), where ˆ̃T (b) is obtained from the matrix T̂ by substituting bth column from matrix B̂. After constructing the
matrix B̂ out matrix elements T̃

(b)
ab from Eq. (B8) and performing the summation over b in Eq. (B6), the form factor reads

〈v|ρ1|u〉 =
N∏

j=1

cosh(uj − η)

cosh(uj + η)

sinhN (2η)∏
j<i sinh(vj − vi)

∏
j<i sinh(uj − ui)

det K̂, (B9)

where the matrix elements of K̂ are

Kab =
N∏

l=1�=b

sinh(ub − ul + 2η)

sinh(ub − ul − 2η)

1

sinh(ub − va)

N∏
j=1�=a

sinh(ub − vj − 2η) − 1

sinh(ub − va)

N∏
j=1�=a

sinh(ub − vj + 2η)

+ (−1)N
N∏

l=1�=b

sinh(ub − ul + 2η)
N∏

j=1

cosh(vj − η)

cosh(uj − η)

sinh(2η)

cosh(va + η) cosh(va − η)
. (B10)

Now, we evaluate the long-wavelength limit for the result above. Applying the inversion mapping from the algebraic to the
coordinate representation from Eq. (35) to the matrix elements in Eq. (B10) and expanding the result up to the leading order
ku
j ,kv

j � 1, we obtain

Kab = (−1)N−12mU ((mU )2 − 1)
N−2

2

∑N
j=1 kv

j − ∑N
j=1 ku

j − kv
a + ku

a

ku
b − kv

a

+ 2(mU + 1)((mU )2 − 1)
N−2

2 . (B11)
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Repeating the same procedure for the prefactor in Eq. (B9) and pulling a common scalar factor out of the matrix elements under
the determinant, we obtain

〈v|ρ(0)|u〉 = (−1)N
2
2N (mU )N

(mU + 1)N
(mU − 1)N

2
det K̂, (B12)

where the matrix elements of K̂ are

Kab = ku
a − kv

a − �P

ku
b − kv

a

+ (−1)N−1 mU + 1

mU
, (B13)

and �P = ∑N
j=1 ku

j − ∑N
j=1 kv

j .
Evaluating the determinant, we obtain

detK = mU + 1

mU

(�P )N
∏

i<j

(
ku
i − ku

j

) ∏
i<j

(
kv
i − kv

j

)
∏

i,j

(
ku
i − kv

j

) . (B14)

This formula can be proved by induction analogously to the proof of Eq. (43).
The form factor appearing in the dynamical structure factor in Eq. (10) is a modulus squared of Eq. (B12). Normalizing the

initial and the finial states using Eq. (38) as |〈f |ρ(0)|0〉|2 = |〈kf |ρ(0)|k0〉|2〈kf |kf 〉−1〈k0|k0〉−1
, we obtain

|〈f |ρ(0)|0〉|2 = (mU )2N−2

(mU + 1)2N−2

P 2N
f

∏N
i<j

(
k0
i − k0

j

)2 ∏N
i<j

(
k

f

i − k
f

j

)2

(
L − NmU

1+mU

)2N ∏N
i,j=1

(
k0
i − k

f

j

)2 , (B15)

where P0 = 0 for the ground state. Equation (B15) is Eq. (47) in the main part of the text with Z =
mU/(mU + 1)/(L − NmU/(1 + mU )).

Note that when the final state becomes the ground state, kf = k0, Eq. (B15) is divergent. In this case, the matrix element is
evaluated using only translational symmetry and the definition of the number of particles operator as

|〈f |ρ(0)|0〉|2 = N2

L2
, (B16)

which also follows directly from Eqs. (B9) and (B10), by taking the limit v → u.
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T
he electronic properties of one-dimensional (1D) electron
systems are fundamentally different from those of their
two-dimensional (2D) and three-dimensional (3D) coun-

terparts, owing to the prominent role of interactions under
1D confinement1–9. Fermi-liquid theory, applicable to normal 2D
and 3D electron systems, breaks down spectacularly in the 1D
case, which is better described by the theory of Tomonaga–
Luttinger liquids10,11. While elementary excitations of Fermi
liquids behave as quasi-free fermions, those of interacting
electrons in 1D systems are collective bosonic modes. Out of
equilibrium, electrons confined to 1D lose their individual
identity, separating into two collective excitation types
(quantized waves of density): spin modes (spinons) that carry
spin without charge, and charge modes (holons) that carry charge
without spin2,12. Spinons and holons travel at different velocities,
resulting in so-called spin-charge separation, revealed in
photoemission and tunnelling experiments12–15. The spectral
function A(:k, :o), describing the probability for an electron
with momentum :k and energy :o40 (:oo0) to tunnel into
(out of) the system, theoretically displays narrow Lorentzian
singularities for normal 3D and 2D systems, whereas it displays
wide asymmetric power-law singularities for 1D systems12,16,17.

The theory of Tomonaga–Luttinger liquids, based on a
linearization of the dispersion relation around the right ðþ k1D

F Þ
and left ð� k1D

F Þ Fermi points10,11, has been successfully used for
a long time to describe 1D electron systems in the limit of low
energies but, in order to understand their behaviour at higher
energies, that is, away from the Fermi points, the curvature of the
dispersion relation has to be taken into account. Recently, a new
nonlinear theory of 1D quantum fluids beyond the low-energy
limit has been developed18–28. The new theory represents a giant
advance towards full understanding of the behaviour of 1D
electron systems, but many of its specific predictions remain
barely explored experimentally.

Here, we report on the spectra of elementary excitations in
short GaAs quantum wires, probed by momentum- and energy-
resolved tunnelling spectroscopy, focusing on the nonlinear high-
energy regime. We use a 1D–2D vertical tunnelling device with a
large number of wires in parallel, to boost the wire signal and so
maximize the chances to observe weak features of the wire
spectral function. Our tunnelling conductance maps reveal, for
the first time, the existence of an inverted (spinon) shadow band
in the main region of the particle sector, symmetrically replicating
the dispersion of the main spinon hole band, as anticipated by the
nonlinear theory. They also reveal a (holon) band with reduced
effective mass in the particle sector at high energies. Holons
appear to be long-lived in the particle sector, but short-lived in
the hole sector.

Results
Vertical tunnelling device. Our device (Fig. 1) consists of a
double GaAs quantum-well structure separated by a thin AlGaAs
barrier, and various surface gates, among them an array of 1 mm-
long wire gates (WG) interconnected with air bridges (Fig. 2). We
apply a negative voltage Vwg to the wire gates, which is strong
enough to pinch off (fully deplete) the upper-well (UW) regions
under the wire gates, but not strong enough to pinch off the
lower-well (LW) regions under the wire gates. Hence, in the lower
well, electrons can move under the wire gates, but in the upper
well they cannot. Electrons in the upper well are laterally confined
to a network of narrow parallel channels (W regions in Fig. 1c)
so-called wires, and perpendicular wide trenches (La, Lb, Lc and
Ld regions in Fig. 1c, jointly denoted L) so-called leads. In the
UW-wire regions, electrons are strongly confined to a narrow
width, thus becoming 1D. In contrast, in the UW-lead regions, no

dimension is very narrow, and so electrons remain 2D. In the
lower well, electrons are not laterally confined, and so their
dimensionality is 2D. The quantum wells are separately contacted
using a surface-gate depletion technique (see Methods section for
details). A fixed ac voltage Vac¼ 50 mV and a variable dc-bias Vdc

are applied between them. The bias is applied to the lower well,
while the upper well is grounded. The current I, injected through
one of the quantum wells, is forced to tunnel through the barrier
that separates them, before leaving the device through the
other quantum well. The differential tunnelling conductance
G¼ dI/dVac, in a variable in-plane magnetic field B perpendicular
to the wires, is measured at B57 mK lattice temperature (higher
electron temperature) in a dilution refrigerator, using standard
lock-in techniques. The W and L regions of the device contribute
distinct signals in G(B, Vdc) maps. The W signal has 1D–2D
nature, that is, it corresponds to tunnelling between the UW 1D
wires and the LW 2D electron gas. The L signal has 2D–2D
nature, that is, it corresponds to tunnelling between the UW 2D
leads and the LW 2D electron gas.

Control of electron density in the wires. The electron density in
the UW wires can be controlled by tuning the wire–gate voltage
Vwg. This is shown in Figs 3 and 4. Figure 3 maps dG/dVwg for
conditions close to equilibrium (VdcE0). The map reveals
the 1D wire subbands participating in 1D–2D tunnelling. The
single-subband regime is achieved with Vwg in the range
� 0.78 VtVwgt� 0.69 V. For Vwg4� 0.69 V, more than one
wire subband participates in 1D–2D tunnelling and, for
Vwgo� 0.78 V, the wires are completely depleted of carriers.
Figure 3 shows the magnetic-field values BW

� , BW
þ , �BL

� and
BL
þ , at which tunnelling resonances cross the Vdc¼ 0 axis in

G(B, Vdc) maps (for example Fig. 5), as a function of the wire–
gate voltage. There are two sets of crossing values. One, ±BW

±,
corresponds to tunnelling in the W regions of the device, and
another, ±BL

±, to tunnelling in the L regions. Note that BW
±

denote the values corresponding to the first UW wire subband.
The crossing values are related to the Fermi-wavevector compo-
nents along the wire direction as follows:

B�W ¼ ‘ kLW;W
F � k1D

F

� ��
edð Þ ð1Þ

B�L ¼ ‘ kLW;L
F � kUW;L

F

� ��
edð Þ: ð2Þ

Here, ‘ k1D
F ð‘ kLW;W

F Þ is the Fermi-wavevector component in the
W regions of the upper well (lower well), ‘ kUW;L

F ð‘ kLW;L
F Þ is the

Fermi-wavevector component in the L regions of the upper well
(lower well), d is the distance between the centres of the UW and
LW wavefunctions, and � e is the electron charge. It happens
that k1D

F okLW;W
F � kLW;L

F okUW;L
F , and so B�W40 and B�L o0.

The Fermi wavenumber k1D
F ðk2D

F Þ in a 1D (2D) system is related
to its equilibrium 1D (2D) electron density n1D (n2D) as follows:

n1D ¼ 2k1D
F

�
p ð3Þ

n2D ¼ ðk2D
F Þ

2�ð2pÞ: ð4Þ

Hence, the equilibrium electron densities in the upper and
lower wells, for the wire (W) and lead (L) regions of the device,
can be estimated from the values of B�W and B�L in Fig. 3. These
are shown in Fig. 4. The wire gates efficiently tune electron
density in the wire (W) regions of the upper well (Fig. 4a), but
have little influence on densities in the lower well and in the lead
(L) regions of the upper well (Fig. 4b). Note that the LW density
in the W regions is only slightly smaller than that in the L regions
(Fig. 4b), and notably higher than the UW density in the
W regions (Fig. 4a).
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Regime of a single 1D wire subband filled. The rate of electron
tunnelling between the upper and lower wells depends on the
overlap between the respective spectral functions, which can be
varied by tuning the magnetic field and the dc-bias. The magnetic
field B and the dc-bias Vdc shift the UW and LW spectral func-
tions relative to each other, in the momentum and energy
directions, by :Dk¼ eBd and :Do¼ eVdc, respectively. Hence, by
mapping out the tunnelling conductance G(B, Vdc), the spectral
characteristics of the UW wires, UW leads and lower
well are probed. Figure 5 shows a map corresponding to the

single-subband regime (Vwg¼ � 0.69 V). It displays quasi-para-
bolic resonances, corresponding to tunnelling from ground states
of the source (spectrometer) to excited states of the drain (probe)
occurring with conservation of energy and momentum, that is,
the tunnelling condition

eUWðk�DkÞ ¼ eLW kð Þ� eVdc ð5Þ

is satisfied, with either kj j ¼ kLW
F or k�Dkj j ¼ kUW

F , where kLW
F

ðkUW
F Þ is the Fermi wavenumber of the lower well (upper well) in

the wire or lead regions of the device. Here, eUW (k) and eLW (k)
are the dispersions of the elementary excitations in the upper and
lower wells, respectively, in the wire or lead regions. The map
reflects tunnelling events occurring between ground states of the
upper well and excited states of the lower well, and between
ground states of the lower well and excited states of the upper
well. The wire (W) and lead (L) regions of the device contribute
distinct signals. The solid (dashed) green lines in Fig. 5 mark
resonances corresponding to tunnelling in W (L) regions, from
UW ground states eUW � kUW

F

� �
to LW states; they reveal the LW

dispersion in W (L) regions of the device. The dash-dotted green
lines mark resonances corresponding to tunnelling in L regions
from LW ground states eLW � kLW;L

F

� �
to UW states; they reveal

the UW-lead dispersion. Most importantly here, the resonances
marked by the black and white arrows correspond to tunnelling
in W regions, from LW ground states eLW � kLW;W

F

� �
to UW-wire

states. They reveal 1D UW-wire dispersions: a holon band in the
particle sector (hþ ), and a spinon band in the hole sector (s� ),
as elucidated below. Remarkably, an extra wire band (sþ ),
symmetric of s� , is also observed in the wires’ particle sector.

SG

MG

WG

UW

LW

Vdc

CG

Lc

Lb

La

Ld

W

BG

a c

b d

B

Figure 1 | Tunnelling device. (a) Schematic of the tunnelling device. It consists of a double quantum-well structure and various surface gates: split

(SG), mid-line (MG), bar (BG) and cut-off (CG) gates—used to define the experimental area and to set-up tunnelling conditions—and a 30� 200 array of

parallel 1mm-long air-bridged wire gates—used to define the quantum wires in the upper well. A dc-bias Vdc is applied to the lower well (LW), while the

upper well (UW) is grounded. An in-plane magnetic field B is applied perpendicular to the long side of the wire gates. (b) Optical micrograph of the surface

gates, fabricated on a Hall bar 200mm-wide (white scale bar). (c,d) Scanning electron microscopy (SEM) micrographs of the upper-right (c) and lower-

right (d) corners of the experimental area (device surface) before bridge fabrication. In c the black scale bar is 2 mm-long, and in d it is 5 mm-long. Dark grey

corresponds to (oxidized) semiconductor areas, and bright grey to metallic gates. Electron fluids lie in the (buried) upper and lower wells. In the lower well,

electrons are not laterally confined; they can move under the wire gates. In the upper well, electrons cannot move under the wire gates; they are confined to

a network of narrow wires (W regions in c) and wide leads (La, Lb, Lc and Ld regions in c, jointly denoted L). UW electrons have 1D character in W regions,

and 2D character in L regions. LW electrons have 2D character.

Figure 2 | Air bridges. Scanning electron microscopy (SEM) micrograph of

a device’s surface region, showing air-bridge interconnections between wire

gates. Dark grey corresponds to (oxidized) semiconductor areas, and bright

grey to metallic gates. The yellow scale bar is 1 mm-long.
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Note that the particle and hole sectors for the upper well are
inverted relative to those for the lower well. The width of 1D
bands in Fig. 5 is to a large extent associated to intrinsic physical
effects. The width parallel to the magnetic-field axis correlates to
momentum uncertainty, which (according to the Heisenberg’s
principle) is inversely proportional to the wire length. Wire
shortness is thus a cause of resonance broadening. 1D bands are
also broad parallelly to the dc-bias axis, because of the power-law
(slow-decaying) shape of 1D singularities. Tunnelling maps are
symmetric with respect to the sign of the magnetic field. Note,
however, that the map in Fig. 5 is not symmetric with respect to
the sign of the dc-bias. The dispersions of the s� and sþ bands
are symmetric, but this is just a local symmetry. The map does
not exhibit general symmetry with respect to Vdc. This indicates
that potentials are different in the upper and lower layers. Note
that resonances in the map of Fig. 5 do not cross the Vdc¼ 0 axis
at B¼ 0. That is, B�W;L 6¼ 0. This indicates that equilibrium
electron densities, and Fermi wavenumbers, are different in the
upper and lower layers.

Regime of three 1D wire subbands filled. Maps corresponding
to the regime of three 1D subbands filled (Vwg¼ � 0.55 V) are
shown in Fig. 6. To better discriminate the location of resonances,
the derivatives dG/dVdc and dG/dB are plotted. Mapping of
dG/dB (dG/dVdc) emphasizes conductance modulations as a
function of momentum (excitation energy). In Fig. 6, tunnelling
resonances correspond to peaks of enhanced conductance, across
which colour contrast changes quite abruptly. These peaks define
quasi-parabolic lines on the maps (see the guide-to-the-eye lines
drawn). Note that valleys, with colour contrast sequence opposite
to that of peaks, do not correspond to resonances, but to regions
of low conductance. The resonances marked by the green lines in
Fig. 6a,b have the same meanings as in Fig. 5. Most importantly
here, the black lines mark 1D UW-wire bands. The dashed-black
line drawn in Fig. 6a,b for Vdc40 (lower half of the plots) marks
the (first) spinon hole subband (s� ), best discriminated in

Fig. 6a,c as a line with red/blue contrast. Remarkably, a band
with symmetric (inverted) dispersion is seen in the particle sector
(dashed-black line for Vdco0, upper half of the plots),
as in the single-subband regime (sþ ). The inverted band is best
discriminated in Fig. 6b,d as a line with red/white contrast. The
(first) holon subband (hþ , marked by the solid-black line)
appears well discriminated in the particle sector (Vdco0) at high
energies, but hardly discernible in the hole sector (Vdc40). In
addition, Fig. 6b,d reveals quasi-horizontal features. Similar states
are seen in the regime of fully depleted wires. The quasi-hor-
izontal features seen in Fig. 6b,d possibly are superpositions of
contributions from (i) the bottoms of the second and third UW
wire subbands, and from (ii) localized states29–31 likely formed at
intersection and/or bending points of the UW leads (Lb, Lc
and/or Ld regions in Fig. 1c). Momentum-conserving resonances
in Figs 5 and 6 (green and black lines) are seen not to be perfectly
symmetric in their right and left sides, as opposed to the
symmetric dispersions to which they correspond. The small
asymmetry is known to be caused by capacitance effects32, for
which we account on the basis of a simple model previously
used15 (see Methods section for details).
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Figure 4 | Equilibrium electron densities in the upper and lower wells.

(a) 1D and (b) 2D electron densities in the upper (red and green lines and

symbols) and lower (black lines and symbols) wells, for the wire (W, solid

lines and symbols) and lead (L, dashed lines and open symbols) regions of

the device, as a function of the wire–gate voltage Vwg, estimated from the

measured magnetic field values BW
�, BW

þ, � BL
� and BL

þ . Note that electrons

are not laterally confined in the lower well, and so the W-region lower-well

density that has physical meaning is the 2D-like one, shown in b. A 1D-like

W-region lower-well density is shown in a just for comparison with the 1D-

like density corresponding to the upper-well wires.
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Conductance oscillations. When tunnelling occurs through a
barrier of finite (short) length l in the in-plane direction
perpendicular to the magnetic field, momentum is not strictly
conserved in tunnelling and, as a consequence, the tunnelling
conductance exhibits oscillations32–35. The maps in Figs 5 and 6
exhibit oscillations of this kind (diagonal short-period
conductance oscillations), associated to tunnelling in (central or
peripheral) La regions of the device (see Fig. 1c). In these regions,
the UW states are laterally confined under the action of the wire
gates, in the in-plane direction perpendicular to the magnetic
field. For square confinement, the magnetic-field period DB of
tunnelling conductance oscillations has been shown34,35 to be
DBEf0/(ld), where f0¼ 2p:/e is the quantum of flux. For soft
confinement, the period of the oscillations has been shown34,35 to
be DBEf0/(Dx d), where Dx is the distance between the classical
turning points. In our device, La regions are nominally 0.6 mm-
wide, corresponding to the gap between the wire gates.
In the maps of Figs 5 and 6, the oscillation period is
DBE0.26 T, which corresponds to a confinement width
DxE0.5 mm. This is just a bit smaller than the gap between the
wire gates, consistent with the small lateral depleting effect that
the gates produce.

Band assignment. Within the linear theory of Luttinger liquids,
the spectral function of repulsive spinful 1D fermions has
power-law singularities at linear spinon and holon mass shells
eLL

s;c kð Þ ¼ vF
s;c � k� k1D

F

� �
and at the inverted holon mass shell

� eLL
c kð Þ ¼ � vF

c � k� k1D
F

� �
near the right (þ ) and left (� )

Fermi points22,23. Spinons and holons travel at different velocities
vF

s andvF
c , respectively (vF

s ovF
c ). Within the nonlinear theory22–24,

the excitation with lowest possible energy for a given momentum
(edge of support) is predicted to coincide, in the main kj jok1D

F
region of the hole sector (oo0), with the spinon mass-shell es(k).
In the main region of the particle sector (o40), the edge is
predicted to coincide with the inverted spinon mass shell� es(k).
For arbitrary k in the regions 2j� 1ð Þk1D

F oko 2jþ 1ð Þk1D
F

defined by integer j, the edge is predicted to coincide with

periodic 2jk1D
F -shifts of the functions ±es(k), see Fig. 1a in ref. 22.

Holon singularities may exist at the holon mass shell ec(k), as well
as at 2jk1D

F -shifted holon lines. The leading nonlinear correction
to the holon dispersion near the Fermi points is quadratic23,24:

ec kð Þ � vF
c‘ � k� k1D

F

� �
þ ‘ 2

2m�c
� k� k1D

F

� �2

¼ ‘ 2

2m�c
k2� k1D

F

� �2
h i

; ð6Þ

whereas that to the spinon dispersion is cubic:

es kð Þ � vF
s ‘ � k� k1D

F

� �
� x � k� k1D

F

� �3
: ð7Þ

Here, m�c ¼ ‘ k1D
F

�
vF

c is the holon effective mass, and x is a
positive parameter. Note that the nonlinear corrections have
opposite sign for holons and for spinons in the particle sector
ð kj j4k1D

F Þ, and same sign in the hole sector ð kj jok1D
F Þ. The

precise shapes of the spinon and holon dispersions, away from
the Fermi points, are generally unknown theoretically.

According to the nonlinear theory22,23, states at the edge of
support are spinon states (not holon states); spinon excitations
are protected from decay, but holon excitations are subjected to
decay. Hence, the resonance labelled s� in Fig. 5 (as well as that
marked by the dashed-black line in the lower half of Fig. 6a,b)
should correspond to the main spinon band. Consistent with the
nonlinear theory, the symmetric inverted replica seen in the
particle sector (sþ in Fig. 5, and the upper-half dashed-black-
line resonance in Fig. 6a,b) appears to be its shadow (spinon)
band. On the other hand, given its positive curvature (upwards
bending), the resonance labelled hþ in Fig. 5 (as well as that
marked by the solid-black line in the upper half of Fig. 6a,b)
should correspond to a holon band. It cannot correspond to a
spinon band, because the dispersion of spinons has opposite
curvature in this sector (see Fig. 1a in ref. 22).

Spinon and holon effective masses. To extract quantitative
information, we simulate the experimental holon dispersion
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Figure 5 | Regime of a single 1D wire subband filled. The tunnelling conductance G is plotted as a function of the dc-bias Vdc and in-plane magnetic field B

perpendicular to the wires, for the regime of a single 1D subband filled, achieved by setting the wire–gate voltage to Vwg¼ �0.69 V. The electron density in

the wires is n1D D 35mm� 1. The solid (dashed) green lines mark resonances corresponding to tunnelling between upper-well wire W (lead L) ground

states and lower-well states; they reveal the dispersion of the elementary excitations in the 2D lower well, in the wire (lead) regions of the device. The

dash-dotted green lines mark resonances corresponding to tunnelling between LW ground states and UW lead states; they reveal the dispersion of the

elementary excitations in the 2D UW leads. The resonances marked by the black and white arrows correspond to tunnelling from LW ground states to UW

wire states; they reveal dispersions of elementary excitations in the 1D UW wires: a holon band in the particle sector (hþ ), and spinon bands in the hole

(s� ) and particle (sþ ) sectors. The labels ±BW,L
þ indicate specific magnetic field values at which W and L tunnelling resonances cross the Vdc¼0 axis.
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(hþ , solid-black lines) with a quadratic functional form
(equation (6)). It has been shown26 that the spinon dispersion in
the nonlinear regime is approximately parabolic. Therefore, we
simulate the spinon dispersion (s� , dashed-black lines) in the
hole sector (lower half of the plots) of the main kj jok1D

F region
ðB�WoBoBþW Þ with a quadratic functional form, analogous to
that of holons, but with a different effective mass m�s ¼ ‘ k1D

F

�
vF

s :

es kð Þ � vF
s ‘ � k� k1D

F

� �
þ ‘ 2

2m�s
� k� k1D

F

� �2

¼ ‘ 2

2m�s
k2� k1D

F

� �2
h i

: ð8Þ

We express the holon and spinon effective masses as
m�c;s ¼ ~Kc;sm�2D, where ~Kc;s are phenomenological parameters,
accounting for renormalization of the effective mass due to 1D
confinement26, and m�2D is the effective mass of the
noninteracting electron-like quasiparticles in the parent UW
Fermi liquid. Note that a change in the nature of the elementary
excitations occurs upon imposing lateral 1D confinement, but not
upon 2D confinement. ~Kc;s thus account for mass
renormalization in going from a 2D Fermi liquid to a 1D
Luttinger liquid. The spinon dispersion is found to be
characterized by an effective mass similar to that of
noninteracting quasiparticles in the UW-lead and LW
Fermi liquids, that is, m�s ¼ m�2D, corresponding to ~Ks ¼ 1.
(See Methods section for details of simulations of the LW and
UW-lead dispersions.) Note that the spinon momentum is
bounded23, and so the spinon quasi-parabolas (lower-half

dashed-black lines in Fig. 6) do not continue beyond
B�WoBoBþW ð kj jok1D

F Þ, but theoretically replicate through
shifts and inversions (see Fig. 1a in ref. 22). In contrast, the
holon momentum is not bounded23, and so the holon quasi-
parabolas (solid-black lines in Fig. 6) theoretically extend from
the particle sector o40 (Vdco0) into the hole sector oo0
(Vdc40) without changing the sign of their curvature (see Fig. 1a
in ref. 22). Fitting of the holon dispersion is carried out in the
particle sector (upper half of the plots), where it is well
discriminated. The holon dispersion is found to be
characterized by an effective mass notably smaller than that of
noninteracting quasiparticles in the UW-lead and LW Fermi
liquids. The mass renormalization parameter is found to be
~Kc ¼ 0:65 (~Kc ¼ 0:75) in the regime of one (three) subband(s)
filled. This is consistent with the expected effect of repulsive
interactions, for which the theoretical Luttinger-liquid parameter
Kc is in the range 0oKco1. The higher value of ~Kc in the regime
of three subbands filled is understood considering that the
second and third subbands somewhat screen interactions in the
first subband. Nevertheless, observation of the inverted spinon
shadow band (sþ ), when more than one subband is filled
(Fig. 6), indicates that the first 1D subband remains highly
correlated even in the presence of screening by higher subbands.
We emphasize that the wire bands seen in the hole sector (s� in
Fig. 5, lower-half dashed-black lines in Fig. 6a,b) and in the
particle sector (hþ in Fig. 5, upper-half solid-black lines in
Fig. 6a,b) cannot be adequately described with a single parabola.
A continuation of the lower-half dashed-black lines—dotted
yellow lines in Fig. 6a,b—is clearly unsatisfactory in fitting the
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Figure 6 | Regime of three 1D wire subbands filled. The derivatives of the tunnelling conductance G, with respect to either B or Vdc, are plotted as a

function of the dc-bias Vdc and in-plane magnetic field B perpendicular to the wires, for the regime of three 1D wire subbands filled, achieved by setting the

wire–gate voltage to Vwg¼ �0.55 V. The electron density in the wires is n1DD49mm� 1. The resonances marked by the solid and dashed green lines reveal

the dispersion of the elementary excitations in the 2D lower well, in the W (wire) and L (lead) regions of the device, respectively. The resonances marked

by the dash-dotted green lines reveal the dispersion in the 2D upper-well leads. The resonances marked by the black lines reveal (first subband) dispersions

for elementary excitations in the 1D upper-well wires, for spinons (dashed lines) and for holons (solid lines). (a,b) Wide dG/dB and dG/dVdc maps.

(c,d) High-resolution dG/dB and dG/dVdc maps, zooming in on the magnetic-field region B�W � B � BþW , corresponding to the main wavenumber region

kj j � k1D
F for the 1D upper-well wires.
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resonance observed in the particle sector at high energies (upper
half of the plots, Vdc oo 0). The spinon (s� , lower-half dashed-
black-line) and holon (hþ , upper-half solid-black-line) bands are
characterized by notably different effective masses.

Discussion
We finally comment on the physical meaning of the observed 1D
bands in the context of the new nonlinear theory22–24. The
injection of a spin-up (spin-down) electron into a wire leads to
the creation (annihilation) of a spinon and the creation
of a holon. If the energy of the incoming electron is :o¼ es(k),
the final state will contain a spinon carrying the whole-energy
:o, and a holon carrying no energy. Similarly, if the energy
of the incoming electron is :o¼ ec(k), the final state will contain
a holon with energy :o, and a spinon with no energy. Spinon
excitations are protected from decay by energy and momentum
conservation laws. Therefore, the (spinon) edge singularity is
predicted to be robust. Holon excitations are subjected to decay to
some (not accurately known) extent, and so it is theoretically
unclear whether holon singularities should be observable away
from the Fermi points23,24. Here, the holon band appears
experimentally well discriminated in the particle sector, but
hardly discernible in the hole sector. That is, holon particles
appear long-lived, but holon holes short-lived. Phenomenological
theoretical expressions yield the j- and k-dependent exponents of
the power-law singularities at the spinon and holon mass
shells22–24. The spinon exponents in the particle sector are
similar to those in the hole sector, except for different selection
rules m±. Hence, the (main region) spinon singularity is
theoretically predicted to be a divergent one in the hole sector
(thus easy to observe), and a convergent one in the particle sector
(thus difficult to observe). This would explain why observation of
the spinon shadow band in the particle sector of the main region,
reported here, has been previously elusive. Our results indicate
that this shadow band does exist, supporting the predictions of
the new nonlinear theories22–24. They show that the shadow band
has appreciable weight for short wires (B1 mm long), wire length
appearing as a relevant parameter modulating the spectral weight
of shadow bands for electronic (spinful) systems. Theoretical
studies27,28 indicate that the spectral weight of shadow bands for
spinless systems increases strongly with decreasing wire length.
Here, the experimental observation of the inverted spinon
shadow band (sþ ) appears to be facilitated by (i) the wire
shortness, (ii) the array design of our device that boosts the wire
signal and (iii) the homogeneity of the lithography.

Methods
Experimental device. The vertical structure of the device, grown by molecular-
beam epitaxy, comprises two 18 nm-wide GaAs quantum wells, a 14 nm-wide
tunnel barrier in between, and spacer and Si-doped Al0.33Ga0.67As layers at both
sides. The structure terminates with a 10 nm-wide GaAs cap layer. The tunnel
barrier is a 10� [(0.833 nm)Al0.33Ga0.67As/(0.556 nm)GaAs] superlattice. The
lower (upper) spacer is 40 nm (20 nm) wide and the Si-doped layers (1018 donors
cm� 3) are 40 nm wide. The electrical (surface) structure of the device was fabri-
cated on a 200 mm-wide Hall bar (Fig. 1b). Electron-beam lithography was used to
pattern surface gates, that is, split (SG), mid-line (MG), bar (BG) and cut-off (CG)
gates (Fig. 1a)—used to define the experimental area and to set-up tunnelling
conditions—and a 30� 200 array of air-bridged wire gates (Fig. 1d and Fig. 2)—
used to define the quantum wires in the upper well. The wire gates are 1 mm-long
and 0.3 mm-wide. They are separated by 0.19 mm-wide gaps (W wire regions)
in the transverse direction and by 0.6 mm-wide gaps (L lead regions) in the
longitudinal direction (Fig. 1c). The device dimensions were chosen carefully to
achieve minimal modulation of the LW carrier density by the negative wire–gate
voltage.

Tunnelling set-up. The two quantum wells are separately contacted with AuGeNi
Ohmic contacts by using a surface-gate depletion technique. At one side of the
device (Fig. 1a), gate SG is negatively biased to pinch off both the upper and lower
layers, while gate MG is positively biased to open a narrow conducting channel in

the upper layer only. At the other side of the device, gates BG and CG are nega-
tively biased to pinch off just the upper layer. Hence, the current injected through
one of the Ohmic contacts is forced to tunnel between the upper and lower layers,
before flowing out through the other Ohmic contact.

Modelling of the LW and UW-lead dispersions. The electron density in the
lower well (UW leads) is nLW¼ 1.5� 1011 cm� 2 (nUW,L¼ 2.7� 1011 cm� 2),
obtained from the crossing magnetic-field values B�L . For these densities, 2D
electron systems are known to be Fermi liquids with effective mass renormalized by
interactions36,37. We thus simulate the LW and UW-lead dispersions with the
parabolic functional form

e2D kð Þ ¼ ‘ 2

2m�2D
k2 � k2D

F

� �2
h i

; ð9Þ

characteristic of Fermi-liquid quasiparticles, where m�2D is the effective mass in the
lower well or in the UW leads. Replacing the corresponding dispersions in
equation (5), one obtains functions of the type

Vdc Bð Þ ¼ � ed2

2m�2D
B2 þ c1Bþ c0 ð10Þ

that we use to simulate the tunnelling resonances corresponding to the LW (þ )
and UW-lead (� ) dispersions. By setting d¼ 32 nm (nominal value), the LW
and UW-lead dispersions are found to be well described by an effective mass
m�2D ¼ 0:050m0 ¼ 0:75mb, somewhat smaller than the band mass of GaAs
(mb ¼ 0:067m0), where m0 is the electron rest mass. This is consistent with
previous measurements and theoretical predictions for quantum wells with similar
densities38–42. If the bands were substantially bent across the quantum wells, the
wavefunctions would be somewhat displaced relative to flat-band conditions, and
the distance d (between the centres of the UW and LW wavefunctions) would
somewhat differ from the distance between the centres of the quantum wells
(32 nm). Equally good fits are obtained if we impose the effective mass to be equal
to the band mass (m�2D ¼ mb) and allow for variation of d. The best fit is then
achieved for d¼ 37 nm. We cannot determine the individual contributions of m�2D
and d to the curvature of tunnelling resonances. Nevertheless, we note that the
mass m�2D ¼ 0:050m0 is in very good agreement with the careful measurements
carried out by Hayne et al.38,39.

Modelling of capacitance effects. Tunnel transport between the upper and lower
layers of the device, across its dielectric barrier, is affected by capacitance
effects, which cause a small deformation of the observed dispersions. The finite
capacitance of the device (C/A per unit area, C/L per unit length) leads to a small
increase/reduction of the electron density ±dn2D/1D at each side of the barrier
(edn2D¼VdcC/A for 2D systems, and edn1D¼VdcC/L for 1D systems), and
consequently to changes of the Fermi wavenumbers of the source and drain
systems (� dk2D

F ¼ � pdn2D
�

k2D
F for 2D systems, and � dk1D

F ¼ �pdn1D=2 for
1D systems). To account for capacitance effects15 in simulations of the measured
resonances, we replace the Fermi wavenumbers, corresponding to zero capacitance,
by modified ones

k2D0
F ¼ k2D

F � dk2D
F ¼ k2D

F � pVdc C
e k2D

F A
ð11Þ

for 2D systems, and

k1D0
F ¼ k1D

F � dk1D
F ¼ k1D

F � pVdc C
2e L

ð12Þ

for 1D systems, in the expressions describing tunnelling conditions (equation (5)).
Hence, dispersions Vdc(B) initially symmetric become somewhat asymmetric.
Satisfactory fits are achieved with capacitance values C/AE0.004 F m� 2,
C/LE0.1 nF m� 1.

Data availability. Data associated with this work are available at the University of
Cambridge data repository (http://dx.doi.org/10.17863/CAM.797; see ref. 43).
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We construct a many-body theory of magnetoelasticity in one dimension and show that the dynamical
correlation functions of the quantum magnet, connecting the spins with phonons, involve all energy scales.
Accounting for all magnetic states nonperturbatively via the exact diagonalization techniques of Bethe ansatz,
we find that the renormalization of the phonon velocity is a nonmonotonous function of the external magnetic
field and identify a new mechanism for attenuation of phonons—via hybridization with the continuum of
excitations at high energy. We conduct ultrasonic measurements on a high-quality single crystal of the frustrated
spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 in its nearly one-dimensional regime and confirm the theoretical
predictions, demonstrating that ultrasound can be used as a powerful probe of strong correlations in one dimension.

DOI: 10.1103/PhysRevB.95.045120

I. INTRODUCTION

Magnetic insulators present a good example of inter-
acting quantum systems where phonons can serve as an
intrinsic probe of the strongly-correlated spins [1]. The first
microscopic theory of magnetoelasticity was developed at
finite temperatures [2,3], where the static and the dynamic
correlation functions of the spins were shown to couple to
phonons with the same strength in the perturbative regime. At
low temperature, assuming existence of a spin-liquid regime
in two- and three-dimensional Heisenberg antiferromagnets,
phonons were shown to measure the mass and lifetime of
the spin-liquid quasiparticles [4,5]. In one dimension (1D)—
where interacting magnons form a spin-Luttinger liquid at low
energy—the theory remains largely unexplored. At the same
time such 1D systems are readily accessible in experiments
on Cs2CuCl4 [6,7], CsNiCl3 [8], KCuF3 [9], and a metal
organic coordination polymer Cu(II)-2,5-bis(pyrazol-1-yl)-
1,4-dihydroxybenzene [10].

In this paper we construct a microscopic theory of mag-
netoelasticity in 1D using the diagonalization methods of
Bethe ansatz [11]. We derive the matrix elements for the
four-point correlation function that couples the strongly-
correlated spins to phonons dynamically and show that
Luttinger liquid at low energy contributes comparably with
the high-energy excitations that we are able to account for
due to the hierarchy of modes [12–14]. The contribution of
the static correlation function to the renormalization of the
sound velocity is parametrically larger than the dynamical
correlation functions. The resonant decay of phonons in the
many-body spin continuum vanishes very fast, as the fourth
power of the length in large systems. However we identify
another mechanism, hybridization with the excitations at high
energy via the dynamical correlation function, that remains

*Present address: Dresden High Magnetic Field Labora-
tory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden,
Germany.

†Present address: Laboratory for Neutron Scattering and Imaging,
Paul Scherrer Institute, 5232 Villigen, Switzerland.

finite in the thermodynamic limit. This work advances the
many-body diagonalization tools in 1D [15–19] in to the field
of magnetoelasticity, which is beginning to receive attention
also in spintronics [20–23].

To test our theory we conduct ultrasonic measurements
on a high-quality single crystal of Cs2CuCl4 in its nearly
1D regime, i.e., at temperatures of 0.7–2.1 K and magnetic
fields up to 9 T [24,25]. The observed dependencies of the
sound velocity and attenuation of the sound wave on the
magnetic field agree well with all theoretical predictions. We
find that the magnetic-field dependent part of the attenuation
is governed by the hybridization mechanism. Our results
demonstrate that ultrasonic investigations, besides neutron-
scattering experiments [6,9,26], can be used as a powerful
probe of correlation functions of the many-body system in
1D in magnetic insulators, just as tunneling spectroscopy in
semiconductor heterostructures [27,28].

The paper is organized as follows. Section II contains the
definition of the magnetostrictive interactions between the
Heisenberg model and the phonon models in one dimension
and the diagonalization of the isolated Heisenberg model by
means of Bethe ansatz. In Sec. III we study renormalization of
sound velocity by evaluating microscopically the dynamical
correlation function of the spins that couples to the phonons
(Sec. III A) and by analyzing it using the hierarchy of
interacting modes (Sec. III B). In Sec. IV we consider different
mechanisms of attenuation of phonons. In Sec. V we conduct
an ultrasound experiment on Cs2CuCl4 in its nearly one-
dimensional regime and confirm the theoretical predictions.
In Appendix A we derive the quantization equation for the
pi-pairs’ solutions of Bethe equations in the XY limit. In
Appendix B we quote the normalization factor of the Bethe
states together with the algebraic Bethe ansatz method. In
Appendix C we derive the matrix element of the spin operator
needed for the magnetostrictive interaction.

II. MODEL

Theoretically, we consider phonons interacting with 1/2
spins on a 1D lattice of length L via a magnetostrictive
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interaction as [2,3]

H = Hm + Hph + V, (1)

where

Hm =
L∑

j=1

(
JSj · Sj+1 + BSz

j

)
, Hph =

∑
k

ωka
†
k
ak, (2)

V =
L∑

j=1

[J1(xj+1 − xj ) + J2(xj+1 − xj )
2]Sj · Sj+1 (3)

are the Heisenberg model of spins, the free phonon model,
and the interaction between them, respectively, Sj are the
spin-1/2 operators, J is the exchange interaction between
spins when the atoms are in equilibrium, and B is the external
magnetic field in energy units. Here ak are Bose operators of
the phonons, ωk = 2ωD| sin (k/2)| is the phonon dispersion,

ωD is Debye energy, xj = ∑
k

√
�b

mv0|k|L (ak + a
†
−k)e−ikj is the

position operator of an atom with the mass m at lattice site j ,
and v0 is the sound velocity. Phononic excitations modulate
the exchange integrals resulting in a set of magnetostrictive
constants Jn = ∂n

x J (x)|
x=b

/n! that quantify the magnetoelas-
tic interaction, where b is the lattice parameter. We assume the
periodic boundary condition: Sj+L = Sj and xj+L = xj .

The spin Hamiltonian in Eq. (2) is diagonalized by N -
magnon states parameterized with a set of N quasimomenta
q = (q1 . . . qN ) that satisfy the nonlinear Bethe equations [11]

qjL −
∑
l �=j

ϕjl = 2πIj , (4)

where the two-body scattering phases are

eiϕij = − ei(qi+qj ) + 1 − 2�eiqi

ei(qi+qj ) + 1 − 2�eiqj
, (5)

� = 1, and Ij is a set of nonequal integers. Solutions of
Bethe equations can be found via numerical deformation
from the XY point � = 0 (where ϕij = π gives the solutions
qj = 2πIj/L) to the Heisenberg point � = 1 [29]. However,
Bethe equations remain nonlinear, αL − �(α,q) = 2πIj , for
some solutions that contain at least a pair of quasimomenta
satisfying the condition qi + qj = ±π in the � = 0 limit—see
derivation in Appendix A. Here qi = ±π − α, qj = α, the
scattering phase

ei�(α,q) = −
i 2λ

L

∑N−2r
j=1

1−sin qj sin α

sin qj −sin α
+ eiα

i 2λ
L

∑N−2r
j=1

1−sin qj sin α

sin qj −sin α
− e−iα

(6)

depends on another quasimomenta, n is the number of such
pi-pairs, and λ = 1. Solutions for α can be obtained again
via deformation from the λ = 0 to the λ = 1 point. The
eigenenergy of Hm corresponding to the state q is

ε =
N∑

j=1

(J cos qj − J + B) +
(

J

2
− B

)
L

2
(7)

and the total momentum—preserved by the translational
invariance—is Q = ∑N

j=1 qj .

We consider renormalization of phonons by spins via the
magnetostrictive interaction V perturbatively. The perturba-
tion series for the eigenenergy of H is

E(k) = ε0 + ωk + 〈k|V |k〉 +
∑
{k,q}

|〈k,q|V |k〉|2
ε0 + ωk − εq − ωk

, (8)

where ε0 is the ground state energy of Hm,ωk is an eigenenergy
of Hph parameterized by M momenta k = (k1, · · · ,kM ). The
unperturbed state |k〉 = |k〉ph|0〉m is a direct product of a
single phonon |k〉ph and the spin ground state |0〉m and
|k,q〉 = |k〉ph|q〉m are the intermediate states.

III. RENORMALIZATION OF SOUND VELOCITY

Change of the sound velocity is given by a derivative of
E(k) as

δv = δv1 + δv2, (9)

where evaluation of the phononic matrix elements leaves the
spin correlation functions split into the static and the dynamic
parts,

δv1 = J2b
2�

2mv0
〈0|S1 · S2|0〉m, (10)

δv2 = J 2
1 b2�
mv0

∑
{q};Q=p

L|〈q|S1 · S2|0〉m|2(ε0 − εq)

(ε0 − εq)2 − (ωDp)2
. (11)

Here �p/b = 2π�/(bL) is the quantum of the momentum
and the sum over all of the many-magnon states, {q}, and
is restricted by momentum conservation to the states with
Q = p. The static correlation function in δv1 is immedi-
ately obtained from ε0 using the translational invariance

FIG. 1. The static spin correlation function from Eq. (10) as a
function of the magnetic field B, calculated using Bethe ansatz.
Inset is the dynamic correlation function from Eq. (11) calculated
using the matrix element in Eq. (13): The black line is the Luttinger
liquid contribution in Eq. (20), and the red line is the high-energy
contribution in Eq. (21).
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as [30]

〈0|S1 · S2|0〉m = ε0 − B
(
N − L

2

)
JL

. (12)

Its dependence on the magnetic field, changing from the
ferromagnetic value of 0.25 at high fields to the antiferro-
magnetic �−0.44 in zero field, is shown in Fig. 1.

A. Dynamical correlation function of spins

The dynamical part in δv2 is a fourth-order correlation
function. We evaluate the needed matrix element using
the algebraic Bethe ansatz [31] and obtain it as a sum
over determinants of N × N matrices, see Appendix C for
details,

〈q|S1 · S2|0〉 = (
√

〈0|0〉〈q|q〉)−1

⎧⎨
⎩

∏
i ch(vj + η)∏

i<j sh(vi − vj )

∑
y

(−1)y
∏

i,j ;j �=y sh(uj − vi)∏
j ch2(uj − η)

∏
l;l �=y

sh(ul − uy + 2η)

sh(ul − uy)

×
[

det K̂ (y) −
(

1 − 2 sh(2η)shη shuy

∏
j ;j �=y ch(uj + η)∏

i<j �=y sh(ui − uj )

)
det Ĝ(y)

]

−
∏

j ch(uj + η)
∏

j ch(vj + η)∏
j ch2(uj − η)

∏
i<j sh(vi − vj )

det K̂

⎫⎬
⎭, (13)

where the matrix elements are

Kab = Tab + (−1)bsh3(2η)shub

∏
l;l �=b sh(ul − ub + 2η)∏

i<j �=b sh(ui − uj )
∏

l;l �=b sh(ul − ub)

shη
∏

j,i;i �=b sh(ui − vj )
[ shub

chη
+∑

l
sh(2η)ch(ub+η)

ch(vl−η)ch(vl+η)

]
ch(ub + η)ch(ub + η)ch(va − η)ch(va + η)

, (14)

K
(y)
ab = Tab + (−1)bsh3(2η)sgn(y − b)ch(uy − η)

ch(va − η)ch(va + η)
∏

i sh(ub − vi)

ch(ub + η)
∏

l;l �=y,b sh(ul − ub + 2η)∏
i<j �=y,b sh(ui − uj )

∏
l;l �=y,b sh(ul − ub)

×
[

ch(ub − η)

ch(ub + η)
− sh(uy − ub + 2η)

sh(uy − ub − 2η)
+ sh2ηch(ub − 2η)shuy

ch(uy − η)ch(ub + η)

]
, (15)

when b �= y and

K (y)
ay = sh(2η)sh(2va)

ch2(va − η)ch2(va + η)
, (16)

G
(y)
ab = Tab when b �= y and G

(y)
ay = K

(y)
ay ,

Tab = chL(vb − η)

chL(vb + η)

sh(2η)

sh2(vb − ua)

∏
j ;j �=a

sh(vb − uj + 2η)

sh(vb − uj )
− sh(2η)

sh2(ua − vb)

∏
j ;j �=a

sh(uj − vb + 2η)

sh(uj − vb)
. (17)

The normalization factors of Bethe states [32,33] 〈0|0〉 and
〈q|q〉 are quoted in Appendix B in terms of a determinant of
an N × N matrix. Here η = (acosh1)/2,

uj = ln

⎛
⎝
√

1 − eiq0
j −2η√

1 − e−iq0
j −2η

⎞
⎠− i

q0
j

2
(18)

are the quasimomenta of the ground state q0 in Orbach
parametrization, and vj is obtained from uj by q0

j → qj where
q are the excited states [11].

B. Hierarchy of modes

The excitations in the sum over q in Eq. (11) have
the same number of quasimomenta as the ground state at
a given magnetic field. They are constructed by removing
a quasimomentum from the ground state distribution and
promoting it to an empty position, see sketch in Fig. 2. We
will label these excitations as ψψ∗ pairs.

The whole dynamical correlation function in Eq. (11)
exhibits a hierarchy of modes governed by their spectral
strength [12–14]. The excitations split into groups according
to n = 1, 2, 3, . . . ψψ∗ pairs that have progressively smaller
amplitudes of their matrix elements, |〈q|S1 · S2|0〉|2 ∼ 1/L2n.
We keep the first three levels of the hierarchy,

δv2 = J 2
1 b2�

mv0J
(A1 + A2 + A3). (19)

The first level consists of only one pair with the minimally
possible momentum Q = p,

A1(B) = vmJL2|〈p|S1 · S2|0〉m|2
2πω2

D

, (20)

where vm = (εp − ε0)/p is the renormalized velocity of
Luttinger liquid and we have used smallness of the exchange
energy compared with Debye energy J/ωD ∼ 10−3 for general
material parameters [34]. The only matrix element in Eq. (20)
can be obtained using the bosonic modes of Luttinger
liquid [35], where the dispersion is almost linear. We, however,
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FIG. 2. Configurations of nonequal integer numbers Ij that
correspond to the solutions of the Bethe equations for the model Hm:
(a) the ground state, (b) one ψψ∗-pair excitation, (c) two ψψ∗-pair
excitations, (d) three ψψ∗-pair excitations. These eigenstates include
complex solutions at � = 1, which are obtained via numerical
deformation of Bethe equations from the � = 0 to the � = 1 point.

use a more general Bethe ansatz approach here. Solutions of
Bethe equations give vm directly that, together with the matrix
element in Eq. (13), gives the magnetic field dependence of
A1(B) shown in the inset (right axis) in Fig. 1.

There are polynomially many states in the second and in
the third levels of the hierarchy,

A2(3)(B) =
∑

{q};Q=p

L|〈q|S1 · S2|0〉m|2
εq − ε0

, (21)

where the summand in Eq. (11) was expanded in a Taylor
series in ωDp/(ε0 − εq) 	 1 since the sum over q accumulates
dominantly at high energy. Contribution of the low-energy
excitations (for which (ε0 − εq)/ωDp 	 1) has an additional
small factor J 2/ω2

D , like in Eq. (20). At intermediate energies,
(ε0 − εq) � ωDp, the perturbation theory for E(k) becomes
inapplicable since these magnetic excitations are in resonance
with the acoustic phonon. However, the width of the anti-

crossing [36] � J1

√
�bω2

D/(mJ 3L5) is much smaller than the
many-magnon level spacing J/L that is still in the Luttinger
liquid regime. The nonperturbative contribution of these levels
is of the order of the anticrossing width and vanishes in large
systems.

We obtain the magnetic field dependence of A2 numerically
as a sum over the two ψψ∗ pairs in Eq. (21), see inset in
Fig. 1. At high fields A2 is small since there are only a
few excitations, the strength of which is small as 1/L4 at
the second level of the hierarchy, and at small fields A2 is
again small since the majority of the excitations belongs to
the class of pi-pairs close to the half filling of the magnetic
band, which makes their amplitudes even weaker than 1/L4

due to Eq. (6). At the intermediate fields the 1/L4 smallness is
partially compensated by a large number of the excitations,
whose majority does not have pi-pairs yet. The position
of the maximum of |A2(B)| is identified from numerics at
Bm = 2J − 9π2J/(2L2). The value of the function at this
point is A2(Bm) = −0.0016/L for large systems, see scaling
of A2(Bm) in Fig. 3, which is small in a different parameter
compared with A1.

FIG. 3. Scaling of A2L defined in Eq. (21) with the system length
at three values of the magnetic field B = Bm, 2J − 25π 2J/L2, 1.8J .
The fitting of finite size corrections, A2L = a0 + a1/L,
gives (a0,a1) × 102 = (−0.17,1.51), (−0.15,2.04), (−0.01, − 6.95)
for the three magnetic fields, respectively.

For typical values of material parameters, A1 and A2 are
of the same order, e.g., 1/L ∼ 10−6 and (ωD/J )2 ∼ 10−6

for ultrasonic measurements in a magnetic insulator [1]. The
three ψψ∗-pairs contribution A3 is smaller than A2 due to an
additional 1/L2 in accord with the hierarchy of modes [12–14]
for the whole range of magnetic fields, see Fig. 4.

IV. ATTENUATION OF PHONONS

Next let us analyze decay of the phonons into the spin
excitations. The excitation spectrum of Heisenberg model
in Eq. (2) is continuous which always has some states in
resonance with the single phonon energy ωDp providing
a channel for the direct relaxation, unlike the previous
phenomenological approaches [37,38]. The rate of such a

FIG. 4. Contribution of the third level of the hierarchy of modes
to δv2 defined in Eq. (21); L = 40. It is small compared with A2 in
the inset of Fig. 1 for the whole range of magnetic fields.
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FIG. 5. Two mechanisms of the sound attenuation: the red line
is the relaxation rate τ−1 calculated using the Fermi golden rule in
Eq. (22), while the black line is the degree of hybridization Z of
a sound phonon with the magnetic excitations dominated by high
energies in Eq. (24). Inset is the low energy contribution to Eq. (24).

process is given by the Fermi golden rule,

τ−1 = 2π2J 2
1 b

mv0

∑
{q};Q=p

|〈q|S1 · S2|0〉m|2δ(�E), (22)

where �E = εq − ε0 − ωp and the contribution of the J2 term
in Eq. (3) is zero due to δ(�E). The principal value of the
sum in Eq. (22) is accumulated by the second level of the
hierarchy, which we evaluate numerically—see the magnetic
field dependence of τ−1 in Fig. 5. Its maximum value has the
same small prefactor 1/L4 as the matrix element in Eq. (13)
making the direct relaxation extremely slow in large systems.

However, the amplitude of the free phonons can also
be reduced via hybridization with the magnetic excitations,
similarly to the δv2 renormalization of their velocity. The first
order in perturbation theory for the wave function,

|�k〉 = |k〉 +
∑
{k,q}

〈k,q|V |k〉
ε0 + ωk − εq − ωk

|k〉ph|q〉m, (23)

gives suppression at low momenta, Z = 1 − |〈p|�p〉|2, as

Z = J 2
1 bπ�2

mv0

∑
{q};Q=p

|〈q|S1 · S2|0〉m|2
(ε0 − εq − ωDp)2

, (24)

which we analyze using the hierarchy of modes:

Z = J 2
1 bπ�2

J 2mv0
(C1 + C2 + C3), (25)

where

C1 = (J/ωD)2L2|〈p|S1 · S2|0〉m|2
(2π )2

(26)

and

C2(3) =
∑

{q};Q=p

|〈q|S1 · S2|0〉m|2
(ε0 − εq)2

, (27)

FIG. 6. Scaling of Z defined in Eq. (24) with the system length at
three values of the magnetic field B = Bm, 2J − 25π 2J/L2, 1.8J .
The fitting of finite size corrections, ZJ 2mv0/(J 2

1 bπ�2) =
a0 + a1/L, gives (a0,a1) × 105 = (0.73, − 7.8), (0.40, − 6.3),
(0.012,8.4) for the three magnetic fields, respectively.

like in the analysis of Eq. (11) before. The first level
contribution C1 is small in J 2/ω2

D like A1, see inset in Fig. 5.
But C2, shown in Fig. 5, remains finite in the thermodynamic
limit (see scaling in Fig. 6) unlike A2 above, and C3 is small
in 1/L2 compared with C2, see Fig. 7. This hybridization
mechanism can be distinguished from other nonmagnetic
channels of relaxation via its magnetic field dependence and
from the exponential decay into the resonant magnetic states
described by Eq. (22) since it is constant in the temporal and
spatial domains.

V. ULTRASOUND EXPERIMENT ON Cs2CuCl4

Finally, we discuss our experimental results. High-quality
single crystals of several mm size of the frustrated spin-
1/2 antiferromagnet Cs2CuCl4 were grown from an aque-
ous solution by an evaporation technique [39]. A pair of

FIG. 7. Contribution of the third level of the hierarchy of modes
to Z defined in Eq. (27); L = 40. It is small compared with C2 in
Fig. 5 for the whole range of magnetic fields.
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FIG. 8. Experimental results (open triangles, diamonds, and
circles) of the renormalized amplitude 1 − Z of the longitudinal
ultrasound wave propagating along the [010] axis of Cs2CuCl4 at
T = (1.900 ± 0.005) K, T = (1.700 ± 0.005) K, and T = (1.300 ±
0.005) K. The red lines represent the results of Eq. (24) with J1b =
3563J/

√
Ic. The inset shows data (open circles) of the corresponding

normalized sound velocity at T = (1.300 ± 0.005) K. The green line
shows the result of Eq. (10) using J2b

2 = −24.5J . Additional data
are presented in Fig. 9.

piezoelectric polymer-foil transducers was glued to opposite
parallel surfaces perpendicular to the [010] direction for the
generation and the detection of the ultrasound waves. These
longitudinal waves propagate along the [010] direction that
corresponds to the elastic mode c22. Changes of the sound
velocity δv and the renormalized amplitude of the sound wave
1 − Z were measured as functions of magnetic field at constant
temperatures, using the experimental set up described in detail
in Ref. [40].

In Fig. 8 we compare the experimental data for the sound
velocity with the theoretical results expressed in Eqs. (10)
and (11). By fitting the static correlation function given by
Eq. (10), we extract J2b

2 = −24.5J , with the magnetic cou-
pling constant J = 0.375 meV taken from Ref. [6]—see inset
in Fig. 8. We find no signatures of the dynamical correlation
functions represented by Eq. (11)—which are parametrically
small—down to the noise level of our experiment. This
defines an upper bound to the other microscopic constant
J1b � 1.25 × 104J .

Analyzing the attenuation of the amplitude of the sound
wave Z, we find that its functional dependence on the magnetic
field is in good agreement with the dynamic hybridization
mechanism represented by Eq. (24)—see Fig. 8 and additional
data in Fig. 9. By fitting its amplitude, we extract the other
microscopic parameter as J1b = 3563J/

√
Ic, where Ic is the

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. Experimental results (open circles, triangles, and diamonds) of the renormalized amplitude 1 − Z of the longitudinal ultrasound
wave propagating along the [010] axis of Cs2CuCl4 at the temperatures of (a) T = (1.150 ± 0.005) K, (b) T = (0.850 ± 0.005) K,
(c) T = (0.720 ± 0.005) K, (d) T = (1.900 ± 0.005) K, (e) T = (1.700 ± 0.005) K, and (f) T = (1.300 ± 0.005) K. The red lines represent the
results of Eq. (24) with J1b = 7416J/

√
Ic for (a)–(c) and with J1b = 3563/

√
Ic for (d)–(f). The data in (d)–(f) were taken in a different cryostat

system using upgraded electronics and a better quality sample compared with the data in (a)–(c) leading to a decrease of the nonmagnetic losses
by a factor of Ic(a,b,c)/Ic(d,e,f ) ≈ 4.3. The insets show data of the corresponding normalized sound velocities at the same temperatures.
The green lines show the result of Eq. (10) using J2b

2 = −24.5J . The results of our ultrasound experiments are still relatively close to the 1D
regime at the temperature of T = (0.720 ± 0.005) K, at which the system is already in a transitional state between the 1D and a 2D regime.
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degree of nonmagnetic losses. A quantitative determination
of these losses is not possible since they consist of various
extrinsic (e.g., coupling and diffraction losses, nonparallel
alignment of the sample, etc.) and intrinsic attenuation
mechanisms like direct scattering at defects or dislocation
damping [41]. However, even for Ic = 1 this value of J1b is
consistent with the bound from the measurement of the sound
velocity.

The values of the microscopic constants are significantly
different from the values measured along the a axis in Ref. [42]
manifesting an anisotropy of Cs2CuCl4. Our very good fit of
the magnetic field dependencies by the purely one-dimensional
theory in Figs. 8 and 9 gives a further argument that the
interchain interactions in Cs2CuCl4 in the finite temperature
regime are negligible despite only a moderate degree of the
exchange anisotropy of ∼3 in the a-b plane [43].

VI. CONCLUSIONS

In conclusion, constructing a microscopic theory of mag-
netoelasticity in 1D we have shown that the necessary
correlation functions involve the many-body excitations at
all energy scales and have identified a new mechanism of
sound attenuation. Our theoretical predictions agree with our
ultrasound experiments in the 1D regime of Cs2CuCl4.
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APPENDIX A: DERIVATION OF THE QUANTIZATION
EQUATION FOR PI-PAIRS

The XXZ model is a generalization of Heisenberg model
that introduces the interaction strength between magnons J�

as a model parameter, which breaks the rotational symmetry
of the spin-spin interaction term Sj · Sj+1. In one dimension
the model reads

Hm =
L∑

j=1

(
J

S−
j S+

j+1 + S+
j S−

j+1

2
+ J�Sz

jS
z
j+1 + BSz

j

)
,

(A1)
where S±

j = Sx
j ± iS

y

j . For � = 1 this model becomes the
model in Eq. (2). The N -magnon eigenstates of this Hamilto-
nian can be found by solving a set of Bethe equations,

qjL −
∑
l �=j

ϕjl = 2πIj , (A2)

for N quasimomenta qj , where the two-magnon scattering
phases are given by

eiϕij = − ei(qi+qj ) + 1 − 2�eiqi

ei(qi+qj ) + 1 − 2�eiqj
(A3)

and Ij is a set of N nonequal integer numbers.
In the free magnon limit � = 0 the two-body phase shifts

ϕij become independent of quasimomenta and equal to the
shifts of free fermions or hard-core bosons, ϕij = π that is
immediately obtained by taking the � → 0 limit of Eq. (A3)
giving exp (iϕij ) = −1. This result restores the plain wave

quantization condition for each magnon independently, qj =
2π (Ij + 1/2)/L [44], from the system of nonlinear Bethe
equations in Eq. (A2). Alternatively, the free magnon result
can be obtained by setting � = 0 in the Hamiltonian in
Eq. (A1) and then by diagonalizing the resulting XY model
directly [45].

However, the noninteracting limit becomes ambiguous
when at least one pair of quasimomenta in an N magnon state
satisfies the condition qi + qj = 2π (Ii + Ij + 1)/L = ±π at
� = 0. In evaluating the � = 0 limit of Eq. (A3), the leading
order of ei(qi+qj ) + 1 is zero in the Taylor series around the � =
0 point, both in the numerator and in the denominator. Thus,
higher order coefficients have to be calculated, ei(qi+qj ) + 1 =
c1� + c2�

2 + . . . , that requires, in general, solving the whole
set of N Bethe equation in Eq. (A2) in a nonlinear fashion,
i.e., c1,c2,... depend on all ql—not just qi and qj —since � is
still finite, which requires solving all N Bethe equations for
all ql simultaneously in taking the limit. This issue was noted
in Refs. [46,47] but was never resolved. Here we start from
a finite but small �, for which all scattering phase are well
behaved, and then take the limit � → 0 systematically.

Let us consider a N -magnon solution of Bethe equations
that contains 2r quasimomenta that satisfy the q2j + q2j+1 =
±π condition (we will call these pairs of quasimomenta pi-
pairs below) and N − 2r quasimomenta that do not have a
pi-pair. For a finite but small � 	 1 the quasimomenta of a
pi-pair can be parameterized as

q2j = ±π − αj + δj

2
, j � r, (A4)

q2j+1 = αj + δj

2
, (A5)

where αj is an unknown parameter of the j th pi-pair that has
a nonzero value, since Bethe equations for this pair cannot be
solved due to the unknown (at the moment) phase shift ϕ2j,2j+1

at � = 0, and δj is a parameter that vanishes at � = 0. On the
other hand, the remaining quasimomenta j > 2r can be found
immediately for � = 0 since all of their scattering phases in
Eq. (A3) for these quasimomenta are well behaved, ϕij = π .
Thus at a finite � 	 1 we can write

qj = 2π
(
Ij + 1

2

)
L

+ εj , j > 2r, (A6)

where εj are small corrections due to a finite � that depend
on all other quasimomenta and vanish for � = 0. Conser-
vation of the total momentum of N magnons,

∑N
j=1 qj =

2π
∑N

j=1 Ij /L including the pi-pairs, is independent of the
interactions and imposes an additional constraint on δj and εj ,

N∑
j=2r+1

εj = −
r∑

j=1

δj . (A7)

It is obtained as a sum of all equations in Eq. (A2) after
substitution of Eqs. (A4)–(A6).

Since αj cannot be obtained directly from its own Bethe
equation due to the undefined scattering phase within the
corresponding pi-pair, we are going to obtain an equation
for αj from the other j > 2r Bethe equations that do not
have this issue. We start from expanding ϕji for j > 2r
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magnons—which are defined at the point � = 0—up to
the linear order in small �. Taking into account that εj is
proportional to � and δj is linear (or a higher order) in � we
obtain the following expansion of ϕji between the j th magnon
and a pi-pair and the j th magnon and another j ′th magnons,
which do not have a pi-pair, respectively,

ϕj,2i = π − 2�
sin qj −αi

2

cos qj +αi

2

, (A8)

ϕj,2i+1 = π − 2�
cos qj +αi

2

sin qj −αi

2

, (A9)

ϕjj ′ = π − 2�
sin

qj −qj ′
2

cos
qj +qj ′

2

. (A10)

Then we substitute these expansions in Eq. (A2) and sum all
of them with j > 2r obtaining a relation between δi and αi

that parameterizes the quasimomenta for j � 2r ,

−L

r∑
i=1

δi + 4�

r∑
i=1

N∑
j=2n+1

1 − sin qj sin αi

sin qj − sin αi

= 0, (A11)

where the sum over j is taken over the remaining quasimo-
menta that do not have a pi-pair, given by Eq. (A6) with εj = 0.
Here we used Eq. (A7) to express εj through δj and canceled all
ϕjj ′ terms for both j,j ′ > 2r due to the ϕjj ′ = −ϕj ′j symmetry
of Eq. (A10)—note that the scattering phases are defined up
to an arbitrary period 2π times an integer.

The equation in Eq. (A11) is a sum of r terms and each
term depends only on two unknown variables δi and αi . Thus
Eq. (A11) splits into r independent equations and solving them
separately we find

δi = 4

L

N∑
j=2r+1

1 − sin qj sin αi

sin qj − sin αi

�. (A12)

This result shows that the linear term in the Taylor expansion
for δi in � does not vanish. However it depends on the still
unknown parameter αi . In order to find it, we take the � → 0
limit of Eq. (A3) for the two quasimomenta within the ith
pi-pair and obtain

eiϕ2i,2i+1 =
i 2

L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
− e−iαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
+ eiαi

, (A13)

where

ei(q2i+q2i+1) + 1 = 4

L

N∑
j=2r+1

1 − sin qj sin αi

sin qj − sin αi

� (A14)

was expanded up to the linear order in �, substituted in
Eq. (A3), and � was canceled from the whole expression
altogether. Substituting Eq. (A13) into each of the 2ith (or
2i + 1st) Bethe equation in Eq. (A2) in the exponential form
we obtain an equation for each αi independently in the � = 0
limit,

−eiLαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
− e−iαi

i 2
L

∑N
j=2r+1

1−sin qj sin αi

sin qj −sin αi
+ eiαi

= 1. (A15)

This result does not coincide with the free wave quanti-
zation condition exp (iαiL) = −1, being a nonlinear equation
for αi . Its solutions can be found by introducing an extra
deformation parameter λ,

−eiLα
i 2λ

L

∑N
j=2r+1

1−sin qj sin α

sin qj −sin α
− e−iα

i 2λ
L

∑N
j=2r+1

1−sin qj sin α

sin qj −sin α
+ eiα

= 1, (A16)

where the subscript was omitted, αi → α, since the equation
is the same for all indices i. The solutions can be classified in
the limit λ = 0, like the Bethe equations, where Eq. (A16)
is solved by α = 2π (Ij + 1/2)/(L − 2). Then a smooth
deformation of the equation from λ = 0 to λ = 1 gives all
solutions of of the nonlinear Eq. (A15). The quantization
equation of pi-pairs in the � = 0 limit before Eq. (6) is
Eq. (A16) in the logarithmic form.

The two-magnon solutions of Bethe equations that we
identified as pi-pairs in Eq. (A16) at � = 0 can account for
the missing complex solutions, which instead remain real, of
the XXX model at � = 1 found in Ref. [48]. For N = 2 the
parameter δ in Eq. (A12) remains zero for any � making the
scattering phase ϕ12 = −2α and Eq. (A2) independent of �

as well, in this case. Thus this two-magnon solution remains
real at � = 1 and has to be removed from the class of complex
conjugated quasimomenta. We also note that pi-pairs are still
solutions of Bethe equations at any finite � in full accord with
the arguments of Ref. [49]. It is only the limit � → 0 of these
solutions that does not recover the single particle quantization
rule qj = 2π (Ij + 1/2)/L.

APPENDIX B: NORMALIZATION FACTORS OF BETHE
STATES

The eigenstates of the XXZ model in Eq. (A1) are the
Bethe states

|�〉 =
∑

P,j1<···<jN

e
i
∑

l qPl
jl+i

∑
l<l′ ϕPl ,Pl′ /2

S+
j1

. . . S+
jN

|⇓〉, (B1)

where P is a permutation of N quasimomenta qj and |⇓〉 is the
ferromagnetic ground state. In this so-called coordinate repre-
sentation the many-body states |�〉 are not factorizable making
calculations of scalar products and expectation values in this
representation almost intractable. However, a calculation of
the form factors needed in Eq. (13) becomes manageable using
the algebraic form of Bethe ansatz [31], in which Bethe states
are factorized in terms of operators with given commutation
relations.

Following Ref. [31] we write down the many-body wave
functions using operators that satisfy a Yang-Baxter algebra as

|u〉 =
N∏

j=1

C(uj )|⇓〉, (B2)

where uj are N auxiliary parameters and C(u) is one of the
four matrix elements of the transition matrix

T (u) =
(

A(u) B(u)

C(u) D(u)

)
, (B3)
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which is defined in an auxiliary 2 × 2 space. This T -matrix
satisfies the Yang-Baxter equation

R(u − v)(T (u) ⊗ T (v)) = (T (v) ⊗ T (u))R(u − v). (B4)

Here we use the following R-matrix that corresponds to the
spin Hamiltonian in Eq. (A1),

R(u) =

⎛
⎜⎝

1
b(u) c(u)
c(u) b(u)

1

⎞
⎟⎠, (B5)

where b(u) = sinh (u)/ sinh (u + 2η) and c(u) =
sinh (2η)/ sinh (u + 2η).

The entries of Eq. (B4) give commutation relations between
the matrix elements of T . Here we write down four of them
that will be used later,

[Bu,Cv] = c(u − v)

b(u − v)
(AuDv − AvDu), (B6)

AuCv = 1

b(u − v)
CvAu − c(u − v)

b(u − v)
CuAv, (B7)

DuCv = 1

b(v − u)
CvDu − c(v − u)

b(v − u)
CuDv, (B8)

[Au,Dv] = c(u − v)

b(u − v)
(CvBu − CuBv). (B9)

We have introduced the subscript u and v as a shorthand of the
argument, e.g. Au ≡ A(u), above.

The transfer matrix τ (u) = TrT (u) = A(u) + D(u) con-
tains all of the conserved quantities of the model in Eq. (A1)
including the Hamiltonian. Thus if |u〉 is a eigenstate of τ (u)
then it is an eigenstate of the Hamiltonian. The eigenvalue
equation, τ (u)|u〉 = Tu|u〉 where Tu is a scalar quantity—the
corresponding eigenvalue, can be solved using the commuta-
tion relations in Eqs. (B6)–(B9). The results of acting with the
Au and Du operators on the state |u〉 in Eq. (B2) are obtained
by commuting them from left to right through the product of
C(uj ) operators,

Au

N∏
j=1

C(uj )|0〉 = au

N∏
j=1

1

buj

C(uj )|0〉 −
N∑

j=1

aj

cuj

buj

C(u)

×
N∏

l=1�=j

1

bjl

C(ul)|⇓〉, (B10)

Du

N∏
j=1

C(uj )|0〉 = du

N∏
j=1

1

bju

C(uj )|0〉 +
N∑

j=1

dj

cuj

buj

C(u)

×
N∏

l=1�=j

1

blj

C(ul)|⇓〉, (B11)

where the vacuum eigenvalues of the operators, Au|⇓〉 =
au|⇓〉 and Du|⇓〉 = du|⇓〉, are

au = coshL (u − η)

coshL (u + η)
and du = 1. (B12)

Since the right hand side of Eqs. (B10) and (B11) contains
terms that are not proportional to the original state multiplied
by a scalar, an arbitrary Bethe state is not an eigenstate of the
transfer matrix τ for an arbitrary set of the auxiliary parameters
uj . However, the second terms in Eqs. (B10) and (B11) can be
made zero by selecting specific sets of uj that are solutions of
the following set of nonlinear equations,

aj

dj

=
N∏

l=1�=j

bjl

blj

, (B13)

where we have used the shorthand with the subscripts, i.e. aj ≡
a(uj ) and bjl ≡ b(uj − ul). Substitution of the expressions for
aj and dj from Eq. (B12) and for bjl from Eq. (B5) gives the
following Bethe equation and the eigenvalue of the transfer
matrix τ ,

cosh(uj − η)L

cosh(uj + η)L
=

N∏
l=1�=j

sinh(uj − ul − 2η)

sinh(uj − ul + 2η)
, (B14)

Tu = au

N∏
j=1

1

buj

+ du

N∏
j=1

1

bju

. (B15)

The Bethe ansatz equations—in the coordinate
representation—are obtained under substitution of

uj = ln

⎡
⎣
√

1 − eiqj −2η

1 − e−iqj −2η

⎤
⎦− iqj

2
(B16)

and

η = acosh�

2
(B17)

into Eq. (B14).
The scalar product between two Bethe states 〈v| and |u〉 can

be calculated using the commutation relations in Eqs. (B6)–
(B9). The multiplication of the bra and ket states in the form of
Eq. (B2) is evaluated by commuting each operator B(vj ) from
left to right through the product of C(uj ) operators and then
by using the vacuum eigenvalues of the generated A and D

operators from Eq. (B12). When uj is a solution of Eq. (B14)
and vj is an arbitrary set of auxiliary parameters the result can
be written in a compact form as a determinant of an N × N

matrix—the so-called Slavnov’s formula [50],

〈v|u〉 =
∏N

i,j=1 sinh(vj − ui)∏
j<i sinh(vj − vi)

∏
j<i sinh(uj − ui)

det T̂ ,

(B18)
where matrix elements are Tab = ∂ua

T (vb). Under substitution
of T (u) from Eq. (B5) these matrix elements read

Tab = coshL(vb − η)

coshL(vb + η)

sinh(2η)

sinh2(vb − ua)

N∏
j=1�=a

sinh(vb − uj + 2η)

sinh(vb − uj )
− sinh(2η)

sinh2(ua − vb)

N∏
j=1�=a

sinh(uj − vb + 2η)

sinh(uj − vb)
. (B19)
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The normalization factor of Bethe states in Eq. (B2) can be evaluated by taking the v → u limit of Eq. (B18) [32,33],

〈u|u〉 = sinhN (2η)
N∏

i �=j=1

sinh(uj − ui + 2η)

sinh(uj − ui)
det M̂, (B20)

where the matrix elements are

Mab =
{−L

sinh 2η

cosh (ua+η) cosh (ua−η) −∑
j �=a

sinh 4η

sinh (ua−uj −2η) sinh (ua−uj +2η) , a = b,

sinh 4η

sinh (ub−ua+2η) sinh (ub−ua−2η) , a �= b.
(B21)

APPENDIX C: DERIVATION OF THE DYNAMICAL
MATRIX ELEMENT FOR SPINS

In this section we will calculate the matrix element
〈q|S1 · S2|0〉—with respect to Bethe states of the spin
Hamiltonian—that is needed for evaluating Eq. (11). We start
by splitting the matrix element of the scalar product S1 · S2

into three parts,

〈q|S1 · S2|0〉m = G+− + G−+ + Gzz, (C1)

where

G+− = 1
2 〈v|S+

1 S−
2 |u〉, (C2)

G−+ = 1
2 〈v|S−

1 S+
2 |u〉, (C3)

Gzz = 〈v|Sz
1S

z
2|u〉, (C4)

uj are the quasimomenta of the ground state |0〉, and vj are the
quasimomenta of an excited state |q〉 with the same number of
particles.

The local spin operators of the model in Eq. (A1) can be
expressed in terms of the algebraic Bethe ansatz operators
from Eq. (B3) as [15,16,51]

S+
1 = Cξτ

L−1
ξ , S+

2 = τξCξτ
L−2
ξ , (C5)

S−
1 = Bξτ

L−1
ξ , S−

2 = τξBξτ
L−2
ξ , (C6)

Sz
1 = Sz

2

Aξ − Dξ

2
τL−1

ξ , Sz
2 = τξ

Aξ − Dξ

2
τL−2
ξ , (C7)

where ξ = −iπ/2 + η.
Firstly, we evaluate the +− correlation function. Under the

substitution of Eqs. ((C5), (C6)) in to Eq. (C2) it reads

G+− = 1
2 〈v|CξBξ |u〉. (C8)

Commuting of the Bξ operator from left to right through a
product of C(uj ) operators by means of the commutation
relations in Eqs. ((B6)–(B9)) gives

Bξ

N∏
j=1

Cuj
|⇓〉 =

N+1∑
x=1

axcxξ

N+1∏
i=1�=x

1

bxi

N+1∑
y=1�=x

cξy

N+1∏
j=1�=x,y

1

bjy

N+1∏
j=1�=x,y

Cuj
|⇓〉, (C9)

where uN+1 ≡ ξ . Multiplying the above expression by Cξ and evaluating the scalar product with the final state 〈v| we obtain

G+− = 1

2

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

cξy

bξy

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉

+ 1

2

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

〈ux−1,ξ,ux+1|v〉. (C10)

Here the property 〈v|u〉 = 〈u|v〉 where vj satisfy the Bethe equations and uj is an arbitrary set of auxiliary parameters [15,16]
was used.

The remaining scalar product can be evaluated using the Slavnov’s formula (B18). By substituting ξ = −iπ/2 + η into
〈ux−1,ξ,ux+1|v〉 in the second line of Eq. (C10) explicitly we obtain

〈ux+1,ξ,ux−1|v〉 = i(−1)x
∏N

j cosh(vj + η)
∏N

j,i �=x sinh(ui − vj ) det T̂ (x)∏N
j �=x cosh(uj − η)

∏
i<j sinh(vi − vj )

∏
i<j �=x sinh(ui − uj )

, (C11)

where the matrix elements are

T
(x)
ab = Tab, b �= x, (C12)

T (x)
ax = sinh (2η)

cosh (va − η) cosh (va + η)
, b = x, (C13)

and Tab are given in Eq. (B19).
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Substitution of the two identical uj = uj ′ = ξ into the
scalar product 〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉 in the first line
in Eq. (C10) makes the prefactor in Eq. (B18) divergent,
i.e. the prefactor has a pole of the first order as a function
of (uj ′ − uj ). Simultaneously, the determinant in Eq. (B18)
becomes zero under the same substitution uj = uj ′ = ξ since
two lines of the matrix in Eq. (B19) becomes identical. Thus,
we will derive the explicit expression for the whole scalar
product by substituting uj = ξ first, then, by taking the limit
uj ′ = ξ̄ → ξ . Expanding the matrix elements in Eq. (B19) in
a Taylor series in (ξ̄ − ξ ) and using general matrix identities
we obtain∣∣∣∣∣∣∣∣∣∣∣

· · ·
AT

· · ·
AT + (βAT + XT )(ξ̄ − ξ )

· · ·

∣∣∣∣∣∣∣∣∣∣∣
= (ξ̄ − ξ )

∣∣∣∣∣∣∣∣∣∣∣

· · ·
AT

· · ·
XT

· · ·

∣∣∣∣∣∣∣∣∣∣∣
, (C14)

where

Aa = sinh(2η)

cosh(va − η) cosh(va + η)

N∏
j

cosh(vj + η)

cosh(vj − η)
(C15)

is the j th row of Eq. (B19) under the substitution uj = ξ ,

Xa = sinh 2η sinh 2va

cosh2(va − η) cosh2(va + η)

N∏
j

cosh(vj + η)

cosh(vj − η)
, (C16)

is the linear coefficient in the Taylor expansion of the j ′th row
of Eq. (B19) around the point uj ′ = ξ , which is not collinear
with Aa in the vector space, and β is the part of the linear
coefficient that is collinear with Aa .

Cancellation of the ξ̄ − ξ from the denominator in
Eq. (C14) with the 1/(ξ̄ − ξ ) from the prefactor in Eq. (B18)
makes the whole scalar product finite. Contributions of the
orders higher than one (in the expansion of the determinant)
vanish in the limit ξ̄ → ξ and we obtain

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉 = (−1)x+y

∏
j cosh2(vj + η)∏

j �=x,y cosh2(uj − η)

∏
j,j ′;j ′ �=x,y sinh(uj ′ − vj ) det T̂ (xy)∏

j<j ′ sinh(vi − vj )
∏

j<j ′ �=x,y sinh(ui − uj )
, (C17)

where the matrix elements are

T
(xy)
ab =

⎧⎪⎨
⎪⎩

Tab, b �= x,y,

T
(b)
ab , b = min (x,y),

sinh 2η sinh 2va

cosh2 (va−η) cosh2 (va+η)
, b = max (x,y).

(C18)

Secondly, we turn to evaluating the −+ correlation func-
tion. Under the substitution of Eqs. (C5) and (C6) into Eq. (C3)
it reads

G−+ = 1
2 〈v|BξCξ |u〉. (C19)

When Bξ is commuted through the product of Cuj
operators

using the general result in Eq. (C9), the first step of commuting
Bξ with Cξ introduces a divergent denominator through the
commutation relation in Eq. (B6). However, the operator

factor in the numerator of Eq. (B6) becomes zero at the
same time making the whole expression finite. Since the
divergence occurs at the first step of commuting Bξ through
a product of N + 1 operators C(uj ), taking the limit after
using Eq. (C9), as it is done in Ref. [16], creates an extra
and significant computation problems: the original divergence
spreads through many terms under the sum in Eq. (C9) and
cancelling them explicitly is a complicated problem.

Here we will do it in a different way by canceling this
intermediate divergence from the beginning in Eq. (C19).
Expanding the numerator and the denominator of the com-
mutation relation in Eq. (B6) up to the linear order in ξ̄ − ξ ,
where u → ξ and v → ξ auxiliary parameters were relabeled,
we cancel the ξ̄ − ξ with 1/(ξ̄ − ξ ). Then, substituting the
result of this procedure in Eq. (C19) we obtain

G−+ = 1

2
〈v|CξBξ |u〉 + sinh 2η

2
lim
ξ̄→ξ

∂ξ̄ (〈v|Aξ̄Dξ |u〉 − 〈v|AξDξ̄ |u〉), (C20)

where 〈v|CξBξ |u〉 has already been calculated in Eq. (C10).
The remaining two correlation functions under the derivative in Eq. (C20) can be calculated by successive use of the general

result of commuting Au and Dv operators through a product of C(uj ) operators in Eqs. (B10) and (B11). The scalar product of
〈v| with the result of the commutation procedure gives

〈v|Aξ̄Dξ |u〉 = aξ̄

N∏
l=1

1

blξ

N∏
j=1

1

bξ̄j

δu,v −
N∏

l=1

1

blξ

N∑
j=1

aj

cξ̄j

bξ̄j

N∏
l=1�=j

1

bjl

〈uj−1,ξ̄ ,uj+1|v〉

+
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ̄

1

bξ̄ξ

N∏
l=1�=j

1

bξ̄l

〈uj−1,ξ,uj+1|v〉 −
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξ̄j ′

bξ̄j ′

1

bj ′ξ

×
N∏

l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξ̄uj ′+1|v〉 −

N∑
j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ

cξ̄ξ

bξ̄ξ

N∏
l=1�=j

1

bξl

〈uj−1,ξ̄ ,uj+1|v〉, (C21)
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〈v|AξDξ̄ |u〉 = aξ̄

N∏
l=1

1

blξ

N∏
j=1

1

bξ̄j

δu,v −
N∏

l=1

1

blξ

N∑
j=1

aj

cξ̄j

bξ̄j

N∏
l=1�=j

1

bjl

〈uj−1,ξ̄ ,uj+1|v〉

+
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

aξ̄

1

bξ̄ξ

N∏
l=1�=j

1

bξ̄l

〈uj−1,ξ,uj+1|v〉

−
N∑

j=1

cξj

bξj

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξ̄j ′

bξ̄j ′

1

bj ′ξ

N∏
l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξ̄uj ′+1|v〉 (C22)

for both terms in the second line of Eq. (C20), respectively. Then, after taking the derivative of Eqs. (C21) and (C22), with respect
to ξ̄ and the limit ξ̄ → ξ , we substitute the results in to Eq. (C20) and obtain

G−+ = G+− + sinh 2η

2

⎡
⎣ N∏

l=1

1

blξ

N∑
j=1

N∑
l=1

[tanh(ul + η) − tanh(vl − η)]aj

cjξ

bjξ

N∏
l=1�=j

1

bjl

〈uj−1,ξ,uj+1|v〉

+
N∑

j=1

cjξ

bjξ

N∏
l=1�=j

1

blj

N∑
j ′=1�=j

aj ′
cξj ′

bξj ′
( tanh(uj ′ + η) − tanh(uj − η))

1

bj ′ξ

N∏
l=1�=j,j ′

1

bj ′l
〈uj−1,ξ,uj+1,uj ′−1,ξuj ′+1|v〉

+
N∏

l=1

1

blξ

N∑
j=1

aj

cjξ

bjξ

N∏
l=1�=j

1

bjl

〈uj−1,ξ,uj+1|v〉′
⎤
⎦, (C23)

where the derivative of 〈uj−1,ξ̄ ,uj+1|v〉 with respect to ξ̄ results in an additional determinant,

〈ux−1,ξ,ux+1|v〉′ = i(−1)j
∏N

j ′ cosh(vj ′ + η)
∏N

j ′,i �=x sinh(ui − vj ′ ) det T̂
′(x)∏N

j ′ �=x cosh(uj ′ − η)
∏

i<j ′ sinh(vi − vj ′ )
∏

i<j ′ �=x sinh(ui − uj ′)
, (C24)

where the matrix elements are

T
′(x)
ax = 2 sinh 2η tanh(va − η)

cosh(va − η) cosh(va + η)
− sinh2 2η

cosh(va − η) cosh(va + η)

N∑
j=1�=a

1

cosh(vj − η) cosh(vj + η)
(C25)

for b = x and the remaining entries for b �= x are T
′(x)
ab ≡ Tab from Eq. (B19).

Thirdly, we evaluate the zz correlation function. Under the substitution of Eq. (C7) in Eq. (C4) it reads

Gzz = 1
4 〈v|(Aξ − Dξ )(Aξ − Dξ )|u〉. (C26)

Before proceeding with the commutation procedure as in the two previous cases we rewrite the above expression in a form
more convenient for such a calculation using the definition of the transfer matrix, Aξ − Dξ = 2Aξ − τξ , and its eigenvalue
τξ |u〉 = Tξ |u〉,

Gzz = 1
2 〈v|A2

ξ − TξAξ − DξAξ |u〉, (C27)

where Tξ = ∏
j b−1

jξ is given by Eq. (B15) and we have assumed that 〈v| and |u〉 are a pair of orthogonal eigenstates, i.e.,
〈v|u〉 = 0.

The correlation function of Aξ and A2
ξ can be calculated using Eq. (B10) once and twice, respectively. The scalar products of

〈v| with the results of the commutation procedures are

〈v|Aξ |u〉 = −
N∑

x=1

aj

cξx

bξx

N∏
l=1�=j

1

bxl

〈ux+1,ξ,ux−1|v〉, (C28)

〈v|A2
ξ |u〉 = 4

N∑
x=1

ax

cξx

bξx

N∏
l;l �=x

1

bxl

N∑
y;y �=x

ay

cξy

bξy

N∏
l;l �=x,y

1

bxl

1

byξ

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉, (C29)

where the scalar products on the right hand sides are already given in Eqs. (C11) and (C17) in explicit form.
Evaluation of the remaining DξAξ correlation function involves the same problem of taking the limit v → u = ξ in

commutation relation Eq. (B9), as in the calculation of the −+ correlation function. Here we resolve it in the same way as
we have already done in evaluating Eq. (C19). Expanding the numerator and the denominator of Eq. (B9) in v − u → 0 we
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rewrite the DξAξ correlation function as

〈v|DξAξ |u〉 = 〈v|TξAξ − A2
ξ |u〉 − sinh 2η lim

ξ̄→ξ
∂ξ̄ 〈v|CξBξ̄ − Cξ̄Bξ |u〉. (C30)

We use the general result in Eq. (C9) and write the CξBξ̄ and Cξ̄Bξ correlation functions under the derivative as

〈v|Cξ̄Bξ |u〉 =
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

dy

cξy

bξy

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ̄ ,ux+1,uy−1,ξ,uy+1|v〉

+
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

〈ux−1,ξ̄ ,ux+1|v〉, (C31)

〈v|CξBξ̄ |u〉 =
N∑

x=1

ax

cxξ̄

bxξ̄

N∏
i=1�=x

1

bxi

N∑
y=1�=x

dy

cξ̄y

bξ̄y

N∏
j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ̄ ,uy+1|v〉

+
N∑

x=1

ax

cxξ̄

bxξ̄

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ̄

〈ux−1,ξ,ux+1|v〉. (C32)

Then, taking the derivative over ξ̄ , the limit ξ̄ → ξ , and substituting the pair of the expressions above in Eqs. (C27) and (C30),
together with the expressions in Eqs. (C28) and (C29), we obtain

Gzz =
N∏
j

1

bjξ

N∑
j=1

aj

cξj

bξj

N∏
l=1�=j

1

bjl

〈uj+1,ξ,uj−1|v〉 +
N∑

j=1

aj

cξj

bξj

N∏
l=1�=j

1

bjl

N∑
j ′=1�=j

aj ′
cξj ′

bξj ′

N∏
l=1�=j,j ′

1

bj ′l

× 1

bj ′ξ
〈uj−1,ξ,uj+1,uj ′−1,ξ,uj ′+1|v〉 + sinh 2η

2

⎡
⎣ N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∑
y=1�=x

cξy

bξy

× (tanh(ux − η) + tanh(uy − η))
N∏

j=1�=x,y

1

bjy

〈ux−1,ξ,ux+1,uy−1,ξ,uy+1|v〉

+
N∑

x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

N∏
j=1�=x

1

bjξ

⎡
⎣tanh(ux − η) + tanh(vx − η)

+
N∑

j ′=1�=x

[tanh(vj ′ − η) − tanh(uj ′ + η)]

⎤
⎦〈ux−1,ξ,ux+1|v〉 −

N∑
x=1

ax

cxξ

bxξ

N∏
i=1�=x

1

bxi

∏
j=1�=x

1

bjξ

〈ux−1,ξ,ux+1|v〉′
⎤
⎦, (C33)

where all scalar products are already given in explicit form above.
Finally, we substitute Eqs. (C10), (C23), and (C33) in Eq. (C1), rewrite the result in a more compact form by collecting similar

terms, and use a general matrix identity det T̂ +∑N
x=1 det T̂ (x) = det (T̂ + X̂), where the matrix T (b) is obtained by substitution

of the xth column from the matrix X̂ and rank of X̂ is equal to one. After constructing the corresponding matrices X̂ for a single
sum over x and for a sum over only one variable in the double sum over x,y we obtain

〈q|S1 · S2|0〉 =
∏N

j cosh(vj + η)∏
i<j sinh(vi − vj )

N∑
x=1

(−1)x
∏N

i,j ;j �=x sinh(uj − vi)∏N
j cosh2(uj − η)

N∏
l=1�=x

sinh(ul − ux + 2η)

sinh(ul − ux)

×
[

det K̂ (x) −
(

1 − sinh(2η) sinh η sinh ux

∏N
j ;j �=x cosh(uj + η)∏

i<j �=x sinh(ui − uj )

)
det Ĝ(x)

]

−
∏

j cosh(uj + η)
∏

j cosh(vj + η)∏
j cosh2(uj − η)

∏
i<j sinh(vi − vj )

det K̂, (C34)
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where the matrix elements are

Kab = Tab + (−1)b
sinh3(2η) sinh η sinh ub

cosh(ub + η)

∏N
j,i �=b sinh(ui − vj )∏
i<j �=b sinh(ui − uj )

N∏
l=1�=b

sinh(ul − ub + 2η)

sinh(ul − ub)

×
sinh ub

cosh(ub+η) cosh η
+∑N

l=1[tanh(vl + η) − tanh(ul + η)]

cosh(va − η) cosh(va + η)
, (C35)

Tab = coshL(vb − η)

coshL(vb + η)

sinh(2η)

sinh2(vb − ua)

N∏
j=1�=a

sinh(vb − uj + 2η)

sinh(vb − uj )
− sinh(2η)

sinh2(ua − vb)

N∏
j=1�=a

sinh(uj − vb + 2η)

sinh(uj − vb)
, (C36)

K
(x)
ab = Tab + (−1)b sinh3(2η)sgn(x − b)

cosh(va − η) cosh(va + η)

N∏
l=1�=x,b

sinh(ul − ub + 2η)

sinh(ul − ub)

cosh(ub + η) cosh(ux − η)∏N
i sinh(ub − vi)

∏
i<j �=x,b sinh(ui − uj )

×
(

cosh(ub − η)

cosh(ub + η)
− sinh(ux − ub + 2η)

sinh(ux − ub − 2η)
+ sinh 2η cosh(ub − 2η) sinh ux

cosh(ux − η) cosh(ub + η)

)
, (C37)

when b �= x,

K (x)
ax = sinh(2η) sinh(2va)

cosh2(va − η) cosh2(va + η)
(C38)

when b = x,G
(x)
ab = Tab when b �= x, and G(x)

ax = K (x)
ax when b = x. The result in Eq. (C34) was checked numerically for N = 2,3

using the direct summation over the spacial coordinates. Equations (C34)–(C37) are Eqs. (13)–(16).
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