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We report an experimental and theoretical study of the low-temperature specific heat C and magnetic
susceptibility χ of the layered anisotropic triangular-lattice spin-1=2 Heisenberg antiferromagnets
Cs2CuCl4−xBrx with x ¼ 0, 1, 2, and 4. We find that the ratio J0=J of the exchange couplings ranges
from 0.32 to ≈ 0.78, implying a change (crossover or quantum phase transition) in the materials’ magnetic
properties from one-dimensional (1D) behavior for J0=J < 0.6 to two-dimensional (2D) behavior for
J0=J ≈ 0.78. For J0=J < 0.6, realized for x ¼ 0, 1, and 4, we find a magnetic contribution to the low-
temperature specific heat, Cm ∝ T, consistent with spinon excitations in 1D spin-1=2 Heisenberg
antiferromagnets. Remarkably, for x ¼ 2, where J0=J ≈ 0.78 implies a 2D magnetic character, we also
observe Cm ∝ T. This finding, which contrasts the prediction of Cm ∝ T2 made by standard spin-wave
theories, shows that Fermi-like statistics also plays a significant role for the magnetic excitations in
spin-1=2 frustrated 2D antiferromagnets.
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Introduction.—Spin-1=2 frustrated antiferromagnets are
considered a source of intriguing phenomena. The interplay
of geometric frustration and strong quantum fluctuations is
known to weaken or even destroy magnetic order and may
give rise to novel liquidlike states, so-called quantum spin
liquids [1,2], or nontrivial quantum phase transitions; see,
e.g., Ref. [3]. The theoretical understanding of the phases
involved and their experimental identification pose major
challenges in current research on correlated quantummany-
body systems. In this respect, specific heat measurements
play an important role [4–6] for characterizing the nature of
the excitations of these phases and for the determination of
the entropy associated with them.
Layered spin-1=2 Heisenberg antiferromagnets with an

anisotropic triangular arrangement of spins which interact
by exchange coupling constants J and J0 (see Fig. 1)
represent an interesting family of such correlated systems,
where the possibility of a frustration-induced quantum
phase transition has been discussed [7–9]. Moreover, when
close enough to the Mott metal-insulator transition [2,10]
where additional interactions, such as ring exchange,
become relevant, these systems may also support a quan-
tum spin liquid state. In triangular-lattice spin-1=2
Heisenberg antiferromagnets, the geometric frustration
supports an effective decoupling of the spin chains, defined
by the dominant coupling constant J, thus extending the
range where 1D behavior dominates to relatively high J0=J
values. Whether the 2D state is reached by a crossover or by
a quantum phase transition [7,9,11,12] is still under debate.

There is general consensus [1,7–9,13,14] that for J0=J <
0.6 the 1D behavior prevails where fractionalized S ¼ 1=2
spinon excitations with fermionic character propagate
along the chains. As rigorously shown by Bethe-ansatz
calculations [15,16] for the antiferromagnetic Heisenberg
chain, these spin-1=2 excitations are reflected in a low-
temperature contribution to the magnetic specific heat,
Cm, which (in good approximation) varies linearly with

FIG. 1. Spin-coupling scheme of the anisotropic triangular-
lattice Heisenberg antiferromagnet as realized in Cs2CuCl4−xBrx
where the S ¼ 1=2 spins of the Cu2þ ions (red spheres) are
tetrahedrally coordinated by the halide ions (yellow spheres).
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temperature T, i.e., Cm ∝ T. On the other hand, for 2D
quantum antiferromagnets, expected for J0=J > 0.65
[7,9,17–22], the situation is less clear. At first glance, this
seems surprising considering that the specific heat is a
sensitive quantity for probing the dimensionality of the
low-lying excitations, as, e.g., verified for lattice excitations
[23–25]. The difficulty for 2D antiferromagnets lies in the
quantum nature of S ¼ 1=2 spin operators which commute
on different sites (like bosons) but, locally, on the same site
satisfy the SUð2Þ algebra including a Fermi-like anticom-
mutation relation between spin-ladder operators. Thus,
depending on the model applied, different results have
been obtained for CmðTÞ. According to modified spin-wave
[26] and Schwinger-boson-based mean-field [27] theory,
a Cm ∝ T2 behavior was proposed. This contrasts with
Cm ∝ Tν and 0.67 ≤ ν ≤ 1, obtained using the resonating
valence bond theory [28,29], Wigner-Jordan fermions [30],
Gutzwiller projection of fermionic mean-field states [10],
and a recent spin Hartree-Fock approach [31].
Thus, low-temperature specific heat measurements on

triangular-lattice Heisenberg antiferromagnets, covering
the range from J0=J < 0.6 (1D) to J0=J significantly above
0.6 (2D), are of great interest for identifying the character of
the low-energy excitations in frustrated 2D antiferromag-
nets, thereby settling this fundamental issue. Here we report
an experimental study of the low-temperature specific heat
on Cs2CuCl4−xBrx single crystals with x ¼ 0, 1, 2, and 4,
where J0=J is found to span a wide range from 0.32 to
≈ 0.78. This system thus offers the possibility to study, on
a series of isostructural compounds, the character of the
low-lying excitations in the different regimes and to test the
theoretical predictions.
The chosen quantum-spin system.—The two border

compounds of the Cs2CuCl4−xBrx system (x ¼ 0 and 4),
where Cu2þ ions carry well-localized S ¼ 1=2 spins, have
been studied intensively for more than 15 years. A
comprehensive characterization was provided by neu-
tron-scattering experiments which revealed the geometry
and size of the spin-spin interactions [32–35]. According to
these studies, both compounds are good realizations of a
layered anisotropic triangular-lattice Heisenberg antiferro-
magnet. The dominant interaction J runs along the b
direction, thereby forming chains. These chains interact
with each other via the weaker diagonal interaction J0 in the
bc plane; cf. Fig. 1. For the two border compounds values
of J=kB ¼ 4.34 K, J0=kB ¼ 1.48 K (Cs2CuCl4) [32] and
J=kB ¼ 13.9 K, J0=kB ¼ 6.49 K (Cs2CuBr4) [34] were
found. Besides the dominant couplings J and J0, a weak
Dzyaloshinskii-Moriya interaction with components Da
and Dc was observed (Da=kB ¼ 0.23–0.33 K, Dc=kB ¼
0.36 K for x ¼ 0) [32,36] along with a weak interlayer
interaction J⊥ (J⊥=kB ¼ 0.20 K for x ¼ 0 [32] and
J⊥=kB < 0.64 K for x ¼ 4 [34]).
The small ratio J⊥=J for the x ¼ 0 and 4 compounds

implies low-dimensional magnetic behavior over a wide

range of temperatures T ≫ J⊥=kB. However, J⊥ is still
strong enough to generate 3D antiferromagnetic ordering
with Néel temperatures TN of 0.6 (x ¼ 0) [37] and 1.4 K
(x ¼ 4) [34]. On the other hand, as shown in Ref. [38],
partial substitution of Cl for Br in Cs2CuBr4 can lower TN
significantly to at least 0.6 K and possibly even further,
suggesting that for certain Br concentrations TN values
much smaller than 0.6 K might be possible. An ordering
temperature as low as possible is desirable in order to
search for signatures of genuine 1D or 2D behavior and its
dependence on J0=J.
Crystals.—Single crystals of Cs2CuCl4−xBrx were

grown from aqueous solutions at temperatures of about
50 °C and then characterized by structural and energy-
dispersive x-ray investigations (see Ref. [39]). Under these
conditions, the substitution of Br for Cl (and vice versa) is
site selective [39–41], an important aspect which ensures a
well-ordered halide sublattice. Note that for crystals grown
by the Bridgman method (as in Ref. [38]), the high
temperatures of about 600 °C used there imply a random
distribution of Br and Cl on the halide sites. Thus, the
growth from an aqueous solution provides crystals with a
regular halide sublattice structure not only for the two
border compounds (x ¼ 0, 4) but also for the two inter-
mediate systems with x ¼ 1 and 2. For x ¼ 3, the site-
selective occupation does not lead to a well-ordered halide
sublattice, as there are two Cl(3) sites in each copper-halide
tetrahedron, both occupied by Br and Cl with equal
probability.
Magnetic susceptibility.—For characterizing the single

crystals of Cs2CuCl4−xBrx used in our study and for
determining their coupling constants J and J0, we have
measured the low-field (μ0H ¼ 0.1 T) molar magnetic
susceptibility χmol ¼ ð1=nÞM=H ≈ ð1=nÞ∂M=∂H (n being
the amount of substance) in the temperature range 2 K ≤
T ≤ 100 K for various Br concentrations x covering
the whole concentration range from x ¼ 0 to 4 [39]. A
Quantum Design superconducting quantum interference
device magnetometer was used for this purpose. After
correcting for the temperature-independent diamagnetic
core contribution and the magnetic contribution of the
sample holder, the data were analyzed by using theoretical
calculations of χðTÞ for the anisotropic triangular-lattice
S ¼ 1=2 Heisenberg antiferromagnet based on the finite-
temperature Lanczos method [42,43]. The g factor and the
coupling constants J and J0 were used as free parameters in
the fits. The so-obtained results are presented in Fig. 2 for
the Br concentrations x ¼ 0, 1, 2, and 4. The agreement
between the model calculations and the experimental data
is very good above the temperatures where the fit curves
show their maxima. For temperatures significantly below
the maximum, which is of relevance only for x ¼ 4, the
fits are slightly affected by finite-size effects leading to a
rapid decrease of the calculated susceptibility for T → 0. In
the case of the x ¼ 2 compound, where the χ data lack a
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well-pronounced maximum [44], fits of comparable quality
could be obtained for J0=J values ranging from 0.63 up
to 0.78.
Specific heat.—The results for the magnetic specific heat

Cm (divided by the temperature) are shown in Fig. 3 for
single crystals of all compounds with a well-ordered halide
sublattice (x ¼ 0, 1, 2, 4). Data were taken from 40 mK to
about 20 K. The high-temperature data (T > 1.8 ) were
obtained with a physical properties measuring system
relaxation calorimeter (Quantum Design), whereas for the
low-temperature range a self-constructed relaxation calo-
rimeter adapted to a 3He-4He dilution refrigerator was used
(x ¼ 1, 2). In the case of the two border compounds (x ¼ 0,
4) and low temperatures, data from the literature [38,45]
were takenwhich overlap with our results in the temperature
range from 1.8 to 6 K. The agreement between both datasets
is very good except for x ¼ 0 and 1.8 K ≤ T ≤ 3.0 K,
where our data lie somewhat below (maximally 7%) those
of Ref. [45]. The magnetic specific heat Cm was obtained
from the total specific heat C by subtracting the nuclear
contribution Cn ¼ A=T2, caused by the hyperfine interac-
tion of the copper ions, as well as the phonon contribution
Cph. As described in detail in Ref. [17] and shown exem-
plarily for the x ¼ 2 compound (inset in Fig. 3), the nuclear
contribution becomes relevant only below about 100 mK,
whereas the phonon contribution starts to become signifi-
cant above about 2 K.
The data in Fig. 3 represent the central result of this study

and contain three important pieces of information. Besides
the identification of phase transition anomalies for the
recently discovered intermediate compounds x ¼ 1 and 2,

the data can be used for an independent determination of
the J0=J values for all crystals under investigation. In
addition, and of particular interest here, is the determination
of the temperature dependence of Cm, i.e., the identification
of a potential power-law behavior at low temperatures
T < Tmax, with Tmax the temperature where Cm adopts a
broad maximum. Note that Tmax primarily depends on the
dominant energy scale J; see Ref. [17] for a detailed
discussion of Cm and its dependence on J and J0=J.
Figure 3 reveals clear evidence for phase transition

anomalies in Cm=T also for the intermediate compounds
with x ¼ 1 and 2. In analogy to the border compounds
x ¼ 0 and 4, we assign these transitions to the onset of
long-range antiferromagnetic order at TN ¼ 0.41 (x ¼ 1)
and 0.095 K (x ¼ 2). Remarkably, for the x ¼ 2 compound,
TN is strongly suppressed as compared to the other
compounds (see Fig. 4), reflecting a particularly high
degree of frustration for this material. For a quantitative
determination of the J0=J values from the data in Fig. 3, we
performed model calculations for Cm. Instead of using the
Lanczos method, which becomes too inaccurate at such low
temperatures (T ≪ Tmax), we use the recently proposed
spin Hartree-Fock approach [31]. This new method has
been successfully applied in Ref. [31] to the case of an
antiferromagnetic Heisenberg chain, for which the specific
heat is known with high accuracy [16]. The spin Hartree-
Fock approach well reproduces the Bethe-ansatz results at
T < 0.9Tmax but yields a slightly too high (15%) value for

FIG. 2. Magnetic susceptibility (in cgs units) measured along
the b axis of Cs2CuCl4−xBrx as a function of the temperature.
Circles, experimental data; lines, fit curves based on the model of
the S ¼ 1=2 Heisenberg antiferromagnet with an anisotropic
triangular lattice using the finite-temperature Lanczos method.
Colored numbers are J0=J values obtained by this method. The
corresponding values of J=kB and g for x ¼ 0, 1, 2, 4 are 4.52,
5.46, 7.44–6.88 K, and 14.78 K and 2.09, 2.11, 2.09–2.10, and
2.06, respectively.

FIG. 3. Magnetic specific heat divided by temperature Cm=T
of Cs2CuCl4−xBrx as a function of the temperature. Circles
(crosses), experimental data of this work (from Ref. [45] for
x ¼ 0 and Ref. [38] for x ¼ 4); lines, fit curves based on the
model of the S ¼ 1=2 Heisenberg antiferromagnet with an
anisotropic triangular lattice using the spin Hartree-Fock ap-
proach. The colored numbers are the J0=J values which have been
obtained by this method. The values of J=kB for x ¼ 0, 1, 2, 4 are
4.29, 6.06, 8.69, and 13.37 K, respectively. Inset: Cm=T of
Cs2CuCl2Br2 below 2 K. Yellow (blue) line: Contribution from
the copper nuclei (phonons).
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Cm around Tmax. However, as we apply this method only
for fitting CmðTÞ up to about 0.7Tmax, this limitation is of
no relevance here.
The so-derived fit curves for the specific heat, included

as red lines in Fig. 3, provide an excellent description of the
experimental data above TN in the temperature range
shown in Fig. 3. In addition, the J0=J values obtained
from the least-squares fits are very close to those revealed
by the Lanczos fits to the susceptibility data (see Fig. 2).
For a comparison of the spin Hartree-Fock approach
with the Lanczos method, as far as results of the specific
heat and the magnetic susceptibility are concerned, see
Ref. [17].
A compilation of the J0=J values of all compounds

studied here are shown in Fig. 4. In addition, Fig. 4
demonstrates that for x ¼ 0 and 4 the J0=J values derived
from the spin Hartree-Fock description are in good agree-
ment with the values obtained by neutron scattering [32,34]
and ESR [46] studies. For x ¼ 2, however, the spin Hartree-
Fock result yields J0=J ¼ 0.78þ0.09

−0.03 , which lies at the upper
end of the range J0=J ¼ 0.63–0.78 obtained from the least-
squares Lanczos fits. In view of the considerable uncer-
tainties involved in pinpointing the J0=J value for x ¼ 2
from fits to the χðTÞ data, and given the fact that a
description of the specific heat for this compound with
values J0=J < 0.75 is of distinctly less quality [17], we
consider J0=J ¼ 0.78þ0.09

−0.03 to be reliable. This holds true
also in the presence of a Dzyaloshinskii-Moriya interaction
of the size reported in Ref. [47]. Taking the dominant
component Da=kB ¼ 0.45 K [47] of this interaction into
account, the spin Hartree-Fock approach yields a change in
CðTÞ of less than 1.5% [17], which is below the exper-
imental uncertainty of the data.

Discussion.—In discussing the low-temperature specific
heat data with regard to potential power-law behavior, it is
obvious that the occurrence of a phase transition at TN due
to a weak interlayer coupling J⊥ imposes some limitations.
These restrictions are more severe for the x ¼ 0 compound
but of less relevance for x ¼ 1, 2, and 4. At the same time,
as the model calculations based on the spin Hartree-Fock
approach provide a very good description of CmðTÞ for
TN ≤ T ≲ 0.7Tmax, we can include these theoretical results
in the discussion.
First, we focus on the compounds with J0=J < 0.6,

realized for x ¼ 0, 1, and 4 with J0=J ¼ 0.37, 0.45, and
0.42, respectively. For these compounds we find a low-
temperature specific heat which approaches a Cm=T ¼
const behavior for T → 0. This observation is consistent
with the 1D magnetic behavior expected for J0=J < 0.6
[1,7–9,13,14]. Remarkably, as shown in the inset in Fig. 3
on expanded scales, a Cm=T ¼ const behavior over a rather
wide temperature range is also revealed for the x ¼ 2
compound, which is already far inside the 2D regime. This
experimental finding clearly contradicts the prediction of
Cm=T ∝ T made by bosonic spin-wave theories [26,27].
Such a behavior is counterintuitive at first sight. However, it
can be rationalized by considering the nontrivial statistics
of magnetic excitations in the fully quantum case of spin
1=2, which are usually highly entangled states in low-
dimensional quantum magnets involving many spins.
Note that on different lattice sites i ≠ j the spin-1=2
operators commute, e.g., Sαi S

β
j − SβjS

α
i ¼ 0, like bosons,

but on the same lattice site the spin ladder operators S�i
obey the anticommutation relation S−i S

þ
i þ Sþi S

−
i ¼ 1.

Thus, the many-body states consisting of a great number
of magnetic excitations have a structure that is neither
entirely symmetric with respect to permutation of two
particles (Bose-like) nor entirely antisymmetric (Fermi-
like). The Cm=T ≈ const behavior observed in this experi-
ment for a 2D antiferromagnet can be interpreted as a
consequence of the Fermi-like part of the statistics (see
details in Ref. [17]) which is taken into account by the
theories in Refs. [10,28–31].
In the 2D regime, realized in the x ¼ 2 compound, the

frustration effects of a triangular lattice are generally
expected to be strong, since the antiferromagnetic couplings
to the neighboring spins cannot be satisfied simultaneously,
resulting in a macroscopically degenerate ground state.
Using the standard thermodynamic relation (dS ¼
CdT=T) between the change of the entropy, dS, and the
heat capacity, we can estimate the change of the total entropy
ΔS ¼ SðT ¼ ∞Þ − SðT ¼ 0Þ by integrating the experimen-
tal Cm=T data from T1¼ 40 mK up to T ≤ T2 ¼ 20 K and
then extrapolating the so obtained ΔSðTÞ ¼ SðTÞ − SðT1Þ
to T ¼ ∞ and T1 ¼ 0. We find ΔS ¼ ð0.95� 0.05ÞR ln 2
with R the gas constant (see Ref. [17] for details) which
is almost identical to the full entropy of R ln 2 expected
for S ¼ 1=2 spins. This result implies an upper bound of

FIG. 4. Coupling ratio J0=J and Néel temperature TN (dia-
monds) of Cs2CuCl4−xBrx as a function of the Br concentration x.
Red (blue) spheres, values obtained with the Lanczos method
(spin Hartree-Fock approach) using the susceptibility (magnetic
specific heat) data; green crosses, literature data obtained by
neutron scattering [32,34] or ESR [46] experiments. At a critical
value of J0=J, which is close to 0.6, a crossover or quantum phase
transition from 1D to 2D magnetic behavior is expected.

PHYSICAL REVIEW LETTERS 123, 147202 (2019)

147202-4



Sð0Þ ≤ 0.05R ln 2 for the residual entropy of the ground
state. It is interesting to compare this value with the well-
established result for the isotropic triangular-lattice Ising
model yielding a residual entropy of Sð0Þ ¼ 0.34R [48].
This marked difference in the geometrical frustration can be
attributed to the dominant role of quantum fluctuations in
spin-1=2 Heisenberg systems as opposed to Ising systems.
The quantum uncertainty of a spin 1=2 is of the order of its
size and can result in a fully nondegenerate ground state.
We note that layered triangular-lattice spin-1=2 systems

with similar ratios J0=J ≈ 0.74 to 0.84 are realized in the
organic charge-transfer salts κ-ðBEDT-TTFÞ2Cu2ðCNÞ3
and EtMe3Sb½PdðdmitÞ2�2. These systems, where the
low-temperature specific heat also varies linearly in T
[4,5], are considered as prime candidates for a quantum
spin liquid [49,50]. In contrast to the present Cs2CuCl2Br2
compound, described by well-localized spins, these organic
materials are located rather close to the Mott transition so
that a description based on a pure spin Hamiltonian appears
inappropriate [2,10].
Conclusions.—Measurements of the low-temperature

specific heat have been performed on four members
of the layered anisotropic triangular-lattice spin-1=2
Heisenberg antiferromagnets Cs2CuCl4−xBrx, all of which
show a structurally well-ordered halide sublattice. The
materials span a wide range of the ratio of coupling
constants 0.32 ≤ J0=J ≲ 0.78, implying a change from
1D magnetic behavior for J0=J < 0.6 (x ¼ 0, 1, 4) to
2D behavior for J0=J ≈ 0.78 (x ¼ 2). Our central finding is
that, for the frustrated 2D case, the magnetic specific heat
varies linearly in temperature, Cm ∝ T, reflecting a sig-
nificant role of Fermi-like statistics in this 2D quantum
antiferromagnet. Moreover, at variance with a naive expect-
ation for such a strongly frustrated system, no indication of
residual entropy is found within the experimental uncer-
tainty. This observation, which is in marked contrast to the
triangular-lattice Ising model, is attributed to the impor-
tance of quantum fluctuations in low-dimensional spin-1=2
Heisenberg systems.
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