
Luciano Rezzolla

Albert Einstein Institute, Potsdam, Germany

An introduction to finite volume 
methods and relativistic hydrodynamics

Compstsar School on Computational Astrophysics, 
Caen, 8-9/02/10



• Nonlinear hyperbolic equations

• Conservative formulations

• Brief Introduction to Relativistic hydrodynamics

Plan of this lecture



Before looking at the solution of the hydrodynamical equations 
there are some fundamental aspects of their nonlinear properties 
which must be clarified. 

Some representative examples: advection equation

The solution is the initial data 
simply translated in space and 
time. 

The propagation speeds are 
constant everywhere (linear 
nature of the equation)

The simplest linear hyperbolic 
equation is the advection 
equation
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Some representative examples: Burgers’ equation
The simplest nonlinear hyperbolic equation is Burgers’ equation

where the RHS is assumed zero in the inviscid limit. Despite the 
remarkable similarity, the solution to this eq. is remarkably different

time

space



This behaviour is referred to as “shock steepening” and is the 
consequence that the propagation speeds are not constant 
as for the advection equation but are a function of space and 
time (nonlinear nature of the equation). 

Some representative examples: Burgers’ equation

Stated differently, the maxima 
of the waves move “faster” 
than the minima and tend to 
“catch-up”.

NOTE: this is a property of 
the equations and not of the 
initial data. Even smooth initial 
data will (eventually) shock in 
inviscid fluids
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Why should we care?

One may think that the shock steeping may happen 
but on a timescale which is much longer than the 
one we are interested in

Furthermore, we start from continuous initial data...



Let’s restrict to a simpler but instructive problem: a homogeneous, 
flux- conservative differential equation for the scalar function              
in one dimension

Its generic, discretized form is (after volume and time integration)   

where                                       is an average and           

“some approximation to 
the average flux at j+1/2”

Any finite-difference form of (1) must represent            in the most accurate 
way. Different ways of calculating            lead to different evolution schemes 
(FTCS, Lax, Runge-Kutta, etc…, see www.aei.mpg.de/~rezzolla)

Discretizing the equations in general



A generic problem arises when a Cauchy problem described by 
a set of  continuous PDEs is solved in a discretized form: the 
numerical solution is, at best, piecewise constant

This is problematic when 
discretizing hydrodynamical 
eqs in compressible fluids.

As for Burgers’ eq., the 
nonlinear properties 
generically produce, in a 
finite time, nonlinear waves 
with discontinuities (ie 
shocks, rarefaction waves, 
etc) even from smooth data! 

The problem of discretization…



Discontinuous initial data

Mathematically equivalent but the numerical difference is between the 
right answer (blue line) or a completely wrong one!

Burgers’  inviscid equation with discontinuous initial data offers a well-
known example of the importance of a proper writing of the equation. 

The equation can then be 
written as (light blue line)

Consider 

with 

or as (green line)



Conservative form of the equations

More generally,  the homogeneous partial differential equation

is said to be in flux-conservative (FC) form if written as

Theorems (Lax, Wendroff; Hou, LeFloch) 

• FC formulation converges to the weak solution of the 
problem (ie a solution of the integral form of the fc form)

• NFC converges to the wrong weak solution of the problem 

In conservative systems (as the hydrodynamic eqs) one usually 
deals with a set of equations in FC form. Hence, the function      
and the flux        are replaced by a state vector       and a flux 
vector



Possible solutions to the discontinuities problem:
★ 1st order accurate schemes
• generally fine, but very inaccurate (e.g. excessive diffusion, 
with Lax method) or across discontinuities (e.g. upwind)

★ 2nd order accurate schemes
• generally introduce oscillations across discontinuities (not 
“monotonic” or TVD; see dedicated slide)

★ 2nd order accurate schemes with artificial viscosity
• mimic Nature but not good in relativistic regimes

★ Godunov Methods
• good compromise between accuracy (2nd order with 
smooth data, 1st-order at discontinuities) but monotonic. 
Most importantly: discontinuities are exploited



The importance of a conservative formulation

If the problem is linear, the importance of a conservative 
formulation is clear as it allows for analytic solutions. 

Rewrite the flux conservative equations

as

where                           is the Jacobian matrix of constant 
coefficients (the problem is linear). 

Note that the state vector    is indicated in bold because a 
vector of     components



We next diagonalize         so that                     is the 
diagonal matrix of eigenvalues                      of the N linear 
equations, i.e.  

      are the set of right eigenvectors of         or, equivalently, 
the columns of the matrix    . 

Note that both steps are guaranteed to be possible by the 
assumption we are dealing with a set of hyperbolic equations

Indeed, the set of eqs

is said to be (strongly) hyperbolic iff       is diagonalizable with 
a set of real (distinct) eigenvalues    and correspondingly a 
set of linearly independent (right) eigenvectors  



Next we can define the characteristic variables 

so that the original set of equations                          can be 
written as

Because    is diagonal, this is effectively a set of     decoupled 
ODEs along a set of specific curves in the        plane

Stated differently

so that the characteristic variables are constant along those 
curves in the        plane having slope



Because they remain constant along characteristics, the value 
the characteristic variables at any time is known once the initial 
one is determined, i.e.

Such curves are called characteristic curves and their slope is 
locally given by the characteristics speeds

the characteristic speeds 
are not equal and 
characteristics “focus”

x

characteristic curves

t



Once the solution is known in terms of the characteristic 
variables     , it is simple to go back to the original state 
vector

and hence

Stated differently, the solution at any time can be seen as the 
linear superposition of    waves, each propagating 
independently at the speed given by the corresponding 
eigenvalue



Finite Volume Approaches



Godunov methods are tightly related with finite-volume 
methods. For simplicity, assume a 1-dim. uniform grid.

Finite-Volume Methods are based on subdividing the spatial 
domain into intervals (“finite volumes” or grid cells) and 
on keeping track of an approximation to the integral

over each of these volumes.

At each time step, we update these values using approximations 
to the flux through the endpoints of the intervals.

Finite-Volume methods

If           is smooth, then this integral agrees with           at the 
midpoint of the interval to            .



In terms of finite-volumes, it is easier to use important properties 
of the conservation laws in deriving numerical methods. 

In particular, we can ensure that the numerical method is 
conservative in a way that mimics the true solution and this is 
important for correctly calculating shock waves.

The quantity

Advantages of finite-volume methods

Using a method in conservative form, the discrete sum will change 
only due to the fluxes at the boundaries           and           .  In this 
way conservation (eg of mass) is guaranteed provided that the 
boundary conditions are properly imposed.

approximates the integral of    over the entire interval



Based on a simple, yet brilliant idea by Godunov (’59). 
Example of how basic physics can boost research in 
computational physics.

Basic idea: a piecewise constant description of 
hydrodynamical quantities produce a collection of local 
Riemann problems whose solution can be found exactly.

High-Resolution Shock-Capturing (Godunov) Methods

The solution at time tn+1 can be constructed by piecing 
together the Riemann solutions, provided that the time 
step is short enough that the waves from two adjacent  
Riemann problems have not yet started to interact.



It’s the evolution of a fluid initially composed of two states with 
different and constant values of velocity, pressure and density, i.e.

What is a Riemann problem?

where     and      are the two constant “left” and “right” states

A typical example of a Riemann 
problem is a “shock-tube” where 
there is a right-moving shock and a 
left-moving rarefaction wave. 

Not the development of a constant 
state between the two waves and the 
presence of a contact discontinuity 
where the density is discontinuous 
but pressure and velocity are not



is the exact solution of the Riemann problem with initial 
data 

where

High-Resolution Shock-Capturing (Godunov) Methods

In other words, the flux           discussed in the previous 
slides and needed to evolve the state vector to the new 
timelevel is in this case given by



The solution of such a problem is particularly simple because 
the states are constant. In particular, given initial data

Solving the Riemann problem

the two constant “left” and “right” states can be decomposed in 
terms of the characteristic variables as

The initial data for 
the i-th characteristic 
variable will be:

and each of the i waves 
will propagate as



Solving the Riemann problem
The solution is written as a linear superposition of waves

In other words, the solution at any point (x,t) is the sum of the 
left states of all the waves which are to the right of (x,t) and of 
the right states of all the waves which are to the left of (x,t)

Once           changes sign, the corresponding conserved 
variable changes from      to      while all the other     with       
remain constant. 

Finally, because                                                     , the jump 
in the fluxes for the i-th wave are  



cell boundaries where fluxes are required

shock frontrarefaction wave

Solution at the time n+1 of the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2

Initial data at the time n for the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2

Spacetime evolution of the 
two Riemann problems at the 
cell boundaries xj+1/2  and xj-1/2. 
Each problem leads to a shock 
wave and a rarefaction wave  
moving in opposite directions



A quick primer of HRSC methods...

1) reconstruct a piecewise polynomial function from the cell 
averages:

A piecewise constant is the simplest reconstruction

The numerical solution of a Riemann problem is based on three 
basic steps:

2) evolve the hyperbolic eq. (exactly or approximately) using 
these initial data to obtain                after a time 

3) average this solution over each grid cell to obtain a new 
cell average



Higher accuracy is reached with a 
better representation of the 
solution. 

”Reconstructing” the initial data for 
the Riemann problem at the cell 
boundaries can be made with a 
number of algorithms 

The most interesting are the TVDs 
(minmod, MC, Superbee) for which 
the solution is

slope limiter

linear reconst.Here    is a coefficient based 
on the slope of     and varying 
from   (near a discontinuity) up 
to   (in smooth regions of the 
solution). 

1) First reconstruct...

piecewise linear reconstruction



slope limiter

linear reconst.Here    is a coefficient based 
on the slope of     and varying 
from   (near a discontinuity) up 
to   (in smooth regions of the 
solution). 

states for a Riemann problem

1) First reconstruct...
Higher accuracy is reached with a 
better representation of the 
solution. 

”Reconstructing” the initial data for 
the Riemann problem at the cell 
boundaries can be made with a 
number of algorithms 

The most interesting are the TVDs 
(minmod, MC, Superbee) for which 
the solution is



A quick primer of HRSC methods...

1) reconstruct a piecewise polynomial function from the cell 
averages:

A piecewise constant is the simplest reconstruction

The numerical solution of a Riemann problem is based on three 
basic steps:

2) evolve the hyperbolic eq. (exactly or approximately) using 
these initial data to obtain                after a time 

3) average this solution over each grid cell to obtain a new 
cell average



As an example, Roe’s approximate Riemann solver can be 
calculated as

where              are the values of the primitive variables at the 
right/left sides of the i-th interface and             are the 
eigenvalues and right eigenvectors of the Jacobian matrix.

 The coefficients         measure the jumps of the 
characteristic variables across the characteristic field

2) then evolve...



Note: this conversion cannot be done analytically and requires 
the solution of a set of coupled eqs. This root-finding operation 
is very expensive computationally.

3) finally: average, convert and build...

Once the solution in terms of the conserved variables             
has been obtained, it is necessary to return to the primitive 
variables after inverting numerically the set of equations 

With the primitive variables calculated, the stress-energy tensor 
can be reconstructed and used on the RHS of the Einstein eqs. 

This series of operations is repeated at each grid point and for 
each time level…



Relativistic Hydrodynamics



Numerical Relativity: how?…
In non-vacuum spacetimes (like ours!) we need to solve for the 
full set of equations:

where



3+1 splitting also for the matter

We start again with a 3+1 split and thus a line element

And introduce a fluid (collection 
of particles) with 4-velocity



3+1 splitting also for the matter

Note the difference between the 
normal unit vector    to the slice 
and the fluid 4-velocity   . They are 
both unit and timelike, i.e.

But they are really different: one is 
tracks the normal to the slice the 
other is the worldline of a fluid 
particle

We start again with a 3+1 split and thus a line element

And introduce a fluid (collection 
of particles) with 4-velocity



We start again with a 3+1 split and thus a line element

3+1 splitting also for the matter

Note the difference between the 
normal unit vector    to the slice 
and the fluid 4-velocity   . They are 
both unit and timelike, i.e.

But they are really different: one is 
tracks the normal to the slice the 
other is the worldline of a fluid 
particle.

normal line
fluid worldlines

And introduce a fluid (collection 
of particles) with 4-velocity



We start again with a 3+1 split and thus a line element

3+1 splitting also for the matter

Note the difference between the 
normal unit vector    to the slice 
and the fluid 4-velocity   . They are 
both unit and timelike, i.e.

But they are really different: one is 
tracks the normal to the slice the 
other is the worldline of a fluid 
particle. In addition there is always 
the natural time vector  

Overall, there are three 4-vectors to bear in mind:

normal line fluid worldlines
coordinate line

And introduce a fluid (collection 
of particles) with 4-velocity



3+1 splitting also for the matter
What we are really interested in, however, is not the 
4-velocity     but rather its projection on the spatial 
slice, ie the 3-velocity 

normal line
fluid worldlines

Those observers with    parallel 
to    move from one slice to 
the next along the normal to 
the slice and are therefore 
Eulerian observers.
They measure a fluid 3-velocity

Remember in fact that in special relativity



3+1 splitting also for the matter

normal line
fluid worldlines

The contravariant (upstairs) components of this vector are

while the covariant (downstairs) 
components are

Using the normalization condition
one obtains

Thus recognizing in      the 
Lorentz factor



The relativistic hydrodynamics(MHD) eqs simply express the 
conservation of energy,  momentum, baryon number

where

conservation of momentum

conservation of energy

conservation of baryon number
thermodynamics



The Valencia (conservative) formulation

As mentioned before, the hydrodynamics eqs are then  given by

Consider for simplicity an non-magnetized ideal fluid with stress 
energy tensor

where



where                                               is the Lorentz factor

The first step in rewriting the above equations in a FC form 
requires the identification of suitable “conserved” quantities in 
place of the “primitive” variables              . A little algebra 
shows that these are:

The Valencia (conservative) formulation

NOTE: while the conversion primitive-to-conserved is 
algebraic, the inverse one is not and needs an expensive 
numerical solution.



In this way one obtains the “Valencia” formulation (Banyuls et 
al. 97) of the relativistic hydrodynamics equations 

NOTE: the source terms do not contain derivatives of the 
hydrodynamical quantities (leaving intact the principal part) 
and vanish in a flat spacetime

where                                                            and



general relativistic

special relativistic

Newtonian

non self-gravitating 
fluid



Summary

 The solution of the hydrodynamics equations requires 
special care because of the nonlinear nature of the equations

 Even smooth initial data tends to steepen and shock; in 
addition any discretization leads to small discontinuities 

 Using a flux-conservative formulation is essential if 
modelling discontinuities

HRSC methods are particularly suited to study 
discontinuities since they treat the discontinuities across cell 
interfaces as local Riemann problems

HRSC methods are based on three different steps: 
reconstruct, evolve, average


