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Chapter 1

Introduction

Let us consider a quasi-linear partial differential equation (PDE) of second-order, which
we can write generically as

a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ f(x, y, u,

∂u

∂x
,
∂u

∂y
) = 0 , (1.1)

wherex, y are not necessarily all spatial coordinates and where we will assume the
coefficientsaij to be constant. The traditional classification of partial differential equa-
tions is then based on the sign of the determinant∆ ≡ a11a22 − a2

12 that we can build
with the coefficients of equation (1.1) and distinguishes three types of such equations.
More specifically, equation (1.1) will be (strictly)hyperbolicif ∆ = 0 has roots that are
real (and distinct),parabolicif ∆ = 0 has real but zero roots, while it will beelliptic if
∆ = 0 has complex roots (see Table 1.1).

Elliptic equations, on the other hand, describeboundary valueproblems, orBVP,
since the space of relevant solutionsΩ depends on the value that the solution takes on
its boundariesdΩ. Elliptic equations are easily recognizable by the fact thesolution

Type Condition Example

Hyperbolic a11a22 − a2
12 < 0 Wave equation:

∂2u

∂t2
= v2 ∂2u

∂x2

Parabolic a11a22 − a2
12 = 0 Diffusion equation:

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

Elliptic a11a22 − a2
12 > 0 Poisson equation:

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y)

Table 1.1:Schematic classification of a quasi-linear partial differential equation of second-order. For each
class, a prototype equation is presented.

3



4 CHAPTER 1. INTRODUCTION

does not depend on time coordinatet and a prototype elliptic equation is in fact given
by Poisson equation(cf. Table 1.1).

Hyperbolic and parabolic equations describeinitial value boundaryproblems, or
IVBP, since the space of relevant solutionsΩ depends on the value that the solutionL
(which we assume with compact support) takes on some initialtime (see upper panel
of Fig. 1.1). In practice, IVBP problems are easily recognizable by the fact that the
solution will depend on the time coordinatet. Very simple and useful examples of
hyperbolic and parabolic equations are given by thewave equationand by thediffu-
sion equation, respectively (cf. Table 1.1). An important and physically-based differ-
ence between hyperbolic and parabolic equations becomes apparent by considering the
“characteristic velocities” associated to them. These represent the velocities at which
perturbations are propagated and havefinitespeeds in the case of hyperbolic equations,
while these speeds areinfinite in the case of parabolic equations. In this way it is not
difficult to appreciate that while both hyperbolic and parabolic equations describe time-
dependent equations, the domain of dependence in a finite time for the two classes of
equations can either be finite (as in the case of hyperbolic equations), or infinite (as in
the case of parabolic equations).

1.1 Discretization of differential operators and variables

Consider, for simplicity, a generic one-dimensional IVBP that could be written as

L(u) − f = 0 , (1.2)

whereu = u(x, t) andL is a differential operator in the two variablesx andt acting
onu. One of the most used methods for the solution of such a problem is by means of
finite differences. It consists in two “discretization steps”:

• Variables discretization: replace the functionu(x, t) with a discrete set of values
{un

j } that should approximate the pointwise values ofu, i.e., un
j ≈ u(xj , tn);

• Operator discretization: replace the continuous differential operatorL with a
discretized one,L

∆
, that when applied to the set{un

j }, gives an approximation
toL(u) in terms of differences between the variousun

j .

The set of values̃u ≡ {un
j , j = 1, . . . , J, n = 1, . . . , N} (J andN are the number

of points considered for the space and time variable respectively) is called thegrid
functionand will be denoted bỹu. After this discretization process, the problem (1.2)
is replaced by

L
∆
(ũ) − f̃ = 0 + ǫ

T
, (1.3)

that is, a discrete representation ofboth the differential operatorL and of the variable
u. The above equation is thediscrete representationof the problem (1.2). Note that the
righ-hand-side of (1.3) is not exactly zero and it differs from it by thetruncation error
ǫ
T

, which will be introduced in Sect. 1.2.3
In the following Sections 2–7 we will concentrate on partialdifferential equations

of hyperbolic type. Before doing that, however, it is usefulto discretize the continuum
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space of solutions (a “spacetime” in the case of IVBPs) in spatial foliations such that
the time coordinatet is constant on each slice. As shown in the lower panel of Fig. 1.1,
each pointP(xj , t

n) in this discretized spacetime will have spatial and time coordinate
defined as

xj = x0 + j∆x , j = 0,±1, . . . ,±J ,

tn = t0 + n∆t , n = 0,±1, . . . ,±N , (1.4)

where∆t and∆x are the increments between two spacelike and timelike foliations,
respectively. In this way we can associate a generic solution u(x, t) in the continuum
spacetime to a set of discretized solutionsum

i ≡ u(xi, t
m) with i = ±I, . . . ,±1, 0 and

m = ±M, . . . ,±1, 0 andI ≤ J ; M ≤ N . Clearly, the number of discrete solutions
to be associated tou(x, t) will depend on the properties of the discretized spacetime
(i.e., on the increments∆t and∆x) which will also determine thetruncation error
introduced by the discretization.

Once a discretization of the spacetime is introduced,finite differencetechniques
offer a very natural way to express a partial derivative (andhence a partial differential
equation). The basic idea behind these techniques is that the solution of the differential
equationu(xj , t

n + ∆t) at a given positionxj and at a given timetn can be Taylor-
expanded in the vicinity of(x,t

n). Under this simple (and most often reasonable as-
sumption), differential operators can be substituted by properly weighted differences
of the solution evaluated at different points in the numerical grid. In the following Sec-
tion we will discuss how different choices in the way the finite-differencing is made
will lead to numerical algorithms with different properties.

1.2 Errors

Errors are a natural and inevitable heritage of numerical analysis and their presence is
not a nuisance as long their origing is well determined and under control. Three main
errors will be discussed repeatedly in these notes and we briefly discuss them below.

1.2.1 Machine-precision error

The machine-precision errorreflects the precision of the machine used and can be
expressed in terms of the equality

fp (1.0) = fp (1.0) + ǫ
M

, (1.5)

wherefp (1.0) is the floating-point description of the number1. Stated differently, the
machine-precision error reflects the ability of the machineto distinguish two floating
point numbers and is therefore related to the number of significant figures used in the
mantissa.
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1.2.2 Round-off error

The round-off error is the accumulation of machine-precision errors as a resultof N
floating point operations. Because of the random nature in which machine-precision
errors add-up, this error can be estimated to be

ǫ
RO

≈
√

Nǫ
M

. (1.6)

Clearly, when performing a numerical computation one should restrict the number of
operations such thatǫ

RO
is below the error at which the results needs to be determined.

1.2.3 Truncation error

The truncation error is fundamentally different from the previous two types of errors
in that it is not dependent on the machine used but it reflects the human decision made
in discretizing the continuum problem. Mathematically it can therefore be expressed
as

L(u) − f = L
∆
(ũ) − f̃ + ǫ

T
. (1.7)

Since the truncation error is totally under the human judgment, its measure is essential
to guarantee that the discretization operation has been made properly and that the dis-
cretized problem is therefore a faithful representation ofthe continuum one, modulo
the truncation error.
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Figure 1.1: Upper panel: Schematic distinction between IVBPs and BVPs.Lower Panel: Schematic
discretization of a hyperbolic IVBP
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Chapter 2

Hyperbolic PDEs: Flux
Conservative Formulation

It is often the case, when dealing with hyperbolic equations, that they can be formulated
through conservation laws stating that a given quantity “u” is transported in space
and time and is thus locally “conserved”. The resulting “lawof continuity” leads to
equations which are calledconservativeand are of the type

∂u

∂t
+ ∇ · F (u) = 0 , (2.1)

whereu(x, t) is thedensityof the conserved quantity,F the density flux andx a vector
of spatial coordinates. In most of the physically relevant cases, the flux densityF will
not depend explicitly onx andt, but only implicitly through the densityu(x, t), i.e.,
F = F (u(x, t)). The vectorF is also called theconserved fluxand takes this name
from the fact that in the integral formulation of the conservation equation (2.1), the
time variation of the integral ofu over the volumeV is indeed given by the net flux of
u across the surface enclosingV .

Generalizing expression (2.1), we can consider a vector of densitiesU and write a
set of conservation equations in the form

∂U

∂t
+ ∇ · F (U) = S(U) . (2.2)

Here,S(U) is a generic “source term” indicating the sources and sinks of the vector
U . The main property of the homogeneous equation (2.2) (i.e., whenS(U) = 0) is
that the knowledge of the state-vectorU(x, t) at a given pointx at time t allows to
determine the rate of flow, or flux, of each state variable at(x, t).

Conservation laws of the form given by (2.1) can also be written as a quasi-linear
form

∂U

∂t
+ A(U)

∂U

∂x
= 0 , (2.3)

whereA(U) ≡ ∂F /∂U is the Jacobian of the flux vectorF (U).

9
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The use of a conservation form of the equations is particularly important when deal-
ing with problems admitting shocks or other discontinuities in the solution,e.g., when
solving the hydrodynamical equations. A non-conservativemethod,i.e., a method in
which the equations are not written in a conservative form, might give a numerical
solution which appears perfectly reasonable but then yields incorrect results. A well-
known example is offered by Burger’s equation,i.e., the momentum equation of an
isothermal gas in which pressure gradients are neglected, and whose non-conservative
representation fails dramatically in providing the correct shock speed if the initial con-
ditions contain a discontinuity. Moreover, since the hydrodynamical equations follow
from the physical principle of conservation of mass and energy-momentum, the most
obvious choice for the set of variables to be evolved in time is that of the conserved
quantities. It has been proved that non-conservative schemes do not converge to the
correct solution if a shock wave is present in the flow, whereas conservative numerical
methods, if convergent, do converge to theweak solutionof the problem.

In the following, we will concentrate on numerical algorithms for the solution of
hyperbolic partial differential equations written in theconservativeform of equation
(2.2). The advection and wave equations can be considered asprototypes of this class
of equations in which withS(U) = 0 and will be used hereafter as our working
examples.



Chapter 3

The advection equation in one
dimension (1D)

A special class of conservative hyperbolic equations are the so calledadvection equa-
tions, in which the time derivative of the conserved quantity is proportional to its spatial
derivative. In these cases,F (U) is diagonal and given by

F (U) = vI · U , (3.1)

whereI is the identity matrix.
Because in this case the finite-differencing is simpler and the resulting algorithms

are easily extended to more complex equations, we will use itas our “working exam-
ple”. More specifically, the advection equation foru we will consider hereafter has, in
1D, the simple expression

∂u

∂t
+ v

∂u

∂x
= 0 , (3.2)

and admits the general analytic solutionu = f(x − vt), representing a wave moving
in the positivex-direction.

3.1 The 1D Upwind scheme: O(∆t, ∆x)

We will start making use of finite-difference techniques to derive a discrete representa-
tion of equation (3.2) by first considering the derivative intime. Taylor expanding the
solution around(xj , t

n)) we obtain

u(xj , t
n + ∆t) = u(xj , t

n) +
∂u

∂t
(xj , t

n)∆t + O(∆t2) , (3.3)

or, equivalently,

un+1
j = un

j +
∂u

∂t

∣

∣

∣

∣

n

j

∆t + O(∆t2) . (3.4)

11



12 CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Isolating the time derivative and dividing by∆t we obtain

∂u

∂t

∣

∣

∣

∣

n

j

=
un+1

j − un
j

∆t
+ O(∆t) . (3.5)

Adopting a standard convention, we will consider the finite-difference representa-
tion of anm-th orderdifferential operator∂m/∂xm in the genericx-direction (where
x could either be a time or a spatial coordinate) to be of orderp if and only if

∂mu

∂xm
= L

∆
(u) + O(∆xp) . (3.6)

Of course, the time and spatial operators may have finite-difference representations
with different orders of accuracy and in this case the overall order of the equation is
determined by the differential operator with the largest truncation error.
Note also that while the truncation error is expressed for the differential operator, the
numerical algorithms will not be expressed in terms of the differential operators and
will therefore have different (usually smaller) truncation errors. This is clearly illus-
trated by the equations above, which show that the explicit solution (3.4) is of higher
order than the finite-difference expression for the differential operator (3.5).

With this definition in mind, it is not difficult to realize that the finite-difference
expression (3.5) for the time derivative is only first-orderaccurate in∆t. However,
accuracy is not the most important requirement in numericalanalysis and a first-order
but stable scheme is greatly preferable to one which is higher order (i.e., has a smaller
truncation error) but is unstable.

In way similar to what we have done in (3.5) for the time derivative, we can derive
a first-order, finite-difference approximation to the spacederivative as

∂u

∂x

∣

∣

∣

∣

n

j

=
un

j − un
j−1

∆x
+ O(∆x) . (3.7)

While formally similar, the approximation (3.7) suffers ofthe ambiguity, not present
in expression (3.5), that the first-order term in the Taylor expansion can be equally
expressed in terms ofun

j+1 andun
j , i.e.,

∂u

∂x

∣

∣

∣

∣

n

j

=
un

j+1 − un
j

∆x
+ O(∆x) . (3.8)

This ambiguity is the consequence of the first-order approximation which prevents
a proper “centring” of the finite-difference stencil. However, and as long as we are
concerned with an advection equation, this ambiguity is easily solved if we think that
the differential equation will simply translate each pointin the initial solution to the
new positionx + v∆t over a time interval∆t. In this case, it is natural to select
the points in the solution at the time-leveln that are “upwind” of the solution at the
positionj and at the time-leveln + 1, as these are the ones causally connected with
un+1

j . Depending then on the direction in which the solution is translated, and hence
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t or n

x or j

jj−1 j+1
n

n+1

jj−1 j+1
n

n+1

v<0

v>0

upwind

Figure 3.1:Schematic diagram of an UPWIND evolution scheme.

on the value of the advection velocityv, two different finite-difference representations
can be given of equation (3.2) and these are

un+1
j − un

j

∆t
= −v

(

un
j − un

j−1

∆x

)

+ O(∆t, ∆x) , if v > 0 , (3.9)

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j

∆x

)

+ O(∆t, ∆x) , if v < 0 , (3.10)

respectively. As a result, the final finite-difference algorithms for determing the solu-
tion at the new time-level will have the form

un+1
j = un

j − v∆t

∆x
(un

j − un
j−1) + O(∆t2, ∆x∆t) , if v > 0 , (3.11)

un+1
j = un

j − v∆t

∆x
(un

j+1 − un
j ) + O(∆t2, ∆x∆t) , if v < 0 . (3.12)
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More in general, for a system of linear hyperbolic equationswith state vectorU
and flux-vectorF, the upwind scheme will take the form

U
n+1
j = U

n
j ± ∆t

∆x

[

F
n
j∓1 − F

n
j

]

+ O(∆t2, ∆x∆t) , (3.13)

where the± sign should be chosen according to whetherv > 0 or v < 0. The logic be-
hind the choice of the stencil in an upwind method is is illustrated in Fig. 1.1 where we
have shown a schematic diagram for the two possible values ofthe advection velocity.

The upwind scheme (as well as all of the others we will consider here) is an example
of an explicit scheme, that is of a scheme where the solution at the new time-level
n + 1 can be calculated explicitly from the quantities that are already known at the
previous time-leveln. This is to be contrasted with animplicit scheme in which the
finite-difference representations of the differential equation has, on the right-hand-side,
terms at the new time-leveln + 1. These methods require in general the solution of a
number of coupled algebraic equations and will not be discussed further here.

The upwind scheme is a stable one in the sense that the solution will not have expo-
nentially growing modes. This can be seen through avon Neumann stability analysis,
a useful tool which allows a first simple validation of a givennumerical scheme. It is
important to underline that the von Neumann stability analysis islocal in the sense that:
a) it does not take into account boundary effects;b) it assumes that the coefficients of
the finite difference equations are sufficiently slowly varying to be considered constant
in time and space (this is a reasonable assumptions if the equations are linear). Under
these assumptions, the solution can be seen as a sum of eigenmodes which at each grid
point have the form

un
j = ξneikxj , (3.14)

wherek is the spatial wave number andξ = ξ(k) is acomplexnumber.
If we now consider the symbolic representation of the finite difference equation as

un+1
j = T (∆tp, ∆xq)un

j , (3.15)

with T (∆tp, ∆xq) being the evolution operator of orderp in time andq in space, it then
becomes clear from (3.14) and (3.15) that the time evolutionof a single eigenmode is
nothing but a succession of integer powers of the complex numberξ which is therefore
namedamplification factor. This naturally leads to a criterion of stability as the one for
which the modulus of the amplfication factor is always less than 1,i.e.,

|ξ|2 = ξξ∗ ≤ 1 . (3.16)

Using (3.14) in (3.11)–(3.12) we would obtain an amplification factor

ξ = 1 − |α| (1 − cos(k∆x)) − iα sin(k∆x) , (3.17)

where

α ≡ v∆t

∆x
. (3.18)

Its quared modulus|ξ|2 ≡ ξξ∗ is then

|ξ|2 = 1 − 2 |α| (1 − |α|) (1 − cos(k∆x)) , (3.19)
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∆ t

n+1
COURANT STABLE COURANT UNSTABLE

n

j+1j-1 j+1j-1

Figure 3.2:Schematic diagram of Courant stable and unstable choices oftime-steps∆t. The two dashed
lines limit the numerical domain of dependence of the solution atxn+1

j
, while the shaded area represents

the physical domain of dependence. Stability is achieved when the first one is larger than the second one.

so that the amplification factor (3.19) is less than one as long as theCourant-Friedrichs-
Löwy condition(CFL condition)

|α| ≤ 1 , (3.20)

is satisfied (condition (3.20) is sometimes referred to simply as the Courant condition.).
Note that in practice, the CFL condition (3.20) is used to determine the time-step∆t
oncev is known and∆x has been chosen to achieve a certain accuracy,i.e.,

∆t = c
CFL

∆x

|v| , (3.21)

with c
CFL

< 1 being the CFL factor. Expression (3.21) also allows a usefulinterpreta-
tion of the CFL condition.

From amathematicalpoint of view, the condition ensures that the numerical do-
main of dependence of the solution islarger than the physical one. From aphysical
point of view, on the other hand, the condition ensures that the propagation speed of
any physical perturbation (e.g., the sound speed, or the speed of light) is always smaller
than the numerical onev

N
≡ ∆x/∆t, i.e.,

|v| = c
CFL

∆x

∆t
≤ v

N
≡ ∆x

∆t
. (3.22)

Equivalently, the CFL conditions prevents any physical signal to propagate for more
than a fraction of a grid-zone during a single time-step (cf. Fig. 3.2)

As a final remark it should be noted that as described so far, the upwind method
will yield satisfactory results only in the case in which theequations have an obvious
transport character in one direction. However, in more general situations such as a wave
equation, the upwind method will not be adequate and different expressions, based on
finite-volume formulations of the equations will be needed [1, 4].



16 CHAPTER 3. THE ADVECTION EQUATION IN ONE DIMENSION (1D)

Figure 3.3:Time evolution of a Gaussian initially centred atx = 0.5 computed using an upwind scheme
with v = 10 and 100 gridpoints. The analytic solution at timet = 3 is shown with a solid line the dashed
lines are used to represent the numerical solution at the same time. Two different simulations are reported
with the circles referring to a CFL factorc

CFL
= 0.99 and squares to a CFL factorc

CFL
= 0.50. Note

how dissipation increases as the CFL is reduced.

3.2 The 1D FTCS scheme: O(∆t, ∆x2)

Let us consider again the advection equation (3.2) but we nowfinite difference with a
more accurate approximation of the space derivative. To do this we can calculate the
two Taylor expansions inxj ± ∆x

u(xj + ∆x, tn) = u(xj , t
n) +

∂u

∂x
(xj , t

n)∆x +
1

2

∂2u

∂x2
(xj , t

n)∆x2 + O(∆x3) ,

(3.23)

u(xj − ∆x, tn) = u(xj , t
n) − ∂u

∂x
(xj , t

n)∆x +
1

2

∂2u

∂x2
(xj , t

n)∆x2 + O(∆x3) ,

(3.24)
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Subtracting now the two expressions and dividing by2∆x we eliminate the first-order
terms and obtain

∂u

∂x

∣

∣

∣

∣

n

j

=
un

j+1 − un
j−1

2∆x
+ O(∆x2) , (3.25)

jj−1 j+1

FTCS

n

n+1

Figure 3.4:Schematic diagram of a FTCS evolution scheme.

Using now the second-order accurate operator (3.25) we can finite-difference equa-
tion (3.2) through the so called FTCS (Forward-Time-Centered-Space)scheme in which
a first-order approximation is used for the time derivative,but a second order one for
the spatial one. Using the a finite-difference notation, theFTCS is then expressed as

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

+ O(∆t, ∆x2) , (3.26)

so that
un+1

j = un
j − α

2
(un

j+1 − un
j−1) + O(∆t2, ∆x2∆t) , (3.27)

or more generically, for a system of linear hyperbolic equations

U
n+1
j = U

n
j − ∆t

2∆x

[

F
n
j+1 − F

n
j−1

]

+ O(∆t2, ∆x2∆t) , (3.28)

The stencil for the finite- differencing (3.27) is shown symbolically in Fig. 3.4.
Disappointingly, the FTCS scheme isunconditionally unstable: i.e., the numerical

solution will be destroyed by numerical errors which will becertainly produced and
grow exponentially. This is shown in Fig. 3.5 where we show the time evolution of a
Gaussian using an FTCS scheme 100 gridpoints. The analytic solution at timet = 0.3
is shown with a solid line the dashed lines are used to represent the numerical solution
at the same time. Note that the solution plotted here refers to a time which is 10 times
smaller than the one in Fig. 3.3. Soon aftert ≃ 0.3 the exponentially growing modes
appear, rapidly destroying the solution.

Applying the definition (3.14) to equation (3.26) and few algebraic steps lead to an
amplification factor

ξ = 1 − iα sin(k∆x) . (3.29)
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Figure 3.5:Time evolution of a Gaussian using an FTCS scheme withv = 1 and 100 gridpoints. The
analytic solution at timet = 0.3 is shown with a solid line, while the dashed line is the numerical solution at
the same time. Soon aftert ≃ 0.3 the exponentially growing modes appear, rapidly destroying the solution.

whose squared modulus is

|ξ|2 = 1 + (α sin(k∆x))
2

> 1 , (3.30)

thus proving the unconditional instability of the FTCS scheme. Because of this, the
FTCS scheme is rarely used and will not produce satisfactoryresults but for a very
short timescale as compared to the typical crossing time of the physical problem under
investigation.

A final aspect of the von Neumann stability worth noticing is that it is aneces-
sarybut not sufficientcondition for stability. In other words, a numerical schemethat
appears stable with respect to a von Neumann stability analysis might still be unstable.

3.3 The 1D Lax-Friedrichs scheme: O(∆t, ∆x2)

A solution to the stability problems offered by the FTCS scheme was proposed by Lax
and Friedrichs. The basic idea is very simple and is based on replacing, in the FTCS
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jj−1 j+1
n

n+1

Lax−Friedrichs

Figure 3.6:Schematic diagram of a Lax-Friedrichs evolution scheme.

formula (3.26), the termun
j with its spatial average,i.e., un

j = (un
j+1 + un

j−1)/2, so as
to obtain for an advection equation

un+1
j =

1

2
(un

j+1 + un
j−1) −

α

2
(un

j+1 − un
j−1) + O(∆x2) , (3.31)

and, for a system of linear hyperbolic equations

U
n+1
j =

1

2
(Un

j+1 + U
n
j−1) −

∆t

2∆x

[

F
n
j+1 − F

n
j−1

]

+ O(∆x2) . (3.32)

Note that the truncation error in equations (3.31) and (3.32) is reported to beO(∆x2)
and notO(∆t2, ∆x2∆t) because we are assuming that the CFL condition is satisfied
and hence∆t = O(∆x). We will maintain this assumption hereafter.

The schematic diagram of a Lax-Friedrichs evolution schemeis shown in Fig. 3.6.
Perhaps surprisingly, the algorithm (3.32) is nowconditionally stableas can be verified
through a von Neumann stability analysis. Proceeding as done for the FTCS scheme
and using (3.14) in (3.32) we would obtain an amplification factor whose modulus
squared is

|ξ|2 = 1 − sin2(k∆x)
(

1 − α2
)

, (3.33)

which is< 1 as long as the CFL condition is satisfied.
Although not obvious, the correction introduced by the Lax-Friedrichs scheme is

equivalent to the introduction of anumerical dissipation(viscosity). To see this, we
rewrite (3.32) so that it clearly appears as a correction to (3.26):

un+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

+
1

2

(

un
j+1 − 2un

j + un
j−1

∆t

)

. (3.34)

This is exactly the finite-difference representation of theequation

∂u

∂t
+ v

∂u

∂x
=

1

2

(

∆x2

∆t

)

∂2u

∂x2
, (3.35)

where a diffusion term,∝ ∂2u/∂x2, has appeared on the right hand side. To prove this
we sum the two Taylor expansions (3.23)–(3.24) aroundxj to eliminate the first-order
derivatives and obtain

∂2u

∂x2

∣

∣

∣

∣

n

j

=
un

j+1 − 2un
j + un

j−1

∆x2
+ O(∆x2) , (3.36)
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where the sum has allowed us to cancel both the termsO(∆x) andO(∆x3). Note
that since the expression for the second derivative in (3.36) is O(∆x2), it is appears
multiplied by∆x2/∆t = O(∆x) in equation (3.35), thus making the right-hand-side
O(∆x3) overall. The left-hand-side, on the other hand, is onlyO(∆x) (the time deriva-
tive is O(∆x), while the spatial derivative isO(∆x2)). As a result, the dissipative
term goes to zero more rapidly than the intrinsic truncationerror of the Lax-Friedrichs
scheme, thus guaranteeing that the in the continuum limit the algorithm will converge
to the correct solution of the advection equation.

Figure 3.7:This is the same as in Fig. 3.3 but for a Lax-Friedrichs scheme. Note how the scheme is stable
but also suffers from a considerable dissipation.

A reasonable objection could be made for the fact that the Lax-Friedrichs scheme
has changed the equation whose solution one is interested in[i.e., eq. (3.2)] into a
new equation, in which a spurious numerical dissipation hasbeen introduced [i.e., eq.
(3.35)]. Unless|v|∆t = ∆x, |ξ| < 1 and the amplitude of the wave is doomed to
decrease (see Fig. 3.7).

However, such objection can be easily circumvented. As mentioned above, the
dissipative term is always smaller than the truncation error thus guaranteeing the con-
vergence to the correct solution. Furthermore, it is usefulto bear in mind that the key
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aspect in any numerical representation of a physical phenomenon is the determination
of the length scale over which we need to achieve an accurate description. In a finite
difference approach, this length scale must necessarily encompass many grid points
and for whichk∆x ≪ 1. In this case, expression (3.33) clearly shows that the am-
plification factor is very close to 1 and the effects of dissipation are therefore small.
Note that this is true also for the FTCS scheme so that on thesescales the stable and
unstable schemes are equally accurate. On the very small scales however, which we are
not of interest to us,k∆x ∼ 1 and the stable and unstable schemes are radically dif-
ferent. The first one will be simply inaccurate, the second one will have exponentially
growing errors which will rapidly destroy the whole solution. It is rather obvious that
stability and inaccuracy are by far preferable to instability, especially if the accuracy
is lost over wavelengths that are not of interest or when it can be recovered easily by
using more refined grids. This is called“consistency”of the discretized operator and
will be discussed in detail in Sect. 4.2.2.

3.4 The 1D Leapfrog scheme: O(∆t2, ∆x2)

Both the FTCS and the Lax-Friedrichs are “one-level” schemes with first-order ap-
proximation for the time derivative and a second-order approximation for the spatial
derivative. In those circumstancesv∆t should be taken significantly smaller than∆x
(to achieve the desired accuracy), well below the limit imposed by the Courant condi-
tion.

j−1 j+1
n

n+1

Leapfrog

n−1

j

Figure 3.8:Schematic diagram of a Leapfrog evolution scheme.

Second-order accuracy in time can be obtained if we insert

∂u

∂t

∣

∣

∣

∣

n

j

=
un+1

j − un−1
j

2∆t
+ O(∆t2) , (3.37)

in the FTCS scheme, to find theLeapfrogscheme

un+1
j = un−1

j − α
(

un
j+1 − un

j−1

)

+ O(∆x2) , (3.38)
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where it should be noted that the factor 2 in∆x cancels the equivalent factor 2 in∆t.

Figure 3.9:This is the same as in Fig. 3.3 but for a Leapfrog scheme. Note how the scheme is stable
and does not suffers from a considerable dissipation even for low CFL factors. However, the presence of a
little “dip” in the tail of the Gaussian for the case ofc

CFL
= 0.5 is the result of the dispersive nature of the

numerical scheme.

For a set of linear equations, the Leapfrog scheme simply becomes

U
n+1
j = U

n−1
j − ∆t

∆x

[

F
n
j+1 − F

n
j−1

]

+ O(∆x2) , (3.39)

and the schematic diagram of a Leapfrog evolution scheme is shown in Fig. 3.8.
Also for the case of a Leapfrog scheme there are a number of aspects that should

be noticed:

• In a Leapfrog scheme that is Courant stable, there is no amplitude dissipation
(i.e., |ξ|2 = 1). In fact, a von Neumann stability analysis yields

ξ = −iα sin(k∆x) ±
√

1 − [α sin(k∆x)]
2

, (3.40)

and so that

|ξ|2 = α2 sin2(k∆x) + {1 − [α sin(k∆x)]2} = 1 ∀ α ≤ 1 . (3.41)
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n+1

n-1

n

Figure 3.10:Schematic diagram of the decoupled grids in a Leapfrog evolution scheme.

As a result, the squared modulus of amplification factor is always 1, provided the
CFL condition is satisfied (cf. Fig. 3.11).

• The Leapfrog scheme is a two-level scheme, requiring records of values at time-
stepsn andn− 1 to get values at time-stepn + 1. This is clear from expression
(5.22) and cannot be avoided by means of algebraic manipulations.

• The major disadvantage of this scheme is that odd and even mesh points are
completely decoupled (see Fig. 8).

In principle, the solutions on the black and white squares are identical. In
practice, however, their differences increase as the time progresses. This ef-
fect, which becomes evident only on timescales much longer then the crossing
timescale, can be cured either by discarding one of the solutions or by adding a
dissipative term of the type

. . . + ǫ(un
j+1 − 2un

j+1 + un
j+1) , (3.42)

in the right-hand-side of (5.17), whereǫ ≪ 1 is an adjustable coefficient.

3.5 The 1D Lax-Wendroff scheme: O(∆t2, ∆x2)

The Lax-Wendroff scheme is the second-order accurate extension of the Lax-Friedrichs
scheme. As for the case of the Leapfrog scheme, in this case too we need two time-
levels to obtain the solution at the new time-level.

There are a number of different ways of deriving the Lax-Wendroff scheme but it
is probably useful to look at it as to a combination of the Lax-Friedrichs scheme and of
the Leapfrog scheme. In particular a Lax-Wendroff scheme can be obtained as
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1. A Lax-Friedrichs scheme with half step:

U
n+ 1

2

j+ 1

2

=
1

2

[

U
n
j+1 + U

n
j

]

− ∆t

2∆x

[

F
n
j+1 − F

n
j

]

+ O(∆x2) ,

U
n+ 1

2

j− 1

2

=
1

2

[

U
n
j + U

n
j−1

]

− ∆t

2∆x

[

F
n
j − F

n
j−1

]

+ O(∆x2) ,

where∆t/(2∆x) comes from having used a timestep∆t/2;

2. The evaluation of the fluxesF
n+ 1

2

j± 1

2

from the values ofU
n+ 1

2

j± 1

2

3. A Leapfrog “half-step”:

U
n+1
j = U

n
j − ∆t

∆x

[

F
n+ 1

2

j+ 1

2

− F
n+ 1

2

j− 1

2

]

+ O(∆x2) . (3.43)

The schematic diagram of a Lax-Wendroff evolution scheme isshown in Fig. 3.11
and the application of this scheme to the advection equation(3.2) is straightforward.
More specifically, the “half-step” values can be calculatedas

u
n+1/2
j±1/2 =

1

2

(

un
j + uu

j±1

)

∓ α

2

(

un
j±1 − un

j

)

+ O(∆x2) , (3.44)

so that the solution at the new time-level will then be

un+1
j = un

j − α
(

u
n+1/2
j+1/2 − u

n+1/2
j−1/2

)

+ O(∆x2) (3.45)

= un
j − α

2

(

un
j+1 − un

j−1

)

+
α2

2

(

un
j+1 − 2un

j + un
j−1

)

+ O(∆x2) .

(3.46)

where expression (3.46) has been obtained after substituting (3.44) in (3.45).

n+1

n
j−1 j j+1

n+1/2
j+1/2j−1/2Lax−Wendroff

Figure 3.11:Schematic diagram of a Lax-Wendroff evolution scheme.

Aspects of a Lax-Wendroff scheme worth noticing are:
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• In the Lax-Wendroff scheme there might be some amplitude dissipation. In fact,
a von Neumann stability analysis yields

ξ = 1 − iα sin(k∆x) − α2 [1 − cos(k∆x)] , (3.47)

so that the squared modulus of the amplification factor is

|ξ|2 = 1 − α2(1 − α2)
[

1 − cos2(k∆x)
]

. (3.48)

As a result, the von Neumann stability criterion|ξ|2 ≤ 1 is satisfied as long
asα2 ≤ 1, or equivalently, as long as the CFL condition is satisfied. (cf. Fig.
10). It should be noticed, however, that unlessα2 = 1, then|ξ|2 < 1 and some
amplitude dissipation is present. In this respect, the dissipative properties of the
Lax-Friedrichs scheme are not completely lost in the Lax-Wendroff scheme but
are much less severe (cf. Figs. 5 and 10).

• The Lax-Wendroff scheme is a two-level scheme, but can be recast in a one-level
form by means of algebraic manipulations. This is clear fromexpressions (3.46)
where quantities at time-levelsn andn + 1 only appear.

3.6 The 1D ICN scheme: O(∆t2, ∆x2)

The idea behind theiterative Crank-Nicolson(ICN) scheme is that of transforming a
stable implicit method,i.e., the Crank-Nicolson (CN) scheme (see Sect. 8.4.2) into an
explicit one through a series of iterations. To see how to do this in practice, consider
differencing the advection equation (3.2) having a centredspace derivative but with the
time derivative being backward centred,i.e.,

un+1
j − un

j

∆t
= −v

(

un+1
j+1 − un+1

j−1

2∆x

)

. (3.49)

This scheme is also known as “backward in time, centred in space” or BTCS (see
Sect. 8.4.1) and has amplification factor

ξ =
1

1 + iα sin k∆x
, (3.50)

so that|ξ|2 < 1 for any choice ofα, thus making the method unconditionally stable.
TheCrank-Nicolson(CN) scheme, instead, is a second-order accurate method ob-

tained by averaging a BTCS and a FTCS method or, in other words, equations (3.26)
and (3.49). Doing so one then finds

ξ =
1 + iα sin k∆x/2

1 − iα sin k∆x/2
. (3.51)

so that the method is stable. Note that although one averagesbetween an explicit and
an implicit scheme, terms containingun+1 survive on the right hand side of equation
(3.49), thus making the CN scheme implicit.
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Figure 3.12:This is the same as in Fig. 3.3 but for a Lax-Wendroff scheme. Note how the scheme is
stable and does not suffers from a considerable dissipationeven for low CFL factors. However, the presence
of a little “dip” in the tail of the Gaussian for the case ofc

CFL
= 0.5 is the result of the dispersive nature of

the numerical scheme.

The first iteration of iterative Crank-Nicolson starts by calculating an intermediate
variable(1)ũ using equation (3.26):

(1)ũn+1
j − un

j

∆t
= −v

(

un
j+1 − un

j−1

2∆x

)

. (3.52)

Then another intermediate variable(1)ū is formed by averaging:

(1)ū
n+1/2
j ≡ 1

2

(

(1)ũn+1
j + un

j

)

. (3.53)

Finally the timestep is completed by using equation (3.26) again with ū on the right-
hand side:

un+1
j − un

j

∆t
= −v

(

(1)ū
n+1/2
j+1 − (1)ū

n+1/2
j−1

2∆x

)

. (3.54)
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Iterated Crank-Nicolson withtwo iterationsis carried out in much the same way.
After steps (3.52) and (3.53), we calculate

(2)ũn+1
j − un

j

∆t
= −v

(

(1)ū
n+1/2
j+1 − (1)ū

n+1/2
j−1

2∆x

)

, (3.55)

(2)ū
n+1/2
j ≡ 1

2

(

(2)ũn+1
j + un

j

)

. (3.56)

Then the final step is computed analogously to equation (3.54):

un+1
j − un

j

∆t
= −v

(

(2)ū
n+1/2
j+1 − (2)ū

n+1/2
j−1

2∆x

)

. (3.57)

Further iterations can be carried out following the same logic.
To investigate the stability of these iterated schemes we compute the amplification

factors relative to the different iterations to be

(1)ξ = 1 + 2iβ , (3.58)
(2)ξ = 1 + 2iβ − 2β2 , (3.59)
(3)ξ = 1 + 2iβ − 2β2 − 2iβ3 , (3.60)
(4)ξ = 1 + 2iβ − 2β2 − 2iβ3 + 2β4 , (3.61)

whereβ ≡ (α/2) sin(k∆x), and (1)ξ corresponds to the FTCS scheme. Note that
the amplification factors (3.58) correspond to those one would obtain by expanding
equation (3.51) in powers ofβ.

Computing the squared moduli of (3.58) one encounters an alternating and recur-
sive pattern. In particular, iterations 1 and 2 are unstable(|ξ|2 > 1); iterations 3 and 4
are stable (|ξ|2 < 1) providedβ2 ≤ 1; iterations 5 and 6 are also unstable; iterations 7
and 8 are stable providedβ2 ≤ 1; and so on. Imposing the stability for all wavenum-
bersk, we obtainα2/4 ≤ 1, or ∆t ≤ 2∆x which is just the CFL condition [the factor
2 is inherited by the factor 2 in equation (3.26)].

In other words, while the magnitude of the amplification factor for iterated Crank-
Nicolson does approach 1 as the number of iterations becomesinfinite, the convergence
is not monotonic. The magnitude oscillates above and below 1with ever decreasing os-
cillations. All the iterations leading to|ξ|2 above 1 are unstable, although the instability
might be very slowly growing as the number of iterations increases. Because the trun-
cation error is not modified by the number of iterations and isalwaysO(∆t2, ∆x2),
a number of iterations larger than two is never useful; threeiterations, in fact, would
simply amount to a larger computational cost.

3.6.1 ICN as a θ-method

In the ICN method theM -th average is made weighting equally the newly predicted
solution(M)ũn+1

j and the solution at the “old” timelevel”un. This, however, can be
seen as the special case of a more generic averaging of the type

(M)ūn+1/2 = θ (M)ũn+1 + (1 − θ)un , (3.62)
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where0 < θ < 1 is a constant coefficient. Predictor-corrector schemes using this type
of averaging are part of a large class of algorithms namedθ-methods[10], and we refer
to the ICN generalized in this way as to the “θ-ICN” method.

A different and novel generalization of theθ-ICN can be obtained byswappingthe
averages between two subsequent corrector steps, so that intheM -th corrector step

(M)ūn+1/2 = (1 − θ) (M)ũn+1 + θun , (3.63)

while in the(M + 1)-th corrector step

(M+1)ūn+1/2 = θ (M+1)ũn+1 + (1 − θ)un . (3.64)

Note that as long as the number of iterations is even, the sequence in which the aver-
ages are computed is irrelevant. Indeed, the weightsθ and1 − θ in eqs. (3.63)–(3.64)
could be inverted and all of the relations discussed hereafter for the swapped weighted
averages would continue to hold after the transformationθ → 1 − θ.

Constant Arithmetic Averages

Using a von Neumann stability analysis, Teukolsky has shownthat for a hyperbolic
equation the ICN scheme withM iterations has an amplification factor [13]

(M)ξ = 1 + 2
M
∑

n=1

(−iβ)n , (3.65)

whereβ ≡ v[∆t/(2∆x)] sin(k∆x) 1. More specifically, zero and one iterations yield
an unconditionally unstable scheme, while two and three iterations a stable one pro-
vided thatβ2 ≤ 1; four and five iterations lead again to an unstable scheme andso on.
Furthermore, because the scheme is second-order accurate from the first iteration on,
Teukolsky’s suggestion when using the ICN method for hyperbolic equations was that
two iterations should be usedand no more[13]. This is the number of iterations we
will consider hereafter.

Constant Weighted Averages

Performing the same stability analysis for aθ-ICN is only slightly more complicated
and truncating at two iterations the amplification factor isfound to be

ξ = 1 − 2iβ − 4β2θ + 8iβ3θ2 , (3.66)

whereξ is a shorthand for(2)ξ. The stability condition in this case translates into
requiring that

16β4θ4 − 4β2θ2 − 2θ + 1 ≤ 0 , (3.67)

or, equivalently, that forθ > 3/8
√

1
2 −

√

2θ − 3
4

2θ
≤ β ≤

√

1
2 +

√

2θ − 3
4

2θ
, (3.68)

1Note that we defineβ to have the opposite sign of the corresponding quantity defined in ref. [13]
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Figure 3.13:Left panel:stability region in the (θ, β) plane for the two-iterationsθ-ICN
for the advection equation (3.2). Thick solid lines mark thelimit at which |ξ| = 1,
while the dotted contours indicate the values of the amplification factor in the stable
region. The shaded area forθ < 1/2 refers to solutions that are linearly unstable [15].
Right panel:same as in the left panel but when the averages between two corrections
are swapped. Note that the amplification factor in this case is less sensitive onθ and
always larger than the corresponding amplification factor in the left panel.

which reduces toβ2 ≤ 1 whenθ = 1/2. Because the condition (3.68) must hold
for every wavenumberk, we consider hereafterβ ≡ v∆t/(2∆x) and show in the left
panel of Fig. 3.13 the region of stability in the (θ, β) plane. The thick solid lines mark
the limit at which|ξ| = 1, while the dotted contours indicate the different values ofthe
amplification factor in the stable region.

A number of comments are worth making. Firstly, although thecondition (3.68)
allows for weighting coefficientsθ < 1/2, theθ-ICN is stable only ifθ ≥ 1/2. This
is a known property of the weighted Crank-Nicolson scheme [10] and inherited by the
θ-ICN. In essence, whenθ 6= 1/2 spurious solutions appear in the method [16] and
these solutions are linearly unstable ifθ < 1/2, while they are stable forθ > 1/2 [15].
For this reason we have shaded the area withθ < 1/2 in the left panel of Fig. 3.13
to exclude it from the stability region. Secondly, the use ofa weighting coefficient
θ > 1/2 will still lead to a stable scheme provided that the timestep(i.e.,β) is suitably
decreased. Finally, as the contour lines in the left panel ofFig. 3.13 clearly show, the
amplification factor can be very sensitive onθ.

Swapped weighted averages

The calculation of the stability of theθ-ICN when the weighted averages are swapped
as in eqs. (3.63) and (3.64) is somewhat more involved; aftersome lengthy but straight-
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forward algebra we find the amplification factor to be

ξ = 1 − 2iβ − 4β2θ + 8iβ3θ(1 − θ) , (3.69)

which differs from (3.66) only in that theθ2 coefficient of theO(β3) term is replaced
by θ(1 − θ). The stability requirement|ξ| ≤ 1 is now expressed as

16β4θ2(1 − θ)2 − 4β2θ(2 − 3θ) − 2θ + 1 ≤ 0 . (3.70)

Solving the condition (3.70) with respect toβ amounts then to requiring that

β ≥
√

2 − 3θ −
√

4θ − 11θ2 + 8θ3

2(1 − θ)
√

2θ
, (3.71a)

β ≤
√

2 − 3θ +
√

4θ − 11θ2 + 8θ3

2(1 − θ)
√

2θ
, (3.71b)

which is again equivalent toβ2 ≤ 1 whenθ = 1/2. The corresponding region of
stability is shown in right panel of Fig. 3.13 and should be compared with left panel of
the same Figure. Note that the average-swapping has now considerably increased the
amplification factor, which is always larger than the corresponding one for theθ-ICN
in the relevant region of stability (i.e., for 1/2 ≤ θ ≤ 1 2).

2Of course, when the order of the swapped averages is invertedfrom the one shown in eqs. (3.63)–(3.64)
the stability region will change into0 ≤ θ ≤ 1/2.
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3.6.2 Summary

In what follow I summarize the most salient aspects of the different finite-difference
operators discussed so far and report, for each of them, the truncation errorǫ

T
, the

amplification factor|ξ|2 and the finite-difference representation of the advection equa-
tion 3.2.

Method ǫ
T

|ξ|2 for (k∆x ≪ 1) finite-difference form

Upwind O(∆t, ∆x) 1 − 2|α|(1 − |α|) cos(k∆x) un+1
j = un

j ∓ α(un
j±1 − un

j )

FTCS O(∆t, ∆x2) 1 + sin2(k∆x)α2 un+1
j = un

j − α(un
j+1 − un

j−1)

Lax Friedrichs O(∆t, ∆x2) 1 − sin2(k∆x)(1 − α2) un+1
j = 1

2 (un
j+1 + un

j−1) − α(un
j+1 − un

j−1)

Lepafrog O(∆t2, ∆x2) 1 un+1
j = un−1

j − α(un
j+1 − un

j−1)

Lax Wendroff O(∆t2, ∆x2) 1 − α2(1 − α2) sin2(k∆x) un+1
j = un

j − 1
2α(un

j+1 − un
j−1)−

1
2α2(un

j+1 − 2un
j + un

j−1)

Table 3.1:Schematic summary of the finite-difference operators discussed so far.
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Chapter 4

Dissipation, Dispersion and
Convergence

We will here discuss a number of problems that often emerge when using finite-difference
techniques for the solution of hyperbolic partial differential equations. In stable numer-
ical schemes the impact of many of these problems can be suitably reduced by going
to sufficiently high resolutions, but it is nevertheless important to have a simple and yet
clear idea of what are the most common sources of these problems.

4.1 On the Origin of Dissipation and Dispersion

We have already seen in Chapter 3 how the Lax-Friedrichs scheme applied to a linear
advection equation (3.2) yields the finite-difference expression

un+1
j =

1

2
(un

j+1 + un
j−1) −

α

2
(un

j+1 − un
j−1) + O(∆x2) . (4.1)

We have also mentioned how expression (4.1) can be rewrittenas

un+1
j = un

j − α

2
(un

j+1 − un
j−1) +

1

2
(un

j+1 − 2un
j + un

j−1) + O(∆x2) , (4.2)

to underline how the Lax-Friedrichs scheme effectively provides a first-order finite-
difference representation of a non-conservative equation

∂u

∂t
+ v

∂u

∂x
= ε

LF

∂2u

∂x2
, (4.3)

that is an advection-diffusion equation in which a dissipative term

ε
LF

≡ v
∆x2

2∆t
, (4.4)

is present. Given a computational domain of lengthL, this scheme will therefore have
a typical diffusion timescaleτ ≃ L2/ε

LF
. Clearly, the larger the diffusion coefficient,

the faster will the solution be completely smeared over the computational domain.

33
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In a similar way, it is not difficult to realize that the upwindscheme

un+1
j = un

j − α
(

un
j − un

j−1

)

+ O(∆x2) , (4.5)

provides a first-order accurate (in space) approximation toequation (3.2), but a second-
order approximation to equation

∂u

∂t
+ v

∂u

∂x
= ε

UW

∂2u

∂x2
, (4.6)

where

ε
UW

≡ v∆x

2
. (4.7)

Stated differently, also the upwind method reproduces at higher-order an advection-
diffusion equation with a dissipative term which is responsible for the gradual dissi-
pation of the advected quantityu. This is shown in Fig. 4.2 for a wave packet (i.e.,
a periodic function embedded in a Gaussian) propagating to the right and where it is
important to notice how the different peaks in the packet areadvected at the correct
speed, although their amplitude is considerably diminished.

In Courant-limited implementations,α = |v|∆t/∆x < 1 so that the ratio of the
dissipation coefficients can be written as

ε
LF

ε
UW

=
1

α
≥ 1 , for α ∈ [0, 1] . (4.8)

In other words, while the upwind and the Lax-Friedrichs methods are both dissipative,
the latter is generically more dissipative despite being more accurate in space. This can
be easily appreciated by comparing Figs. 3.3 and 3.7 but alsoprovides an important
rule: a more accurate numerical scheme is not necessarily a preferable one.

A bit of patience and a few lines of algebra would also show that the Lax-Wendroff
scheme for the advection equation (3.2) [cf. eq. (3.46)]

un+1
j = un

j − α
(

un
j+1 − un

j−1

)

+
α2

2

(

un
j+1 − 2un

j + un
j−1

)

+ O(∆x2) . (4.9)

provides a first-order accurate approximation to equation (3.2), a second-order approx-
imation to an advection-diffusion equation with dissipation coefficientε

LW
, and a third-

order approximation to equation

∂u

∂t
+ v

∂u

∂x
= ε

LW

∂2u

∂x2
+ β

LW

∂3u

∂x3
, (4.10)

where

ε
LW

≡ αv∆x

2
, β

LW
≡ −v∆x2

6

(

1 − α2
)

. (4.11)

As mentioned in Section 3, the Lax-Wendroff scheme retains some of the dissi-
pative nature of the originating Lax-Friedrichs scheme andthis is incorporated in the
dissipative term proportional toε

LW
. Using expression (4.9), it is easy to deduce the
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Figure 4.1:Time evolution of a wave-packet initially centred atx = 0.5 computed using a Lax-Friedrichs
scheme withC

CFL
= 0.75. The analytic solution at timet = 2 is shown with a solid line the dashed lines

are used to represent the numerical solution at the same time. Note how dissipation reduces the amplitude of
the wave-packet but does not change sensibly the propagation of the wave-packet.

magnitude of this dissipation and compare it with the equivalent one produced with the
Lax-Friedrichs scheme. A couple of lines of algebra show that

ε
LW

= α2ε
LF

≪ ε
LF

, (4.12)

thus emphasizing that the Lax-Wendroff scheme is considerably less dissipative than
the corresponding Lax-Friedrichs.

The simplest way of quantifying the effects introduced by the right-hand-sides of
equations (4.3), (4.6), and (4.10) is by using a single Fourier mode with angular fre-
quencyω and wavenumberk, propagating in the positivex-direction,i.e.,

u(x, t) = ei(kx−ωt) . (4.13)

It is then easy to verify that in the continuum limit

∂u

∂t
= −iωu ,

∂u

∂x
= iku ,

∂2u

∂x2
= −k2u ,

∂3u

∂x3
= −ik3u . (4.14)
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Figure 4.2:Time evolution of a wave-packet initially centred atx = 0.5 computed using a Lax-Wendroff
scheme withC

CFL
= 0.75. The analytic solution at timet = 2 is shown with a solid line the dashed lines

are used to represent the numerical solution at the same time. Note how the amplitude of the wave-packet is
not drastically reduced but the group velocity suffers froma considerable error.

In the case in which the finite difference scheme provides an accurate approxima-
tion to a purely advection equation, the relations (4.14) lead to the obvious dispersion
relationω = vk, so that thenumericalmodeũ(x, t) will have a solution

ũ(x, t) = eik(x−vt) , (4.15)

representing a mode propagating withphase velocitycp ≡ ω/k = v, which coincides
with thegroup velocitycg ≡ ∂ω/∂k = v.

However, it is simple to verify that the advection-diffusion equation approximated
by the Lax-Friedrichs scheme (4.3), will have a corresponding solution

ũ(x, t) = e−εLFk2teik(x−vt) , (4.16)

thus having, besides the advective term, also an exponentially decaying mode. Simi-
larly, a few lines of algebra are sufficient to realize that the dissipative term does not
couple with the advective one and, as a result, the phase and group velocities remain
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the same andcp = cg = v. This is clearly shown in Fig. 4.1 which shows how the
wave packet is sensibly dissipated but, overall, maintainsthe correct group velocity.

Finally, it is possible to verify that the advection-diffusion equation approximated
by the Lax-Wendroff scheme (4.10), will have a solution given by

ũ(x, t) = e−εLWk2teik[x−(v+βLWk2)t] , (4.17)

where, together with the advective and (smaller) exponentially decaying modes already
encountered before, there appears also adispersiveterm∼ β

LW
k2t producing different

propagation speeds for modes with different wavenumbers. This becomes apparent
after calculating the phase and group velocities which are given by

cp =
ω

k
= v + β

LW
k2 , and cg =

∂ω

∂k
= v + 3β

LW
k2 , (4.18)

and provides a simple interpretation of the results shown inFig. 4.2.

4.2 Measuring Dissipation and Convergence

From what discussed so far it appears clear that one is often in the need of tools that
allow a rapid comparison among different evolution schemes. One might be interested,
for instance, in estimating which of two methods is less dissipative or whether an evo-
lution scheme which is apparently stable will eventually turn out to be unstable. In
what follows we discuss some of these tools and how they can beused to ascertain a
fundamental property of the numerical solution: its convergence

4.2.1 The summarising power of norms

A very useful tool that can be used in this context is the calculation of the“norms” of
the quantity we are interested in. In the continuum limit thep-normis defined as

‖u‖p =
1

(b − a)

(

∫ b

a

|u(x, t)|pdx

)1/p

. (4.19)

and has the same dimensions of the originating quantityu(x, t). The extension of this
concept to a discretised space and time is straightforward and yields the commonly
used norms

1−norm :: ||u||(tn) =
1

N

N
∑

j=1

|un
j | , (4.20)

2−norm :: ||u||2(tn) =
1

N





N
∑

j=1

(un
j )2





1/2

, (4.21)

p−norm :: ||u||p(tn) =
1

N





N
∑

j=1

(un
j )p





1/p

, (4.22)

infinity − norm :: ||u||
∞
(tn) = maxj=1,...N (|un

j |) . (4.23)



38 CHAPTER 4. DISSIPATION, DISPERSION AND CONVERGENCE

In the case of a scalar wave equation (see Sect. 5 for a discussion), the 2-norm has a
physical interpretation and could be associated to the amount of energy contained in the
numerical domain; its conservation is therefore a clear signature of a non-dissipative
numerical scheme.

Figure 4.3:Time evolution of the logarithm of the 2-norms for the different numerical schemes discussed
so far. Sommerfeld outgoing boundary conditions were used in this example.

Fig. 4.2 compares the 2-norms for the different numerical schemes discussed so far
and in the case in which Sommerfeld outgoing boundary conditions were used. Note
how the FTCS scheme is unstable and that the errors are already comparable with the
solution well before a crossing time. Similarly, it is evident that the use of Sommerfeld
boundary conditions allows a smooth evacuation of the energy in the wave from the
numerical grid aftert ∼ 6.

4.2.2 Consistency and Convergence

Consider therefore a PDE of the type

L(u) − f = 0 , (4.24)
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whereL is a second-order differential quasi-linear operator [cf. eq. (1.1)]. Let also
L

∆
be the discretized representation of such continuum differential operator andǫ =

O(∆xp, ∆tq) the associated truncation error,i.e.,

L
∆
(un

i ) − fn
i = 0 + O(∆xp, ∆tq) . (4.25)

For compactness let us assume that largest contribution to the truncation error can be
expressed simply asǫ = Chp = O(hp) whereh corresponds to either the spatial or
time discretization andC is a real constant coefficient. The finite-difference represen-
tationL

∆
is said to beconsistentif

lim
h→0

ǫ = 0 , (4.26)

Let u(x, t) represent the exact solution to a PDE andũ the exact solution of the
finite-difference equation that approximates the PDE with atruncation errorO(∆xp, ∆tq).
The finite-difference equation is said to beconvergentwhen the truncation error tends
to zero as a power ofp in ∆x and a power ofq in ∆t, namely

lim
h→0

ǫ = ∆xp + ∆tq , (4.27)

Note that this condition is much more severe that the simple requirement that the trun-
cation error will tend to zero as∆x and∆t tend to zero. The latter condition, in fact,
does not ensure that the numerical solution is approaching the exact one at theexpected
rate, that is the rate determined by the truncation error andconsequent to the choice of
the given finite-difference representation of the continuum differential operator.

Since checking convergence essentially amounts to measuring how the truncation
error changes with resolution, it is useful to define alocal (i.e., pointwise) deviation
from the exact solutionu atx = xi as

ǫj(h) = u
(h)
j − u(xj) (4.28)

be the magnitude of thelargesttruncation error (and which could be either in space or
in time) associated to the numerical solutionu

(h)
j obtained with grid spacingh. If the

numerical method used isp-th order accurate, then

ǫj(h) = Chp + O(hp+1) , (4.29)

whereC is a constant real coefficient. A different solution computed with a grid spac-
ing k will have at the same spatial positionxj a corresponding truncationǫj(k) error,
so thaterror ratio will be

Rj(h, k) ≡ ǫj(h)

ǫj(k)
, (4.30)

and the “numerical” local convergence order, that is the order of convergence as mea-
sured from the two numerical solutions atxj will be

p̃ ≡ log Rj(h, k)

log(h/k)
. (4.31)
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In the rather common case in whichk = h/2, expressions (4.30) reduces to

Rj(h, h/2) = 2p̃ ,

and the overall order of accuracy is measured numerically asp̃ = log2 (R). As we will
discuss in the following Section,the discrete representation of the continuum equations
is said to be convergent if and only ifp̃ = p, i.e., if

lim
h→0

p̃ ≡ log(ǫ)

log(Ch)
= p . (4.32)

Stated differently, convergence requires not only that theerror is decreasing and thus
that the method is consistent (see Sect. 4.2.3) but that it isdecreasing at theexpected
rate.

In general there will be a minimun resolution, sayh
min

, below which the truncation
error will dominate over the others,e.g.,round-off error. Clearly, one should expect
convergence only forh < h

min
and the solution in this case is said to be in aconvergent

regime.
What discussed so far assumes the knowledge of the exact solution, which, in gen-

eral, is not available. This does not represent a major obstacle and the convergence test
can still be performed by simply employing a third numericalevaluation of the solution.
This is referred to as a“self-convergence”test and exploits the fact that the difference
between two numerical solutions does not depend on the actual exact solution

u
(h)
j − u

(k)
j =

(

ǫj(h) − u(xj)
)

−
(

ǫj(k) − u(xj)
)

= ǫj(h) − ǫj(k) ,

where of course the two solutionsu(h)
j andu

(k)
j should be evaluated at the same grid-

pointxj . If one of the numerical solutions is not availble at such a point (e.g.,because
the spacing used is not uniform) a suitable interpolation isneeded and attention must
be paid that the error it introduces is much smaller than either ǫj(h) or ǫj(k) in order
not to spoil the convergence test.

With (4.29) in mind and using three different numerical solutionsu
(h)
j , u

(k)
j , u

(l)
j

with grid spacings such thath > k > l, the numerical error ratio is then defined as

Rj(h, k; l) ≡
u

(h)
j − u

(l)
j

u
(k)
j − u

(l)
j

=
ǫj(h) − ǫj(l)

ǫj(k) − ǫj(l)
=

hp̃ − lp̃

kp̃ − lp̃
, (4.33)

where the numerical solutionu(l)
j with the associated errorǫj(l) has the role of “refer-

ence” solution since it is the one with the smallest error. Inthe common case in which
k = h/2 andl = k/2 = h/4, the error ratio assumes the simple expresion

R(h, h/2; h/4) = 2p̃ − 1 ,

so that the computed overall accuracy order isp̃ = log2(R + 1).
As a final comment we note that all what discussed so far for a local convergence

analysis can be extended to aglobalevaluation of the truncation error and this amounts
to essentially replacing all the error estimates discussedabove with the corresponding
p-norms.
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4.2.3 Convergence and Stability

We conclude this Chapter with an important theorem that brings together many of the
different concepts exposed so far and provides a unique interpretation for the interplay
between consistency, convergence and stability. We have seen in the previous Section
that The finite-difference representation is said to beconsistentif

lim
h→0

ǫ = 0 , (4.34)

and it will be said to beconvergentif

lim
h→0

p̃ ≡ log(ǫ)

log(Ch)
= p . (4.35)

Clearly,also for a convergent solutionǫ → 0 ash → 0; however, conditions (4.27)
and (4.32) underline that while a convergent solution isalsoconsistent, the latter is not
necessarily true. Stated differently, while there are infinite consistent representation of
the differential operator, only one will be convergent.

There are numerous ways in which a consistent representation of a differential op-
erator may not be convergent and in large majority of the cases the lack of convergence
is related to a programming error (or “bug”). Because of this, convergence tests rep-
resent the most efficient if not the only way of validating that the discrete form of
the equations represents a faithful representation of the continuum ones (and hence of
picking out bugs!).

The knowledge of convergence has also another rewarding aspect and this is beau-
tifully summarised in the following theorem:

Theorem Given a properly posed initial-value problem and a finite differ-
ence approximation to it that satisfies the consistency condition, stability
is the necessary and sufficient condition for convergence.

This theorem, known as the“Lax equivalence theorem”, is very powerful as it shows
that for an initial-value problem which has been discretised with a consistent finite-
difference operator, the concept of stability and convergence are interchangable. In
general, therefore, proving that the numerical solution isconvergent will not only val-
idate that the discrete form of the equations represents a faithful representation of the
continuum ones, but also that the solution will be bounded atall times.
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Chapter 5

The Wave Equation in 1D

The numerical solution of the wave equation offers a good example of how a higher-
order (in space and time) PDE can be easily solved numerically through the solution of
a system of coupled 1st-order PDEs.

In one spatial dimenion (1D) the wave equation has the general form:

∂2u

∂t2
= v2 ∂2u

∂x2
, (5.1)

where, for simplicity, we will assume thatv is constant (i.e., v 6= v(x)), thus restricting
our attention to linear problems. It is much more convenientto rewrite (5.1) as a system
of coupled first-order conservative PDE. For this we set

r = v
∂u

∂x
, (5.2)

s =
∂u

∂t
, (5.3)

so that (5.1) can be rewritten as a system of 3 coupled, first-order differential equations







































∂r

∂t
= v

∂s

∂x
,

∂s

∂t
= v

∂r

∂x
,

∂u

∂t
= s ,

where it should be noted that the equations have the time derivative ofonevariable that
is proportional to the space derivative of theothervariable. This breaks the advective
nature of the equation discussed in the previous Chapter andwill prevent, for instance,
the use of an upwind scheme.
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Figure 5.1:Plot of the time evolution of the wave equation when the FTCS scheme is used. The initial
conditions were given by a Gaussian centered atx = 5 with unit variance and are shown with the dotted
line. Note the growth of the wave crests and the appearance ofshort wavelength noise. When this happens,
the numerical errors have grown to be comparable with the solution which will be rapidly destroyed.

In vector notation the system (5.4) can be symbolically written as

∂U

∂t
+

∂F (U)

∂x
= 0 , (5.4)

where

U =

(

r
s

)

, and F (U ) =

(

0 −v
−v 0

)

U . (5.5)

5.1 The FTCS Scheme

As mentioned in the previous Chapter, the upwind method cannot be applied to the
solution of the wave equation and the simplest, first-order in time method we can use
for the solution of the wave equation is therefore given by the FTCS scheme. Applying
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it to the first-order system (5.4) and obtain

rn+1
j = rn

j +
α

2
(sn

j+1 − sn
j−1) + O(∆x2) , (5.6)

sn+1
j = sn

j +
α

2
(rn

j+1 − rn
j−1) + O(∆x2) , (5.7)

Once the value ofsn+1
j has been calculated, the value ofu can be integrated in time

according to equation (5.3) so that

un+1
j = un

j + ∆tsn
j + O(∆x2) , (5.8)

where it should be noted thatun+1 has the same truncation error ofrn+1 andsn+1.
Of course, we do not expect that the FTCS scheme applied to thesolution of the

wave equation will provide a stable evolution and this is clearly shown in Fig. 5.1 which
reports the solution of equations (5.6), (5.6) and (5.8) having as initial conditions a
Gaussian centered atx = 5 with unit variance. Different lines show the solution at
different times and is apparent how the initial profile splits in two part propagating in
two opposite directions. During the evolution, however, the error grows (note that the
peaks of the two packets increase with time) and in about one crossing time the short
wavelength noise appears (this is shown by the small sharp peaks produced when the
wave has left the numerical grid). When this happens, the numerical errors have grown
to be comparable with the solution, which will be rapidly destroyed.

5.2 The Lax-Friedrichs Scheme

As done in the previous Section, we can apply the Lax-Friedrichs scheme to the solu-
tion of the wave equation through the first-order system (5.4) and easily obtain

rn+1
j =

1

2
(rn

j+1 + rn
j−1) +

α

2
(sn

j+1 − sn
j−1) + O(∆x2) , (5.9)

sn+1
j =

1

2
(sn

j+1 + sn
j−1) +

α

2
(rn

j+1 − rn
j−1) + O(∆x2) , (5.10)

Also in this case, once the value ofsn+1
j has been calculated, the value forun+1

j

can be computed according to (5.8).
The solution of equations (5.9), (5.9) and (5.8) with the same initial data used in

Fig. 5.1 is shown in Fig. 5.2. Note that we encounter here the same behaviour found
in the solution of the advection equation and in particular it is apparent the progressive
diffusion of the two travelling packets which spread over the numerical grid as they
propagate. As expected, the evolution is not stable and no error growth is visible many
crossing times after the wave has left the numerical grid.
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Lax−Friedrichs
scheme

Figure 5.2:The same as in Fig. 5.1 but when the Lax-Friedrichs scheme is used. Note the absence of the
late time instabilities but also the effects of the numerical diffusion that widens and lowers the wave fronts.

5.3 The Leapfrog Scheme

We can adapt the Leapfrog scheme to equations (5.4) for the solution of the wave
equation in one dimension, centering variables on appropriate half-mesh points

rn
j+ 1

2

≡ v
∂u

∂x

∣

∣

∣

∣

n

j+ 1

2

= v
un

j+1 − un
j

∆x
+ O(∆x) , (5.11)

s
n+ 1

2

j ≡ ∂u

∂t

∣

∣

∣

∣

n+ 1

2

j

=
un+1

j − un
j

∆t
+ O(∆t) , (5.12)
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and then considering the Leapfrog representation of equations (5.4)

rn+1
j+ 1

2

= rn
j+ 1

2

+ α
(

s
n+ 1

2

j+1 − s
n+ 1

2

j

)

+ O(∆x2) , (5.13)

s
n+ 1

2

j = s
n− 1

2

j + α
(

rn
j+ 1

2

− rn
j− 1

2

)

+ O(∆x2) , (5.14)

As in the previous examples, the new value for the wave variable u is finally computed
after the integration in time ofs. Here however, to preserve the second-order accuracy
in time it is necessary to average the time derivatives betweenn andn + 1 to obtain

un+1
j = un

j +
∆t

2
(sn+1

j + sn
j ) + O(∆x2) = un

j +
∆t

2
s

n+1/2
j + O(∆x2) . (5.15)

Leapfrog
scheme

Figure 5.3:The same as in Fig. 5.1 but when the Leapfrog scheme is used. Note the absence of the late
time instabilities and of the effects of the numerical diffusion.

A simple substitution of (5.11) and (5.12) into (5.13) and (5.14) shows how the
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Leapfrog representation of the wave equation is nothing butits second-order differenc-
ing:

un+1
j − 2un

j + un−1
j

∆t2
= v2

(

un
j+1 − 2un

j + un
j−1

∆x2

)

+ O(∆t2, ∆x2) , (5.16)

so that the solution at the new time-level is

un+1
j = α2un

j+1 + 2un
j

(

1 − α2
)

+ α2un
j−1 − un−1

j + O(∆x4) . (5.17)

Note that as formulated in (5.17), the Leapfrog scheme has been effectively recast
into a “one-level” scheme.

The solution of equations (5.17) and (5.15) with the same initial data used in
Fig. 5.1 is shown in Fig. 5.3. Note that we do not encounter here a significant amount
of diffusion for the two travelling wave packets. As expected, the evolution is stable
and no error growth is visible many crossing times after the wave has left the numerical
grid.

5.4 The Lax-Wendroff Scheme

Also in the case, the application of this scheme to our systemof equations (5.4) is
straightforward. We can start with the time evolution of thevariabler to obtain

rn+1
j = rn

j + α
(

s
n+1/2
j+1/2 − s

n+1/2
j−1/2

)

+ O(∆x2) , (5.18)

where the terms in the spatial derivatives are computed as

s
n+1/2
j+1/2 =

1

2

(

sn
j + sn

j+1

)

+ α
(

rn
j+1 − rn

j

)

+ O(∆x2) , (5.19)

s
n+1/2
j−1/2 =

1

2

(

sn
j + sn

j−1

)

+ α
(

rn
j − rn

j−1

)

+ O(∆x2) . (5.20)

As done for the advection equation, it is convenient not to use equations (5.18)
and (5.19) as two coupled but distinct equations and rather to combine them into two
“one-level” evolution equations forr ands

rn+1
j = rn

j + α

[

1

2
(sn

j+1 − sn
j−1) +

α

2
(rn

j+1 − 2rn
j + rn

j−1)

]

+ O(∆x2) ,

(5.21)

sn+1
j = sn

j + α

[

1

2
(rn

j+1 − rn
j−1) +

α

2
(sn

j+1 − 2sn
j + sn

j−1)

]

+ O(∆x2) .

(5.22)

The solution of equations (5.21), (5.22) and (5.15) with thesame initial data used in
Fig. 5.1 is shown in Fig. 5.4. Note that we do not encounter here a significant amount
of diffusion for the two travelling wave packets. As expected, the evolution is stable
and no error growth is visible many crossing times after the wave has left the numerical
grid.
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Figure 5.4:The same as in Fig. 5.1 but when the Lax-Wendroff scheme is used. Note the absence of the
late time instabilities and of the effects of the numerical diffusion.
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Chapter 6

Boundary Conditions

Unavoidable and common to all the numerical schemes discussed so far is the problem
of treating the solution on the boundaries of the spatial grid as the time evolution pro-
ceeds. Let1 be the first gridpoint andJ the last one. It is clear from equations (3.26),
(5.16), (5.21) and (5.22) that the new solution at the boundaries of the spatial grid
(i.e., un+1

1 ,un+1
J ) is undetermined as it requires the valuesun

0 , un
J+1. The most natural

boundary conditions for the evolution of a wave equation arethe so calledSommerfeld
boundary conditions(or radiative boundary conditions) which will be discussed in the
following Section. Other boundary conditions of general interest are:

• Dirichlet-type boundary conditions: values of the relevant quantity are imposed
at the boundaries of the numerical grid. These values can be either functions of
time or be held constant (cf. boundary conditions for boundary value problems);

–”Periodic” boundary conditions: assume that the numerical domain is
topologically connected in a given direction; this is oftenused in cosmological
simulations (and “videogames”).

• von Neumann-type boundary conditions: values of the derivatives of the relevant
quantity are imposed at the boundaries of the numerical grid. As for Dirichlet,
these values can be either functions of time or be held constant (cf. boundary
conditions for boundary value problems);

–”Reflecting” boundary conditions: mimic the presence of a reflecting bound-
ary, i.e., of a boundary with zero transmission coefficient;

–”Absorbing” boundary conditions: mimic the presence of an absorbing
boundary,i.e., of a boundary with unit transmission coefficient;

6.1 Outgoing Wave BCs: the outer edge

A scalar wave outgoing in the positivex-direction is described by the advection equa-
tion:

∂u

∂t
+ v

∂u

∂x
= 0 (6.1)
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A finite-difference, first-order accurate representation of equation (6.1) which is cen-
tered in both time (atn + 1

2 ) and in space (atj + 1
2 ) is given by (see Fig. 3.11)

j−1. . . j−2

n

n+1

j j+1

ghost zones

(n + 1/2)

(j − 1/2)

Figure 6.1:Schematic representation of the centering for a first-order, outgoing-wave Sommerfeld bound-
ary conditions. An equivalent one can be drawn for an ingoing-wave.

1

2∆t

[

(un+1
j+1 + un+1

j ) − (un
j+1 + un

j )
]

= − v

2∆x
[(un+1

j+1 + un
j+1) − (un+1

j + un
j )]

and which leads to

un+1
j+1 (1 + α) = un+1

j (−1 + α) + un
j+1 (1 − α) + un

j (1 + α) (6.2)

Expression (6.2) can also be written as

un+1
j+1 = un

j − un+1
j Q + un

j+1Q , (6.3)

where

Q ≡ 1 − α

1 + α
. (6.4)

The use of expression (6.3) for the outermost grid point where the wave is outgoing will
provide first-order accurate and stable boundary conditions. Note, however, that (6.3) is
a discrete representation of a physical condition which would transmit the wave without
reflection. In practice, however, a certain amount of reflection is always produced (the
transmission coefficient is never exactly one); the residual wave is then transmitted
back in the numerical box. A few reflections are usually sufficient to reduce the wave
content to values below the machine accuracy.
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6.2 Ingoing Wave BCs: the inner edge

Similarly, a scalar wave outgoing in the negativex-direction (or ingoing in the positive
one) is described by the advection equation:

∂u

∂t
− ∂u

∂x
= 0 (6.5)

Following the same procedure discussed before, the algorithm becomes:

un+1
j

(

1 +
∆t

∆x

)

= −un+1
j+1

(

1 − ∆t

∆x

)

+ un
j+1

(

1 +
∆t

∆x

)

+ un
j

(

1 − ∆t

∆x

)

Then
un+1

j = un
j+1 − un+1

j+1 Q + un
j Q , (6.6)

whereQ is the same quantity as for the out-going wave. If we use equations (6.3) and
(6.6) to evolve the solution at time-stepn+1 at the boundary of our spatial grid, we are
guaranteed that our profile will be completely transported away, whatever integration
scheme we are adopting (Leapfrog, Lax-Wendroff etc.).

6.3 Periodic Boundary Conditions

These are very simple to impose and ifj is between 1 andJ , they are given simply by

un+1
1 = un+1

J−1, un+1
J = un+1

2 , (6.7)

In the case of a Gaussian leaving the center of the numerical grid, these bound-
ary conditions effectively produce a reflection. The boundary conditions (6.7) force
to break the algorithm for the update scheme excluding the first and last points that
need to be computed separately. An alternative procedures consists of introducing a
number of“ghost” gridpoints outside the computational domain of interest sothat the
solution is calculated using always thesame stencilfor j = 1, 2, . . . , J and exploiting
the knowledge of the solution also at the ghost gridpoints,e.g., 0 andJ + 1.

In the case there is only one ghost gridpoint at either edge ofthe 1D grid, the
boundary conditions are simply given by

un+1
0 = un+1

J , un+1
J+1 = un+1

1 . (6.8)
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Chapter 7

The wave equation in two
spatial dimensions (2D)

We will now extend the procedures studied so far to the case ofa wave equation in two
dimensions

∂2u

∂t2
= v2

(

∂2u

∂x2
+

∂2u

∂y2

)

. (7.1)

As for the one-dimensional case, also in this case the wave equation can be reduced
to the solution of a set of three first-order advection equations

∂r

∂t
= v

∂s

∂x
, (7.2)

∂l

∂t
= v

∂s

∂y
, (7.3)

∂s

∂t
= v

(

∂r

∂x
+

∂l

∂y

)

, (7.4)

once the following definitions have been made

r = v
∂u

∂x
, (7.5)

l = v
∂u

∂y
, (7.6)

s =
∂u

∂t
. (7.7)

In vector notation the system can again be written as

∂U

∂t
+ ∇F (U) = 0 , (7.8)
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where

U =





r
l
s



 , and F (U) =





−v 0 0
0 −v 0
0 0 −v



U = −v





r
l
s



 ,

(7.9)
provided we define

∇ ≡























0 0
∂

∂x

0 0
∂

∂y

∂

∂x

∂

∂y
0























. (7.10)

The finite-difference notation should also be extended to account for the two spatial
dimension and we will then assume thatun

i,j ≡ u(xi, yj, t
n).

7.1 The Lax-Friedrichs Scheme

We can look at the system of equations (7.2) and (7.3) as a set of two equations to be
integrated with the procedures so far developed in one-dimension. Furthermore, we
need to solve for eq. (7.4) which can be written as

∂s

∂t
= −∂Fx

∂x
− ∂Fy

∂y
(7.11)

once we identifyFx with −vr andFy with −vl.
The Lax-Friedrichs scheme for this equation is just the generalization of the 1D

expressions discussed so far and yields

sn+1
i,j =

1

4

[

sn
i+1,j + sn

i−1,j + sn
i,j+1 + sn

i,j−1

]

− ∆t

2∆x
[(Fn

x )i+1,j − (Fn
x )i−1,j ]

− ∆t

2∆y

[

(Fn
y )i,j+1 − (Fn

y )i,j−1

]

,

=
1

4

[

sn
i+1,j + sn

i−1,j + sn
i,j+1 + sn

i,j−1

]

− ∆t

2

[

rn
i+1,j − rn

i−1,j

∆x

]

−∆t

2

[

lni,j+1 − lni,j−1

∆y

]

,

(7.12)

with the corresponding stencil being shown in Fig. 7.1 and where it should be noted
that the center of the cross-like stencil is not used. A von Neumann stability analysis
can be performed also in 2D and it yields

ξ =
1

2
[cos(kx∆x) + cos(ky∆y)] − i[αx sin(kx∆x) + αy sin(ky∆y)] , (7.13)
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Figure 7.1:Schematic diagram of a Lax-Friedrichs evolution scheme in two dimensions. Note that the
center of the cross-like stencil is not used in this case.

where

αx ≡ vx∆t

∆x
, αy ≡ vy∆t

∆x
. (7.14)

Stability is therefore obtained if

1

2
− (α2

y + α2
y) ≥ 0 , (7.15)

or, equally, if

∆t ≤ ∆x
√

2(v2
x + v2

y)
, (7.16)

Expression (7.16) represents the 2D extension of the CFL stability condition. In gen-
eral, for a N dimensional space, the CFL stability conditioncan be expressed as

∆t ≤ min

(

∆xi√
N |v|

)

, (7.17)

wherei = 1, ...N and|v| ≡ (
∑N

i=1 v2
i )1/2. Note, in 2D, the appearence of an averag-

ing coefficient1/4 multiplying the value of the function at the time-leveln.

7.2 The Lax-Wendroff Scheme

The 2D generalization of the one-dimensional scheme (3.43)is also straightforward
and can be described as follows
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1. Computer andl at the half-time using a half-step Lax-Friedrichs scheme

r
n+ 1

2

i,j =
1

4

(

rn
i+1,j + rn

i,j+1 + rn
i−1,j + rn

i,j−1

)

+
α

4

(

sn
i+1,j − sn

i−1,j

)

,

(7.18)

l
n+ 1

2

i,j =
1

4

(

lni+1,j + lni,j+1 + lni−1,j + lni,j−1

)

+
α

4

(

sn
i,j+1 − sn

i,j−1

)

,

(7.19)

whereα ≡ v∆t/∆x.

2. Evolves to the time-leveln + 1 using a half-step Leapfrog scheme

sn+1
i,j = sn

i,j +
α

2

(

r
n+ 1

2

i+1,j − r
n+ 1

2

i−1,j

)

+
α

2

(

l
n+ 1

2

i,j+1 − l
n+ 1

2

i,j−1

)

. (7.20)

3. Updateu to the time-leveln + 1, i.e.,

un+1
i,j = un

i,j +
∆t

2

(

sn+1
i,j + sn

i,j

)

. (7.21)

4. Evolver andl to the time-leveln + 1, i.e.,

rn+1
i,j =

1

4

(

rn
i+1,j + rn

i,j+1 + rn
i−1,j + rn

i,j−1

)

+

α

2

[

1

2

(

sn
i+1,j + sn+1

i+1,j

)

− 1

2

(

sn
i−1,j + sn+1

i−1,j

)

]

,

(7.22)

ln+1
i,j =

1

4

(

lni+1,j + li,j+1 + lni−1,j + lni,j−1

)

+

α

2

[

1

2

(

sn
i,j+1 + sn+1

i,j+1

)

− 1

2

(

sn
i,j−1 + sn+1

i,j−1

)

]

.(7.23)

7.3 The Leapfrog Scheme

The 2D generalization of the one-dimensional scheme (5.16)is less straightforward,
but not particularly difficult. As in one dimension, we can start by rewriting directly
the finite-difference form of the wave equation as

un+1
i,j − 2un

i,j + un−1
i,j

∆t2
= v2

(

un
i+1,j − 2un

i,j + un
i−1,j

∆x2

)

+ v2

(

un
i,j+1 − 2un

i,j + un
i,j−1

∆y2

)

so that, after some algebra, we obtain the explicit form

un+1
i,j = α2

[

un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1

]

+ 2un
i,j(1 − 2α2) − un−1

i,j . (7.24)

The stencil relative to the algorithm (7.24) is illustratedin Fig. 7.2.
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Figure 7.2:Schematic diagram of a Leapfrog evolution scheme in two dimensions. Note that the center
of the cross-like stencil is used in this case both at the time-level n (filled circle) and at the time leveln + 1
(filled square).

Figs. 7.3 and 7.4 show the solution of the wave equation in 2D using the scheme
(7.24) and imposing Sommerfeld outogoing-wave boundary conditions at the edges of
the numerical grid.

Radically different appears the evolution when reflective boundary conditions are
imposed, as it is illustrated in Figs 4. Note that the initialevolution (i.e., for which
the effects of the boundaries are negligible) is extremely similar to the one shown in
Figs. 4, but becomes radically different when the wavefronthas reached the outer
boundary. As a result of the high (but not perfect!) reflectivity of the outer boundaries,
the wave is “trapped” inside the numerical grid and bounces back and forth producing
the characteristic interference patterns.
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Figure 7.3:Plot of the time evolution of the wave equation when the Leapfrog scheme in 2D is used and
Sommerfeld boundary conditions are imposed. Snapshots at increasing times are illustrated in a clockwise
sequence.
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Figure 7.4: Plot of the time evolution of the wave equation when the Leapfrog scheme in 2D is used
and Reflecting boundary conditions are applied. Snapshots at increasing times are illustrated in a clockwise
sequence.
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Figure 7.5:Plot of the time evolution of the wave equation when the Leapfrog scheme in 2D is used and
Reflecting boundary conditions are applied.
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Figure 7.6:Plot of the time evolution of the 2-norm when the Leapfrog scheme in 2D is used. Note the
radically different behaviour between Sommerfeld and reflecting boundary conditions.
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Chapter 8

Parabolic PDEs

8.1 Diffusive problems

The inclusion of viscosity in the description of a fluid leadsto non trivial complications
in the numerical solution of the hydrodynamic equations. From an analytical point of
view, the resulting equations are no longer purely hyperbolic PDE’s but rather mixed
hyperbolic-parabolic PDE’s. This means that the numericalmethod used to solve them
must necessarily be able to cope with the parabolic part of the equations. It is therefore
convenient to fully understand the prototypical parabolicequation, the one-dimensional
diffusion equation, both analytically and numerically, before attempting to solve any
mixed hyperbolic-parabolic PDE.

8.2 The diffusion equation in 1D

The description of processes like the heat conduction in a solid body or the spread of a
dye in a motionless fluid is given by the one-dimensionaldiffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (8.1)

HereD is a constant coefficient that determines the magnitude of the “diffusion” in the
process under investigation (being given by the thermal conductivity and dye diffusion
coefficient respectively in the above mentioned examples).

A complete description of some particular process will clearly be possible only
once the initial value (i.e., u(x, 0) = h(x) with x ∈ [0, L]) and the boundary conditions
are specified. The most common boundary conditions (BCs) aresuch to prescribe the
value of the functionu(x, t) at the boundaries,u(0, t) = u0(t) andu(L, t) = uL(t), if
the boundaries of the physical domain are modeled to be in theorigin and at a distance
L from the origin. This type of BCs are calledDirichlet boundary conditions(DBC).

On the other hand, it is possible that the physics of the problem requires the BCs
to be specified in terms of the derivatives ofu(x, t). This is the case for instance
when 1-D heat conduction in a bar is investigated and the boundaries of the bar are
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completely insulated so that no heat flux is present outside the body. More generally, if
q(x, t) ≡ ∂u(x, t)/∂x, the so calledNeumann boundary conditions(NBC) are written
asq(0, t) = q0(t) andq(L, t) = qL(t). It should be noted however that Dirichlet BCs
and Neumann BCs are not the only possible BCs.

In what follows, first the analytic solution to a simple diffusive problem will be
given and then some numerical methods to solve it will be examined.

8.3 Explicit updating schemes

8.3.1 The FTCS method

The most straightforward way to finite difference equation (8.1) is by the FTCS method,
i.e.,

un+1
j − un

j

∆t
= D

un
j+1 − 2un

j + un
j−1

∆x2
+ O(∆t, ∆x2) , (8.2)

Unlike for a hyperbolic equation, where the FTCS method leads to un unconditionally
unstable method, the presence of a second space derivative in the model parabolic
equation (8.1) allows the FTCS method to be conditionally stable [9]. A von Neumann
stability analysis leads in fact to the stability criterion

γ ≡ 2D
∆t

∆x2
≤ 1 , (8.3)

that lends itself to a physical interpretation: the maximumtime step is, up to a numeri-
cal factor, the diffusion time across a cell of width∆x. This stability condition poses a
serious limit in the use of the above scheme since the typicaltime scales of interest will
require a number of timesteps which could be prohibitive in multidimensional calcu-
lations. The additional fact that the overall scheme is first-order accurate in time only
strengthens the need for a different method.

8.3.2 The Du Fort-Frankel method and the θ-method

With this objective in mind, it is not difficult to think of a way to avoid the reduced
accuracy due to the forward-time finite differencing approach used in FTCS. A simple
time-centered finite differencing

un+1
j − un−1

j

2∆t
= D

un
j+1 − 2un

j + un
j−1

∆x2
(8.4)

should grant second-order accuracy. Unfortunately, this method is unconditionally un-
stable. To overcome the stability problem, Du Fort and Frankel [11] suggested the
following scheme

un+1
j − un−1

j

2∆t
= D

un
j+1 − un+1

j − un−1
j + un

j−1

∆x2
, (8.5)
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which is obtained from (8.4) with the substitution ofun
j with 1

2 (un+1
j + un−1

j ), that is,

by taking the average ofun+1
j andun−1

j , i.e.,

un+1
j =

(

1 − γ

1 + γ

)

un−1
j +

(

γ

1 + γ

)

(

un
j+1 + un

j−1

)

+ O(∆x2) . (8.6)

With this substitution, the method is still explicit and becomes unconditionally stable,
but not without a price. A consistency analysis shows, in fact, that the Du Fort-Frankel
method could be inconsistent. The local truncation error is[8]

ǫ =
∆t2

6

∂3u

∂t3

∣

∣

∣

∣

j,n

− D
∆x2

12

∂4u

∂x4

∣

∣

∣

∣

j,n

+

(

∆t

∆x

)2
∂2u

∂t2

∣

∣

∣

∣

∣

j,n

+ . . . (8.7)

= O
(

∆t2, ∆x2,

(

∆t

∆x

)2
)

, (8.8)

which shows that if∆t and∆x tend to zero at the same rate,i.e., ∆t = k∆x with
k being a constant, then the truncation error does not vanish for ∆t → 0 and∆x →
0. Indeed, the solution obtained with this method will effectively be the solution to
equation

∂u(x, t)

∂t
+ k2 ∂2u(x, t)

∂t2
= D

∂2u(x, t)

∂x2
, (8.9)

and not the solution of (8.1). On the other hand, it is also clear from (8.7) that having
a timestep∆t = k∆x1+ε with ε > 0 will assure the consistency of the method. Of
course, the closer isε to 1, the smaller will have to be∆x in order to achieve consis-
tency. Moreover, accuracy requirements pose an additionalconstraint onε. For a first
order-method it is necessary to haveε = 1/2 while to achieve second-order accuracy
the requirement isε = 1. It would be pointless and computationally inefficient to set
ε > 1 since in this case the dominant contribution to the truncation error would be
determined by the termO

(

∆x2
)

which acts as an upper limit to the overall accuracy
order. This means thatε is constrained to be in the interval1/2 ≤ ε ≤ 1.

The advantages of the Du Fort-Frankel method over the FTCS scheme should now
be easily seen. To achieve first-order accuracy, a timestep∆t = (∆x)3/2 is needed
with the former while the latter requires∆t ≈ (∆x)

2. On the other hand, if a timestep
∆t = (∆x)

2 is used the Du Fort-Frankel method gains, second-order accuracy. Finally,
any desired accuracy between first and second order could be achieved with a timestep
that is independent of the diffusion coefficientD. The only minor drawback of the
Du Fort-Frankel scheme lies in the requirement of keeping track of an additional time
level.

A generalization of the Du Fort-Frankel scheme is also straightforward. In partic-
ular, when averagingun+1

j andun−1
j , instead of weighting them equally, it is possible

to average them with different weights. The resulting update scheme is therfore

un+1
j − un−1

j

2∆t
= D

un
j+1 − 2

(

θun+1
j − (1 − θ)un−1

j

)

+ un
j−1

∆x2
, (8.10)
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whereθ is a variable parameter. In [8] it is shown that the local truncation error for this
scheme is

∆t2

6

∂3u

∂t3

∣

∣

∣

∣

j,n

− D
∆x2

12

∂4u

∂x4

∣

∣

∣

∣

j,n

+ (2θ − 1)
2∆t

∆x2

∂u

∂t

∣

∣

∣

∣

j,n

+ (8.11)

∆t2

∆x2

∂2u

∂t2

∣

∣

∣

∣

j,n

+ O
(

∆t3

∆x2
, ∆t4, ∆x4

)

, (8.12)

which clearly shows that consistency could be achieved for any value ofθ if ∆t = k∆x2+ε

with ε andk being positive real numbers. Ifθ = 1/2 , on the other hand, the scheme
is actually the Du Fort-Frankel scheme [cf. expression (8.7)] with the consistency con-
straints already outlined above. It is therefore clear that, when solving equation (8.1),
timestep considerations show that the only viableθ-scheme is theθ = 1/2 scheme,
i.e., the Du Fort-Frankel scheme.

8.3.3 ICN as a θ-method

We next extend the stability analysis of theθ-ICN discussed in Sect. 3.6.1 to the a
parabolic partial differential equation and use as model equation the one-dimensional
diffusion equation (8.1). Parabolic equations are commonly solved using implicit meth-
ods such as the Crank-Nicolson, which is unconditionally stable and thus removes the
constraints on the timestep [i.e., ∆t ≈ O(∆x2)] imposed by explicit schemes [9].
In multidimensional calculations, however, or when the setof equations is of mixed
hyperbolic-parabolic type, implicit schemes can be cumbersome to implement since
the resulting system of algebraic equations does no longer have simple and tridiagonal
matrices of coefficients. In this case, the most convenientechoice may be to use an
explicit method such as the ICN.

Also in this case, the first step in our analysis is the derivation of a finite-difference
representation of the right-hand-side of eq. (8.1) which, at second-order, has the form

L
∆
(un

j,j±1) =
un

j+1 − 2un
j + un

j−1

∆x2
+ O(∆x2) . (8.13)

Constant Arithmetic Averages

Next, we consider first the case with constant arithmetic averages (i.e., θ = 1/2) and
the expression for the amplification factor afterM -iterations is then purely real and
given by

(M)ξ = 1 + 2

M
∑

n=1

(−γ)
n

, (8.14)

whereγ ≡ (2D∆t/∆x2) sin2(k∆x/2). Requiring now for stability that
√

ξ2 ≤ 1 and
bearing in mind that

−1 ≤
M
∑

n=0

(−γ)
n+1 ≤ 0 , for γ ≤ 1 , (8.15)
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Figure 8.1:Left panel:stability region in the (θ, γ) plane for the two-iterationsθ-ICN
for the diffusion equation (8.1). Thick solid lines mark thelimit at whichξ2 = 1, while
the dotted contours indicate the values of the amplificationfactor in the stable region.
Right panel: same as in the left panel but with swapping the averages between two
corrections.

we find that the scheme is stable forany number of iterations provided thatγ ≤ 1.
Furthermore, because the scheme is second-order accurate from the first iteration on,
our suggestion when using the ICN method for parabolic equations is that one iteration
should be usedand no more. In this case, in particular, the ICN method coincides with
a FTCS scheme [9].

Note that the stability conditionγ ≤ 1 introduces again a constraint on the timestep
that must be∆t ≤ ∆x2/(2D) and thusO(∆x2). As a result and at least in this respect,
the ICN method does not seem to offer any advantage over otherexplicit methods for
the solution of a parabolic equation1.

Constant Weighted Averages

We next consider the stability of theθ-ICN method but focus our attention on a two-
iterations scheme since this is the number of iterations needed in the solution of the
parabolic part in a mixed hyperbolic-parabolic equation when, for instance, operator-
splitting techniques are adopted [9]. In this case, the amplification factor is again purely
real and given by

ξ = 1 − 2γ + 4γ2θ − 8γ3θ2 , (8.16)

so that stability is achieved if

0 ≤ γ
(

1 − 2θγ + 4θ2γ2
)

≤ 1 . (8.17)

1Note that also the Dufort-Frankel method [11], usually described as unconditionally stable, does not es-
cape the timestep constraint∆t ≈ O(∆x2) when a consistent second-order accurate solution is needed[8].
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Sinceγ > 0 by definition, the left inequality is always satisfied, whilethe right one is
true provided that, forγ < 4/3,

γ −
√

γ(4 − 3γ)

4γ2
≤ θ ≤ γ +

√

γ(4 − 3γ)

4γ2
. (8.18)

The stability region described by the condition (8.18) is shown in the left panel
of Fig. 8.1 for sin k∆x = 1 and illustrates that the scheme is stable for any value
0 ≤ θ ≤ 1, and also that slightly larger timesteps can be taken whenθ ≃ 0.2.

Swapped Weighted Averages

After some lengthy algebra the calculation of the amplification factor for theθ-ICN
method with swapped weighted averages yields

ξ = 1 − 2γ + 4γ2θ − 8γ3θ(1 − θ) , (8.19)

and stability is then given by

−1 ≤ 1 − 2γ + 4γ2θ − 8γ3θ(1 − θ) ≤ 1 . (8.20)

Note that none of the two inequalities is always true and in order to obtain analytical
expressions for the stable region we solve the condition (8.20) with respect toθ and
obtain

θ ≤ 2γ − 1 +
√

4γ2 − 4γ + 5

4γ
, (8.21a)

θ ≤ γ(2γ − 1) −
√

γ (4γ3 − 4γ2 + 5γ − 4)

4γ2
, (8.21b)

θ ≥ γ(2γ − 1) +
√

γ (4γ3 − 4γ2 + 5γ − 4)

4γ2
. (8.21c)

The resulting stable region forsin k∆x = 1 is plotted in the right panel of Fig. 8.1 and
seems to suggest that arbitrarily large values ofγ could be considered whenθ & 0.6
It should be noted, however, that the amplification factor isalso severely reduced as
larger values ofγ are used and indeed it is essentially zero in the limitθ → 1.

8.4 Implicit updating schemes

8.4.1 The BTCS method

It is common for explicit schemes to be only conditionally stable and in this respect the
Du Fort-Frankel method is somewhat unusual. Implicit methods, on the other hand, do
not share this property being typically unconditionally stable. This suggests to apply an
implicit finite differencing to equation (8.1) in the form ofa “backward-time centered-
space” (BTCS) scheme and obtain

un+1
j − un

j

∆t
= D

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+ O(∆t, ∆x2) . (8.22)
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As a von Neumann stability analysis shows [9], the differencing (8.22) is uncondition-
ally stable. This method is also calledbackward time. Rearranging the terms it is easy
to obtain

−γun+1
j−1 + 2(1 + γ)un+1

j − γun+1
j+1 = 2un

j , (8.23)

which shows that to obtainu at time leveln+1 is necessary to solve a system of linear
equations. Luckily, the system istridiagonal, i.e., only the nearest neighbors of the
diagonal term are non zero, which allows the use ofsparse matrixtechniques (a matrix
is called sparse if the number of non zero elements is small compared to the number of
all the elements). The main disadvantage of this scheme, besides that of requiring the
simultaneous solution ofN algebraic equations, is that it is only first-order accuratein
time.

8.4.2 The Crank-Nicolson method

Combining the stability of an implicit method with the accuracy of a method that is
second-order both in space and in time is possible and is achieved by averaging explicit
FTCS and implicit BTCS schemes:

un+1
j − un

j

∆t
=

D

2

[

(un+1
j+1 − 2un+1

j + un+1
j−1 ) + (un

j+1 − 2un
j + un

j−1)

∆x2

]

+

O(∆t2, ∆x2) . (8.24)

This scheme is calledCrank-Nicolsonand is second-order in time since both the left
hand side and the right hand side are centered inn+1/2. As the fully implicit scheme,
the CN scheme is unconditionally stable and is the best choice for the solution of simple
one dimensional diffusive problems.

The disadvantage of this scheme with respect to an explicit scheme like the Du Fort-
Frankel scheme lies in the fact that in more than one dimension the system of linear
equation will no longer be tridiagonal, although it will still be sparse. The extension of
the Du Fort-Frankel scheme, on the other hand, is straightforward and with the same
constraints as in the one dimensional case. Because of this and other problems which
emerge in multidimensional applications, more powerful methods, like theAlternating
Direction Implicit (ADI) have been developed. ADI embodies the powerful concept of
operator splittingor time splitting, which requires a more detailed explanation and will
not be given in these notes.
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Appendix A

Semi-analytical solution of the
model parabolic equation

In this appendix we present details on the derivation of the semi-analytic solution to
equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
, (A.1)

whereD is a constant coefficient. We will first consider homogeneousDirichlet and
then homogeneous Neumann boundary conditions. Because theinitial valueu(x, 0) =
h(x) is also needed, we will consider two different initial profiles for the two cases.
The solutions we will obtain are to be considered semi-analytical in the sense that it is
usually necessary to evaluate them numerically. This is so because infinite series and
integrals that could not always be evaluated analytically are involved.

A.1 Homogeneous Dirichlet boundary conditions

Consider a generic problem for which equation (8.1) holds over a domain[0, L]. Sup-
pose also that the boundary conditions could be written ashomogeneousDBC, i.e.,
u(0, t) = u(L, t) = 0, and that at timet0 = 0 the distribution ofu(x, t) is that shown
in Figure A.1, which could be written as

h(x) ≡ u(x, 0) =







2x/L if 0 ≤ x ≤ L/2

−2x/L + 2 if L/2 < x ≤ L
(A.2)

while the boundary conditions areu(0, t) = u(L, t) = 0.
The equation could be solved by means of the separation of variables technique,

i.e., by searching for a solution of the form

u(x, t) = f(x)g(t) , (A.3)
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Figure A.1: Initial value for the diffusive problem (8.1).

which allows to write equation (A.1) as

f
∂g

∂t
= Dg

∂2f

∂x2
. (A.4)

Multiplying both sides by1/(fg) the result is

1

g

∂g

∂t
= D

1

f

∂2f

∂x2
. (A.5)

The left hand side of (A.5) is a function oft only while the right hand side depends only
on x. Because of that, their common value can only be a constant, with this constant
being a negative number because otherwiseg → ∞ (and thereforeu → ∞) ast → ∞.
Thus the common value could be denoted as−λ with λ > 0 and so (A.5) becomes

1

g

∂g

∂t
= −λ = D

1

f

∂2f

∂x2
. (A.6)

Recaling that the initial condition has been written ash(x) it is possible to write the
solution as

u(x, t) = h(x)e−λt , (A.7)

with the requirement that

−D
∂2f

∂x2
= λf . (A.8)

The problem (A.8) is aneigenvalue problemfor the differential operator−D ∂2/∂x2

with eigenvalueλ andeigenfunctionf(x). The eigenfunctions and eigenvalues will be
determined imposing the boundary conditions.

The general solution to (A.8) can be written as

f(x) = Ae−ikx + Beikx , (A.9)
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with k ≡
√

λ/D, A and B are constants to be determined through the boundary
conditions. Requiring thatf(0) = 0 it is easily found thatB = −A and thus

f(x) = A
(

e−ikx − eikx
)

= −2iA sinkx . (A.10)

The second boundary conditionf(L) = 0 allows to find the eigenvalues and the
eignenfunctions (and the trivial solutionf(x) = 0 as well). In factsin (kL) = 0
as soon as

kL =

√

λ

D
= mπ , m = 0,±1,±2,±3, . . . (A.11)

so that the eigenvalues and the eigenfunctions are

λm = D
(mπ

L

)2

, fm(x) = sin
(mπ

L
x
)

. (A.12)

The solution to (A.8) will therefore be a linear superposition of the eigenfunctions
fm(x),

u(x, t) =

∞
∑

m=1

am sin
(mπ

L
x
)

exp

[

D
(mπ

L

)2

t

]

. (A.13)

One last condition is still not satisfied, the initial value condition. And is exactly
this condition that allows to find the coefficientsam such that

u(x, 0) =

∞
∑

m=1

am sin
(mπ

L
x
)

= h(x) . (A.14)

This is a Fourier series on the interval[0, L] of the initial valueh(x) and its coefficients
may easily be evaluated keeping in mind the orthogonality property of the eigenfunc-
tions. It is not difficult to show that

∫ L

0

sin
(mπ

L
x
)

sin

(

kπ

L
x

)

dx =







0 if k 6= m, k = m = 0 ,

L/2 if k = m ,
(A.15)

which allows to compute the coefficientsam as

am =
2

L

∫ L

0

h(x) sin
(mπ

L
x
)

dx . (A.16)

With h(x) as defined in (A.2), the above computation leads to the final solution which
therefore is

u(x, t) =
∞
∑

m=1

am sin
(mπ

L
x
)

exp

[

−D
(mπ

L

)2

t

]

, am = 8
sin (mπ/2)

m2π2
.

(A.17)
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A.2 Homogeneous Neumann boundary conditions

Once equation (A.1) has been solved for homogenous Dirichlet boundary conditions
it is straightforward to solve it with homogeneous Neumann boundary conditions. In
fact, the same procedure could be carried over to yield the correct solution.

Once again, let the mathematical domain bex ∈ [0, L] for t > 0 and if q(x, t) ≡
∂u/∂x the homogeneous Neumann boundary conditions are written asq(0, t) = q(L, t) =
0. Since the boundary conditions require the derivative to vanish, the initial condition
is chosen so that this condition is satisfied att = 0 as well. The initial condition will
then be

h(x) ≡ u(x, 0) = 1 + 2
(x

L

)3

− 3
( x

L

)2

. (A.18)

Everything that has been said in the previous case up to (A.9)still holds. The
boundary conditions now require that

f ′(x) ≡ df

dx
= ik

(

Aeikx − Be−ikx ,
)

(A.19)

vanishes at the boundaries of the domain. Fromf ′(0) = 0 follows thatA = B while
f ′(L) = 0 leads to the same eigenvalueλm = D (mπ/L)

2 as in the previous case.
The eigenfunction on the other hand changes since the general solution could be now
written as

f(x) = A
(

eıkx + e−ıkx
)

= 2A cos (kx) (A.20)

so that the eigenvalue and the eigenfunction in this case are

λm = D
(mπ

L

)2

, fm(x) = cos
(mπ

L
x
)

. (A.21)

To satisfy the initial condition it is necessary that

u(x, 0) =

∞
∑

m=0

am cos
(mπ

L
x
)

= h(x) (A.22)

where the sum now extends from0 to ∞. This is because the orthogonality property
of the eigenfunctions, which still holds and could once again be used to compute the
coefficientsam, now reads

∫ L

0

cos
(mπ

L
x
)

cos

(

kπ

L
x

)

dx = (A.23)

Because of this, the initial condition could be written as

h(x) = 1+2
(x

L

)3

−3
(x

L

)2

=
1

2
+

∞
∑

m=1

am cos
(mπ

L
x
)

, am = 24
1 − cos (mπ)

m4π4
,

(A.24)
so that the complete solution is

u(x, t) =
1

2
+

∞
∑

m=1

am cos
(mπ

L
x
)

exp

[

−D
(mπ

L

)2

t

]

, am = 24
1 − cos (mπ)

m4π4
.

(A.25)
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