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1 Periodic Sources: some definitions

In principle, periodic sources of gravitational radiation are at those producing gravitational

waves of amplitude

h+(t) =
∑
j

(h0+)j cos(2πfj + φj) , h×(t) =
∑
j

(h0×)j sin(2πfj + φj) , (1)

where (h0+)j, (h0×)j are the (constant) wave-amplitudes in the two polarization states at the

frequencies fj, while φj are constant phases. For simplicity we will consider the simpler

case in which the source is emitting gravitational wave at a single frequency f .

Given a detector whose response has a power spectral density Sh(f ) and a strain noise

hn(f ) =
√
fSh(f ), the signal-to-noise ratio will be given by

S

N
' hc
hn(f )

〈[F+(r, θ, φ, ψ)]2〉1/2 ' 1√
5

hc
hn(f )

, (2)

where F+(r, θ, φ, ψ) is beam pattern function of the detector (ψ is the polarization angle),
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〈. . .〉 indicates a time average and hc is the characteristic frequency of the signal

hc ≡
√

2

3
〈[h0+(i, r)]2 + [h0×(i, r)]〉1/2. (3)

where i is the inclination angle.

In practice, periodic sources do not exist. However, they can be considered as such on

timescales which are much shorter than the timescale over which the emission period

changes. A good example in this respect is offered by the electromagnetic waves emitted

by pulsar which are not perfectly periodic but that have a typical rate of change in the

period of the order: ProtṖrot ' 10−15B2
12 sec.

Periodic sources in general are very attractive since they allow for a simple modelization

and for long integration times over which stochastic fluctuations are averaged out. There

are several sources of gravitational radiation that could be, at some stage in their evolution,
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effectively periodic and and among these are

1. rotating neutron stars

2. rotating neutron stars deformed by crystalline or magnetic stresses

3. oscillating neutron stars

4. dynamical and secular non-axisymmetric instabilities

5. binary neutron stars

I will give a very brief overview of points 1. – 4., although further details on 3. and 5.

will be also given by other lecturers in this school.
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2 Rotating Neutron Stars

A rotating neutron star, such as a pulsar, will emit periodic gravitational waves as a result

of small deviations from symmetry around its rotation axis. Such gravitational waves

will be in general at several different frequencies, with an amplitude that will depend on

how large these deviations are and on how rapid the star rotates. Note that, at least in

principle, a rotating neutron star can emit gravitational waves also if it remains perfectly

axisymmetric so long as it has a time varying mass quadrupole; the gravitational waves

in this case will carry away energy but not angular momentum. We will not consider this

case hereafter.

Typical neutron stars have masses M ' 1.4M� ' 2 km and radii R ' 10 km, which

makes them among the most relativistic astrophysical objects (i.e. M/R ' 0.2). On the
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other hand, typical neutron stars have rotation periods Prot & 1− 3 msec and produce the

most intense gravitational waves at frequencies f = 2/Prot, with a corresponding reduced

wavelength λ/(2π) & 30−70 km. The near-zone will extend up λ/(2π), where gravity will be

of the order 2πM/λ . 0.03× (3 msec/Prot) and sufficiently weak so that a nearly Lorentzian

coordinate system can be chosen there. I will refer to this reference frame as the asymptotic

inertial frame and will introduce a set of spatial basis vectors ex, ey, ez.

If the star is rotating with angular velocity Ωrot, it will be flattened by centrifugal forces

and may also deviate from axisymmetry as a result of shear forces produced either by

crystalline or magnetic stresses. Because of this, it is useful to introduce a reference frame,

the asymptotic corotating frame whose spatial basis vectors ex′, ey′, ez′ are along the principal
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axes of the star (cf. Fig. 1), so that the quadrupole moment in this frame will take the form

I− ≡ εpI [ez′ ⊗ ez′ −
1

2
(ex′ ⊗ ex′ + ey′ ⊗ ey′)] +

1

2
εeI(ex′ ⊗ ex′ − ey′ ⊗ ey′), (4)

where εp is the stellar poloidal gravitational oblateness and εe the stellar equatorial gravitational

oblateness, defined respectively as

εpI ≡ I−z′z′, εeI ≡ I−x′x′ − I−y′y′, (5)

where, in general, εe � εp � 1. Clearly, as the star rotates, it will carry the basis vectors

of its corotating frame around with itself at a rate which is given by the standard transfor-

mation rule for rotating frames

dej′

dt
= Ωrot × ej′. (6)

Furthermore, the star, just like the earth or the sun, is also likely to precess with angular
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velocity Ωprec = Ωprecez′, so that the total angular velocity will be

Ω = Ωrot + Ωprec, and Ω = Ωez. (7)

is a constant of motion in the asymptotic inertial frame.

As seen in the corotating frame, the angular velocity of rotation Ωrot will precess at a

constant rate Ωprec around the near axisymmetry axis ez′

dΩrot

dt
= Ωprec ×Ωrot, (8)

keeping the angle to that that axis θw ≡ cos−1(Ωrot · ez′) = const. constant in time. The angle

θw is referred to as the “wobble angle” and, because Ω = const., the rate of change of the

precession angular velocity is the same as that of the angular velocity

dΩprec

dt
= Ωprec

dez′

dt
= Ωrot ×Ωprec = −dΩrot

dt
. (9)
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Figure 1: Schematic view of a rotating neutron star and of the relevant reference frames: the asymptotic inertial frame (basis vectors ei) and the

asymptotic corotating frame (basis vectors ei′).

A schematic description of the different frames is shown in Fig. 1. Note the different

orientations of Ω,Ωrot, and Ωprec. Note that because of the large degree of axisymmetry
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expected in neutron stars, the wobble angle is in general very small θw � 1 and that since

Ω = Ωrot + Ωprec, not Ωrot, nor Ωprec will be aligned with ez and that small angles will exist

between these three vectors. In particular, since

θ0

θw
=

(angle between Ωrot and ez)

(angle between Ωrot and ez′)
=

Ωprec

Ωrot
∼ 10−5 − 10−8 � 1. (10)

So far we have concentrated on the dynamics of the system but it is time to consider its

gravitational wave emission. Within a Newtonian quadrupole approximation (the one we

will assume hereafter1), the gravitational wave emission can be calculated by computing

the time variations of the stellar mass quadrupole defined as

I−jk ≡
∫
ρ(xjxk − 1

3
r2δjk)d

3x = −Ijk +
1

3
I i
i δjk, (11)

1Clearly, this is an approximation but given the uncertainties in the stellar structure and thus in the calculations of the mass quadrupole, it is not the

worse one.
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where Ijk is the stellar moment of inertia.

Ijk ≡
∫
ρ(r2δjk − xjxk)d3x. (12)

The problem is therefore quite simple: given the asymptotic inertial frame (the one in

which the detector is placed), calculate (11) and its time variations. Since in the corotating

frame the oblatenesses are readily defined as

εp =
2Iz′z′ − Ix′x′ − Iy′y′

Iz′z′ + Ix′x′ + Iy′y′
, εe =

3(Ix′x′ − Iy′y′)

Iz′z′ + Ix′x′ + Iy′y′
, (13)

we can use the expressions introduced above between the inertial and corotating inertial
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frames, it is possible to calculate the changes of the latter to be

ex′ = cos(Ωrott)ex + sin(Ωrott)ey +−θw cos(Ωprect)ez, (14)

ey′ = − sin(Ωrott)ex + cos(Ωrott)ey +−θw sin(Ωprect)ez, (15)

ez′ = ez + θw cos[(Ωrot + Ωprec)t]ex + θw sin[(Ωrot + Ωprec)t]ey, (16)

(17)
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so that the evolution of the quadrupole moment components are

I−xx = −1
2εpI + 1

2εeI cos(2Ωrott), I−yy = −1

2
εpI −

1

2
εeI cos(2Ωrott), (18)

I−zx = 2θwεpI cos[(Ωrot + Ωprec)t], I−zy = 2θwεpI sin[(Ωrot + Ωprec)t], (19)

I−zz = εpI, I−xy =
1

2
εeI sin(2Ωrot)t. (20)

Equations (18)–(20) show that the tensor components form two distinct classes that con-

tain all of the relevant information on the gravitational waves and which can be summa-

rized as follows

• i) the components of I−za with a = x, y change with frequency Ωrot + Ωprec;

• ii) the components of I−ab with a and b equal to x, y change with frequency 2Ωrot;
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• ii) the two changes correspond to the rotation of the poloidal (cf. proportionality to εp

and θw), and of the equatorial oblatenesses (cf. proportionality to εp), respectively;

• iii) the first change would be present even in the case of a perfectly axisymmetric star

but the second one could contain important information on shear stresses and there-

fore on nuclear matter.

What will be observed at the detector? Let us suppose that the waves polarization axes

are

ex̄ = ex, and eȳ = cos iey − sin iez, (21)

then the two polarizations will have amplitudes

h+ =
2

r

d2I−x̄x̄

dt2
= −2

r

d2I−ȳȳ

dt2
, h× =

2

r

d2I−x̄ȳ

dt2
, (22)
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so that

h+ =
2(1 + cos2 i)

r
εeIΩ

2
rot cos(2Ωrott) +

2 sin 2i

r
εpIθwΩ2

rot cos[(Ωrot + Ωprec)t], (23)

h× =
4 cos i

r
εeIΩ

2
rot sin(2Ωrott) +

4 sin i

r
εpIθwΩ2

rot sin[(Ωrot + Ωprec)t], (24)

Note how expressions (23)–(24) clearly separate the contributions coming from the equa-

torial oblateness and oscillating at 2Ωrot from its sideband contribution coming from the

poloidal oblateness and oscillating at Ωrot + Ωprec. Expressing now the amplitude in terms

of the characteristic amplitudes we obtain

hc1 = 8π2

√
2

15

θwεpI(2f1)
2

r
' 7.7× 10−20θwεp

(
I

1045 g cm2

)(
2f1

1 kHz

)2(
10 kpc

r

)
, (25)

hc2 = 8π2

√
2

15

εeIf
2
2

r
' 7.7× 10−20εe

(
I

1045 g cm2

)(
f2

1 kHz

)2(
10 kpc

r

)
, (26)
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where f1 ≡ (Ωrot + Ωprec)/2π and f2 ≡ Ωrot/π ' 2f1 is the high-frequency part of the signal.

Note how hc ∝ εe,p and hc ∝ f 2
1,2: i.e. highly distorted and highly spinning neutron stars

are the best sources.

The corresponding energies are not difficult to calculate and will depend on a further

time derivative of the mass quadrupole

dEGW

dt
=

1

5
〈
d3I−j̄k̄

dt3
d3I−j̄k̄

dt3
〉2 (27)

yielding in this case (
dEGW

dt

)
1

=
8

5
(2πf1)

6(θwεpI)
2 =

3

4
(πf1r)

2h2
c1, (28)

(
dEGW

dt

)
2

=
32

5
(πf2)

6(εpI)
2 =

3

4
(πf2r)

2h2
c2. (29)



16

3 Rotating Neutron Stars Deformed by Crystalline or Magnetic Stresses

The shear stress tensor T Sjk of the stellar parts that are in a crystalline form (i.e. the crust) is

the only force that can prevent the star to be axisymmetric about its rotation axis: i.e. that

can produce a wobble angle θw and an equatorial oblateness εe. In neutron stars the com-

petition with the other forces is very difficult since the Coulomb interaction which is the

source of T Sjk is much weaker that the degeneracy effects and the nuclear interaction which

are the sources of the isotropic pressure force p, and also far weaker that the gravitational

interaction and centrifugal forces (the latter responsible for εp).

In what follows we will make some qualitative estimates of this. In general, in a stable

neutron star

Fgrav ∼ Fpress ∼
M

R2
ρ ∼ p

R
, (30)
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and when the star is rotating additional centrifugal forces appear

Fcent ∼ Ω2
rotRρ . Fgrav. (31)

which contrast the first two and give rise to the spheroidal oblateness

εp ∼
Fcent

Fgrav
∼ (ΩrotR)2

M/R
∼
(

0.5 msec

Prot

)2

∼ 10−2 − 10−4. (32)

3.1 Crystalline Stresses

Let us now compare this with the shear stresses induced by the crust and that are given by

the standard stress-strain relation T Sjk = −2µσjk, where µ is the shear modulus and σjk the

dimensionless shear strain. Note that σjk is basically the deformation of the crystal from

the shape it would have in the absence of shear forces, i.e. it “reference shape”. Clearly, we

want to consider those stars that differ most from their reference shape as these are going

to be the strongest emitters.
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In this case, σjk ∼ σbreak, i.e. the deformation will be near break-up and the shear force

will then be

Fshear ∼
T S
jk

R
∼ µσbreak

R
. Fcent, (33)

producing a deformation of the shear-free, non-radiating shape that is

(εe)shear ∼ θwεp ∼
Ic
I

Fshear

Fgrav
∼ Ic
I

µ

ρ

σbreak

M/R
. (34)

Here Ic ' 10−3I is the crust’s contribution to the moment of inertia I and both µ and the

density are those in the crust, i.e. ρ ∼ 1012 gr cm−3. Unfortunately, all of these quantities are

not well known and vary sensitively on the equation of state used or on the temperature

of the neutron star. In general, however, the present expectation is that (εe)shear and thus

θwεp produced by shear stresses are unlikely to exceed 10−4 in any neutron star.
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3.2 Magnetic Stresses

Crystalline stresses are not the only ones present in magnetized neutron star and, indeed,

magnetic stresses in a pulsar might produce comparable deformations if the magnetic

fields are sufficiently intense. In the highly conducting matter composing neutron stars,

in fact, the magnetic field will introduce a magnetic pressure pmag orthogonal to the field

lines and a magnetic tension −pmag along the field lines.

Clearly, also in this case, precise estimates will depend on a number of details such as in-

tensity of the magnetic field, its location, its lifetime, etc. However, on simple dimensional

arguments we can estimate that

Fmag ∼
pmag

R
∼ B2/8π

R
. Fcent, (35)
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which will be responsible for a magnetically-induced equatorial oblateness

(εe)mag ∼ θwεp ∼
Ic
I

Fmag

Fgrav
∼ Ic
I

pmag

p
∼ 10−8

(
Bcrust

1012 G

)2

. (36)

where Bcrust is the magnetic field in the crust and which is expected to be close to the

measured surface one of ∼ 1012 G.
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4 Radio Pulsars

I have shown how the wave amplitude will depend quadratically on the rotation fre-

quency and given the present limits of gravitational wave detectors, it is clear that there

is a limit frequency fmin ∼ 10 Hz below which the pulsar will be invisible. Fortunately,

there are two known and well studies populations of neutron stars that are observed to

spin at frequency larger than fmin: fast, young radio pulsars and old, recycled radio pulsars.

Hereafter we will concentrate on the first ones only.

Fast and young radio pulsars spin down as a consequence of the emission of electro-

magnetic radiation produced by the rotation of the intense magnetic dipole. The rate of

change of the period is extremely small, ProtṖrot ' 10−15B2
12 sec, ie less than a second over

100 million years, thus making these the best clocks in the Universe.
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If the emission of electromagnetic radiation is dominant over the gravitational one (e.g.

because of very intense magnetic fields), the rotation period will evolve as

P 2
rot = P 2

i + (10 msec)2
(

B

4× 1012 G

)2(
τ

100 years

)
. (37)

If, on the other hand, the emission of gravitational radiation is dominant (e.g. because the

magnetic field has decayed but the rotation is still very large2), the rate of change in the

period will be P 3
rotṖrot ' 3× 10−11ε2

e sec3 and the rotation period itself will evolve as

P 4
rot = P 4

i + (2.4 msec)4
( εe

10−6

)2
(

τ

104 years

)
. (38)

In this case, the characteristic amplitudes that are expected in the most favourable con-

ditions are[(
h2
c2 +

1

4
h2
c1

)1/2
]

max

=
1

r

(
4I

3

Ṗrot

Prot

)1/2

' 3× 10−25

(
10 kpc

r

)(
103 years

Prot/Ṗrot

)1/2

. (39)

2If Ohmic decay is effective in young neutron stars, the magnetic field will decay with an e-folding time of ∼ 107 years.
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One well-known example of fast and young pulsar is PSR 0531+21 which has Prot = 33ms

corresponding to a gravitational wave frequency f2 = 60 Hz. Also known as the “Crab

pulsar” because is resides in the Crab nebula at r ∼ 2 kpc from us, this pulsar is about 1000

years old. Partially because is much better known that others, at the moment the Crab

pulsar is one the most promising sources of gravitational waves and potentially observable

by advanced interferometers over long-term (i.e. ∼ 1 year) observations.
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5 Oscillating Neutron Stars

The issue of the detectability of the gravitational radiation from perturbed relativistic stars

is still basically unsettled. This is largely due to our ignorance about the precise physical

conditions leading to a perturbed relativistic star. A simple example in this sense is offered

by a protoneutron star formed after the gravitational collapse in a supernova explosion.

While it is generally expected that the newly born neutron star will pulsate wildly dur-

ing the first few seconds following the collapse, how much energy will be transferred to

the pulsation and subsequently radiated through the oscillation modes is unknown. The

only realistic way of overcoming this ignorance is to perform detailed, fully relativistic

simulations and deduce from them how large the perturbations will be. While the recently

developed numerical codes will soon be able to provide some quantitative answer in this
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respect, at present one can simply argue that a) the energy stored in the pulsation can po-

tentially be of the same order as the kinetic energy of the system; b) the oscillations will be

damped mainly through the emission of gravitational waves so that the released energy

could be considerable.

Under these assumptions, the effective gravitational wave amplitude h for a star oscil-

lating in its fundamental mode of oscillation can be estimated simply. For weak gravi-

tational waves, in fact, the gravitational wave luminosity (i.e. the rate of energy loss to

gravitational waves) at a distance r, can be written to be [9]

dE

dt
' E

τ
' 4πr2

(
c3

16πG

)
|ḣ|2 , (40)

where E is the total energy lost over the time τ . If the star is oscillating at a frequency f ,
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then ḣ ≈ 2πfh and expression (40) can be rewritten as

h ' 1.2× 10−21

(
E

Ẽ

)1/2(
1 ms

τ

)1/2(
1 kHz

f

)(
50 kpc

r

)
, (41)

where Ẽ = 8.2 × 10−8 M�c
2 is the energy lost in gravitational waves as estimated through

recent relativistic calculations [10]. Note that the probability of detecting a source can be

increased if suitable data analysis techniques, such as “matched filtering”, are used [11, 12].

In this case, it is possible to estimate the “effective” gravitational wave amplitude heff to be

heff ' h
√
fτ , so that (41) becomes

heff ' 1.2× 10−21

(
E

Ẽ

)1/2(
1 kHz

f

)1/2(
50 kpc

r

)
. (42)

The distance scale r used in expressions (41) and (42) is that to the supernova SN1987A

and the number of events in the corresponding volume is one every 10–20 years. Clearly,

this event rate is too small for being of interest and it is therefore necessary to consider a
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volume much larger, such as the one comprising the Virgo cluster, to reach an event rate

of a few per year. In this case, it is possible to consider the problem of the detection from

a different point of view and rather calculate the energy E necessary to obtain an effec-

tive wave amplitude heff ∼ 10−21 for a source at a distance r = 20 Mpc. Using expression

(42), the answer is E ≈ 0.01 M�. While these estimates may appear optimistic of at least

a couple of orders of magnitude, they cannot be ruled out and the pay-offs of a potential

detection would be so great to justify the intense research this field is experiencing.
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6 Non-axisymmetric Instabilities

Some of the non-axisymmetric modes of oscillation in rotating stars may not be damped,

but have amplitudes that grow exponentially in time. When this is the case, the oscillations

are said to be ”unstable” and the resulting instability can either be dynamical, if it develops

on the timescale set by the rotation or by the free-fall, or secular, if it develops on a much

longer timescale set, for instance, by dissipative processes. Dynamical instabilities differ

considerably from secular ones in that they are purely hydrodynamical, while the latter are

triggered by dissipative processes such as viscous dissipation, emission of gravitational

or electromagnetic radiation, thermal losses, etc.. In both cases, however, the instabilities

reflect the attempt of the rotating star to find a lower energy state either by changing its mass

distribution (e.g. through variations of the momentum of inertia) or by violating the con-
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servation of some quantity (e.g. circulation or angular momentum). A quantity which is

often used to measure how close the rotating star is to the onset of an instability is the so

called rotational parameter β

β ≡ (rotational kinetic energy)
(gravitational energy)

≡ T

|W |
≈ 1

3

(
Ω

ΩK

)2

, (43)

The last equality in (43) has been derived for a Newtonian star, with Ω/ΩK being the stel-

lar angular velocity normalized to the Keplerian value, that is, the value of the angular

velocity at which matter can be shed at the stellar equator. Indicating with ρ̄ the average

rest-mass density, the Keplerian angular velocity can be estimated to be ΩK ∼ (2/3)
√
πρ̄.

The parametrization (43) is independent of the rotation law and is particularly use-

ful for differentially rotating objects. By definition and invoking the Virial theorem, the

parametrization is constrained to be between β = 0 (for a spherical object) and β = 1/2 (for
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an infinitely extended, thin disc at rest) [5]. A well-known application of the rotational pa-

rameter (43) is offered by classical result for the onset of the dynamical instability in New-

tonian rotating stars, and which has been estimated to be T/|W | ' 0.27 for a variety of

different equations of state and rotation laws.

Since the secular non-axisymmetric instabilities are triggered by dissipative mechanisms,

their development will be different according to whether they are driven by viscous pro-

cesses or by the emission of radiation (either gravitational or electromagnetic). When vis-

cous dissipation processes are present and the radiative losses are negligible, an initially

axisymmetric, incompressible rotating object, i.e. a Maclaurin spheroid, will be deformed

into a Jacobi ellipsoid, i.e. into a uniformly rotating, homogeneous configuration with ellip-

soidal surfaces (they are similar to rotating american “footballs”). This happens at roughly

T/|W | ' 0.14 and is referred to as the viscous-driven f -mode instability (see [6] for a com-
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plete discussion).

When viscous processes are negligible, on the other hand, the growth of the non-axisymmetric

modes can be driven by the emission of gravitational or electromagnetic radiation (al-

though the latter is usually much smaller than the former). The instability that develops

in this way is the so called CFS (Chandrasekhar-Friedman-Schutz) instability [7, 8] and is

produced by the coupling between the loss of energy and angular momentum via radia-

tion and the non-axisymmetric oscillations modified by the stellar rotation. Also in this

case, an initially axisymmetric Maclaurin spheroid will be deformed into a uniformly ro-

tating, homogeneous configuration with ellipsoidal surfaces, called Dedekind ellipsoid. The

difference between the Jacobi and Dedekind ellipsoids is that in the latter the ellipsoidal

surfaces are supported by internal circulations but the shape is stationary as observed by

an inertial observer (they are therefore similar to nonrotating american “footballs”). This
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happens again at roughly T/|W | ' 0.14 and is referred to as the f -mode CFS-instability.

In practice, the development of non-axisymmetric instabilities is much more compli-

cated than what discussed in the two limiting cases above, because both viscous and ra-

diative losses are active at the same time in realistic stars. As a result, the modes that

are driven unstable by viscosity and deform a Maclaurin spheroid into a Jacobi ellipsoid

(i.e. the Jacobi modes) tend to be stabilized by the emission of gravitational waves (the

star develops non-axisymmetric “ripples” to remove the excessive angular momentum

via the emission of gravitational waves). At the same time, the modes that are driven

unstable by the emission of gravitational waves and deform a Maclaurin spheroid into

a Dedekind ellipsoid (i.e. the “Dedekind modes”) tend to be stabilized by the viscous

dissipative processes (the increased shear stresses, for example, tend to remove, with the

aid of the shear viscosity, the non-axisymmetric “ripples” responsible for the emission of
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gravitational waves). Computing the delicate balance between these two mechanisms in

regimes of strong gravitational fields, high-density matter and temperatures is extremely

difficult and at the core of the present research on the emission of gravitational waves from

instabilities in relativistic stars.

Because of the very large amplitudes that the oscillation modes can reach when driven

unstable, the amount of gravitational radiation emitted can become considerable and these

unstable stars can then become promising sources of gravitational waves, potentially de-

tectable by the gravitational-wave observatories now working or being under construc-

tion.
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6.1 An Introduction to the CFS Instability

The instability was first discovered by Chandrasekhar [7], and subsequently considered by

Friedman and Schutz [8], who have shown its generic nature. While a formal proof of the

criteria for the instability are rather involved [8], qualitative arguments on the properties

of the instability can be given simply using a couple of illustrative examples.

Consider, therefore, a rotating star which is undergoing non-axisymmetric oscillations.

For simplicity I will consider the simplest non-axisymmetric perturbation with mode num-

bers ` = m = 2. Because the star is rotating, the properties of the perturbations can be

considered both in a reference frame which is corotating with it (i.e. the “rotating” frame)

or in a reference frame which is not rotating and is fixed with respect to, say, distant stars

(i.e. the “inertial” frame).
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Ω   = 0r mσ  /    < 0r

rotating frame

Figure 2: Schematic view from the rotating frame. The unperturbed star is shown on the left and the non-axisymmetric perturbation on the

right. Ωr = 0 and σr/m are the angular velocities of the star and of the wave-pattern, respectively.

I will first discuss what would be observed in the rotating frame; this is summarized

in Fig. 2 where I have shown schematically the unperturbed star on the left and the non-

axisymmetric ` = m = 2 perturbation on the right. In the corotating frame the star has

a zero angular velocity (i.e. Ωr = 0), but is nevertheless deformed into a spheroid by the
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centrifugal force. The perturbation on the other hand, has a nonzero frequency σr and the

corresponding m = 2 wave-pattern is seen to rotate with angular frequency σr/m which

is, say, negative. By definition, such a mode is referred to as “retrograde” and, because the

perturbed star is rotating at an angular velocity smaller than the initial one, the mode has

a negative angular momentum J0 < 0 in the corotating frame.

The non-axisymmetric perturbation generates a time-variation of the stellar mass mul-

tipoles (and/or of the mass-current multipoles) and the gravitational waves that are pro-

duced in this way, carry positive amounts energy at infinity. The angular momentum

carried at infinity jGW , on the other hand, can either be positive or negative according to

the sense in which the perturbation is seen to rotate in the inertial frame. I therefore need

to consider how the perturbation is observed in the inertial frame which, I recall, is the

frame in which quantities like the total amount of energy and angular momentum can be
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measured unambiguously.

The “view” from the inertial frame is summarised in Fig. 3 where, again, I have shown

schematically the unperturbed star on the left and the non-axisymmetric perturbation on

the right. An observer in this frame will then see the star rotating at a nonzero, say positive,

angular velocity Ωi > 0 and the non-axisymmetric perturbation with a wave pattern that

is also rotating with angular velocity σi/m.
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miσ  /    > 0

inertial frame

Ω   > 0i

Figure 3: Schematic view from the inertial frame. The unperturbed star is shown on the left and the non-axisymmetric perturbation on the

right. Ωi and σi/m are the angular velocities of the star and of the wave-pattern, respectively.

It is not difficult to realize that the direction in which the wave-pattern rotates depends

on both Ωi and σr through the relation between the frequencies in the two reference frames:

σi = mΩi−σr. As a result, the wave-pattern can either be “dragged” forward (σi > 0 > σr),

or backward (σi < σr < 0) by the stellar rotation Ωi. The obviously interesting case shown
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in Fig. 3, is the one in which the mode is dragged forward (i.e. σi/m > 0) and the non-

axisymmetric mode, which is then said to be “prograde”, is seen to rotate in the same sense

as the rotating star (Note that the “dragging” of the wave-pattern is a purely kinemati-

cal and Newtonian effect, fundamentally distinct from the general relativistic “dragging

of reference frames”.). When this happens, Ωiσr < 0 and the conditions for the onset of

the CFS instability are met. In this case, in fact and, because the sign of the angular mo-

mentum lost is determined by the sense of rotation of the oscillation’s wave-pattern, the

prograde non-axisymmetric perturbation will carry to infinity positive amounts of angular

momentum, i.e. jGW > 0.

For the observer in the rotating frame, on the other hand, the total angular momentum

of the mode J(t) ≡ J0−jGW(t) becomes increasingly negative because of the losses through

jGW(t) that continuously reduce J(t), i.e. J(t) < J0 < 0. As a result, the initially small non-
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axisymmetric perturbation with negative angular momentum in the corotating frame, is

driven to large amplitude oscillations with a progressively larger negative angular mo-

mentum. Such perturbation emits increasingly large amounts of gravitational waves, thus

feeding the development of the instability. Using a pictorial analogue, the development

of the CFS is similar to someone’s debts that get larger as new expenses (with positive

amounts of money) are made. The growth of the instability stops when either nonlinear

or dissipative effects become important and transfer energy from the unstable mode into

the other available channels.
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