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Listed below are the exercises that have been assigned during the course
and collected according to the lecture in which they were assigned. These
exercises can be solved independently or together during the exercise time.
Some of these questions could be part of the oral exam.
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Lecture I

1. Prove the Newtonian H-theorem, that is,

∂f0

∂t
= Γ(f0) = 0 . (1)

where f0 is the equilibrimum distribution function. In particular, show that the
condition (1) is fully equivalent to the condition

f0(~u′2)f0(~u′1)− f0(~u2)f0(~u1) = 0 , (2)

where f1,2 := f(t, ~x, ~u1,2), f ′1,2 := f(t, ~x, ~u′1,2) are the distribution functions
before and after the collision at time t and position ~x (The subscripts “1” and
“2” refer to the particles undergoing the collision, while unprimed and primed
variables refer to quantities before and after the collision.).

2. The previous requires the definition of a new quantity

H(t) :=

∫
f(t, ~u) ln(f(t, ~u)) d3u , (3)

where f(t, ~u) is the distribution function.

What is the physical meaning of H?

What is the time derivative of H?

Can the sign of the time derivative of H change? If so, in what way?
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Lecture II

1. Starting from the hydrodynamic equations

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 , (4)

∂(ρvj)

∂t
+
∂(ρvivj)

∂xi
+
∂Pij
∂xi

− ρ

m
Fj = 0 , (5)

∂(ρε)

∂t
+
∂(ρεvi)

∂xi
+
∂qi
∂xi

+ PijΛ
ij = 0 . (6)

show that Eqs. (4)– (6) can also be written as

∂vj
∂t

+ vi
∂vj
∂xi

+
1

ρ

∂Pij
∂xi

− 1

m
Fj = 0 , (7)

∂ε

∂t
+ vi

∂ε

∂xi
+

1

ρ

∂qi
∂xi

+
1

ρ
PijΛ

ij = 0 . (8)

2. Prove the following identity:

ρ

〈
ui

∂

∂xi
|~u− ~v|2

〉
= 2PijΛ

ij , (9)

where

P ij := ρ〈uiuj〉 − ρvivj , (10)

Λij :=
1

2

(
∂vj

∂xi
+
∂vi

∂xj

)
. (11)
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Lecture III

1. Using the following ansatz for the Maxwell-Boltzmann (equilibrium) distribu-
tion function

ln(f0(~u)) = −A(~u− ~u0)2 + lnC , (12)

and the definition of the specific internal energy

ε :=
1

2
〈|~u− ~v|2〉 =

1

2n

∫
|~u− ~v|2f d3u . (13)

prove that the constant A and C are given by

A =
3

4ε
, C = n

(
3

4πε

)3/2

. (14)

2. Recalling that for a classical monoatomic fluid the specific internal energy is
given by

ε =
3

2

kBT

m
, (15)

show that the explicit expression for the Maxwell-Boltzmann distribution func-
tion is

f0(~u) = n

(
m

2πk
B
T

)3/2

exp

(
−m(~u− ~v)2

2k
B
T

)
. (16)

3. Using the definition of the Maxwell-Boltzmann distribution function for the ve-
locity norm u for a fluid with zero macroscopic velocity (i.e., ~v = 0)

f0(u) = n

(
m

2πk
B
T

)3/2

exp

(
− mu2

2k
B
T

)
, (17)

show that the average speed is

v =

(
8k

B
T

πm

)1/2

. (18)

4. Optional. Show that the most probable speed is

v =

(
2k

B
T

m

)1/2

. (19)
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Lecture IV

1. Show that the scalar quantity d3p/p0 is a Lorentz invariant, where p = cmu
is the four-momentum and u the four-velocity. [Hint: exploit the normalization
condition of the four-velocity].

2. Show that the conservation equation for the total energy density

∂

∂t

(
1

2
ρ~v2 + ρε

)
+ ~∇ ·

[(
1

2
ρ~v2 + ρε+ p

)
~v

]
=

ρ

m
~F · ~v , (20)

can also be written as

D

Dt

(
1

2
ρ~v2 + ρε

)
+

(
1

2
ρ~v2 + ρε+ p

)
~∇ · ~v = ρ~v ·

(
~F

m
− 1

ρ
~∇p

)
. (21)

where D/Dt is the Lagrangian derivative.

3. Optional. Consider a two-dimensional flow in which two fluids of the same
type have uniform velocity in opposite direction and are subject to an external
gravitational potential with uniform acceleration g and uniform pressure p. De-
termine the evolution of the fluid when perturbed; compare your results with the
properties of the Kelvin-Helmholtz instability. [Hint: Use a Cartesian coordinate
system in which the fluids have velocities ~v1 = (vx, 0), ~v2 = (−vx, 0), and in-
troduce perturbations in velocity and pressure, i.e., ~v1 → ~v1 = (vx + δvx, δvy),
~v2 → ~v2 = (−vx + δvx, δvy).

Study the space of solutions of the linearized equations].
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Lecture V

1. If ε, T, s, p, and ρ are respectively the specific internal energy, the temperature,
the specific entropy, the pressure and the rest-mass density, show that the first
law of thermodynamics

dε = Tds− pd
(

1

ρ

)
, (22)

can be writen alternatively as

dp = ρdh− ρTds , (23)
de = hdρ+ ρTds , (24)

where h = (e+ p)/ρ is the specific enthalpy.

2. Show that the first law of thermodynamics (22) can alternatively be written as

dp =
n

N
(dH − TdS) , (25)

de =
1

N
(Hdn+ nTdS) , (26)

where

H := Nmh =
N(e+ p)

n
= V (e+ p) (27)

is the enthalpy.

3. Optional. Derive the following Maxwell relations [[Hint: exploit the rules set by
the thermodynamic square you can find in the book “Relativistic Hydrodynam-
ics”]

T =

(
∂h

∂s

)
p

,
1

ρ
=

(
∂h

∂p

)
s

, (28)

T =

(
∂ε

∂s

)
ρ

, p = ρ2

(
∂ε

∂ρ

)
s

, (29)

s = −
(
∂(µ/m)

∂T

)
p

,
1

ρ
=

(
∂(µ/m)

∂p

)
T

. (30)
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Lecture VI
1. Prove that for the ideal-fluid equation of state p = ρε(γ − 1) and for the poly-

tropic equations of state p = KρΓ, the sound speeds

c2s :=

(
∂p

∂e

)
s

(31)

are given respectively by

c2s =
γε(γ − 1)

c2 + γε
=

(
h− c2

h

)
(γ − 1) =

γp

ρh
, (32)

c2s =
Γp

ρh
=

Γ(Γ− 1)p

ρ(Γ− 1) + Γp
=

(
1

ΓKρΓ−1
+

1

Γ− 1

)−1

. (33)

2. Show that for a fluid obeying the polytropic equation of state, the following
relation can be derived for the specific entropy

s =
k

B

m

[
ln

(
K

Γ− 1

)1/(Γ−1)

+ K̃

]
, (34)

where K̃ is an integration constant.

3. Optional. Assuming that the fluid is isentropic, i.e., ds = 0 and follows a poly-
tropic equation of state, show that the following thermodynamical relation is true

dρ

(
∂ε

∂ρ
− p

ρ2

)
= Tds . (35)
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Lecture VII
1. Show that if the vorticity tensor, the shear tensor and the expansion scalar are

defined as

ωµν := hαµh
β
ν∇[βuα] , (36)

σµν := hαµh
β
ν∇(βuα) , (37)

Θ := hµν∇νuµ . (38)

where h is the projector orthogonal to u, their explicit expressions are

ωµν = ∇[νuµ] + a[µuν] , (39)

σµν = ∇(µuν) + a(µuν) −
1

3
Θhµν , (40)

Θ = ∇µuµ . (41)

2. Show that for a perfect fluid with energy momentum tensor

Tµν = (e+ p)uµuν + pgµν , (42)

the following projection

Lµ := −hαµuβTαβ , (43)

(44)

is identically zero. Explain why.

3. Optional. Show that starting by the following definitions

Lµν := hαµh
β
νTαβ , (45)

Lµ := −hαµuβTαβ , (46)

e := uαuβTαβ , (47)

the following identity is true

Tµν = euµuν + 2u(µLν) + Lµν . (48)
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Lecture VIII
1. Show that the Newtonian limit of the relativistic continuity equation

uµ∇µρ+ ρ∇µuµ = 0 , (49)

is given by

∂tρ+ vi∂iρ+ ρ∂iv
i = 0 . (50)

2. Show that the Newtonian limit of the relativistic equation of conservation of
momentum

uµ∇µuν +
1

ρh
hµν∇µp = 0 . (51)

is given by

∂tv
i + vj∂jv

i +
1

ρ
∂ip+ ∂iφ = 0 , (52)

where φ is the potential of an external force.

3. Show that the Newtonian limit of the relativistic equation of conservation of
energy

uµ∇µe+ ρh∇µuµ = 0 , (53)

is given by

∂t

(
1

2
ρvivi + ρε

)
+ ∂i

[(
1

2
ρ(vivi) + ρε+ p

)
vi
]

+ ρvi∂iφ = 0 . (54)

4. Show that the relation between the vorticity tensor Ωµν and the kinematic vor-
ticity tensor is given by ωµν

Ωµν = 2h
(
ωµν − a[µuν] + u[µ∇ν] lnh

)
. (55)

Discuss the implications of Eq. (55).
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Lecture IX
1. Show that the Newtonian limit of the Carter–Lichnerowicz equation

Ωµνu
ν = T∇µs . (56)

is given by

∂~v

∂t
+ ~∇

(
1

2
~v2 + ε+

p

ρ
+ φ

)
− ~v × (~∇× ~v) = T ~∇s , (57)

which is also known as the Crocco equation of motion.

2. Show that the vorticity four-vector

Ωµ := ∗Ωµνuν =
1

2
εµναβΩαβuν , (58)

and the kinematic vorticity four-vector

ωµ := ∗ωµνuν =
1

2
εµναβωαβuν , (59)

are related as
Ωµ = 2hωµ . (60)
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Lecture X
1. Assuming for simplicity that the flow is one-dimensional (i.e., for µ = 0, 1) and

the spacetime flat, we rewrite the conservation equations for energy and linear
momentum

∇µTµν = 0 . (61)

can be written in a Cartesian coordinate system as

∂t
[(
e+ pv2

)
W 2
]

+ ∂x
[
(e+ p)W 2v

]
= 0 , (62)

∂t
[
(e+ p)W 2v

]
+ ∂x

[(
ev2 + p

)
W 2
]

= 0 , (63)

where uµ = W (1, v) and W = (1− v2)−1/2 is the Lorentz factor.

2. Linearize Eqs. (62)–(63) by introducing perturbations of the type

e = e0 + δe , p = p0 + δp , v = v0 + δv = δv , (64)

Show that the resulting equations satisfy a wave equation

�δe = 0 . (65)

What are the assumptions needed to derive Eq. (65)? What is the speed of prop-
agation of these waves?

3. The continuity and momentum equations can be written as

∂t(ρW ) + ∂x(ρWv) = 0 , (66)

W∂t(Wv) +Wv∂x(Wv) = − 1

ρh

[
∂xp+W 2v∂tp+W 2v2∂xp

]
. (67)

Show that these partial differential equations (that you can try to derive or take
as given) can be written as the following ordinary differential equations

(v − ξ)dρ
dξ

+ ρ[W 2v(v − ξ) + 1]
dv

dξ
= 0 , (68)

ρhW 2(v − ξ)dv
dξ

+ (1− vξ)dp
dξ

= 0 , (69)

after introducing the similarity variable ξ := x/t and the following differential
operators

∂t = −
(
ξ

t

)
d

dξ
, ∂x =

(
1

t

)
d

dξ
. (70)
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Lecture XI
1. Using the Rankine-Hugoniot conditions expressing the conservation of rest mass,

energy and momentum across a shock wave

JρuµKnµ = 0 , (71)
JTµνKnν = 0 , (72)

derive the expression for the Taub adiabat

q
h2

y
=

(
ha
ρa

+
hb
ρb

)
JpK . (73)

Show that its Newtonian equivalent is given by the Hugoniot adiabat
s
ε+

p

ρ

{
=

1

2

(
1

ρa
+

1

ρb

)
JpK . (74)

2. Using the junction conditions

v2
a =

(pa − pb)(eb + pa)

(ea − eb)(ea + pb)
, (75)

v2
b =

(pa − pb)(ea + pb)

(ea − eb)(eb + pa)
, (76)

and under the assumption of a highly relativistic shock, a cold fluid ahead of the
shock and an ultrarelativistic one behind the shock, i.e.,

Wa � 1, pa ≈ 0, ea ≈ ρa, pb =
eb
3
, (77)

show that the energy density in the shocked fluid scales like the square of the
Lorentz factor of the shock front (with respect to the unshocked fluid).

eb = 2W 2
a ea . (78)

This is a result often used in astrophysical relativistic shocks.
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Lecture XII
1. Verify that the double brackets satisfy the following identities:

(i) α JAK = JαAK, if and only if JαK = 0;

(ii) JA+BK = JAK + JBK;

(iii) JABK 6= JAK JBK;

(iv) JAK JBK = JBK JAK;

(v)
q
A2

y
6= JAK2.

2. In the case of an ultrarelativistic fluid with p = e/3 and cs = 1/
√

3, the follow-
ing identitiies can be derived

va =

(
3eb + ea
3ea + eb

)
vb , va =

1

3vb
. (79)

Using them show that

W 2
a =

3

8

(
3ea + eb
ea

)
, (80)

W 2
b =

3

8

(
3eb + ea

eb

)
, (81)

W 2
ab =

(3ea + eb)(3eb + ea)

16e1e2
=

4

9
W 2
aW

2
b , (82)

3. Show that the following identity is true [Hint: exploit the expressions proven
above]

W 2
a − 2W 2

ab +W 2
b = 1 . (83)
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Lecture XIII
1. Compute the gyrofrequencies ωc and Larmor radii rL for an electron (e) and a

proton (p) under the following physical conditions:

ne = np[cm−3] Te = Tp[K] B[G]
fusion machine 1016 107 104

Earth’s magnetosphere 104 103 10−2

center of the Sun 1026 107.2 106

solar corona 108 106 1
solar wind 10 105 10−5

neutron star’s atmosphere 1012 107 1012

Compare the gyrofrequencies with the plasma frequencies

ω2
P,e :=

4πnee
2

me
, ω2

P,p :=
4πnpe

2

mp
. (84)

2. Compute the drift velocity for a charged particle in uniform and static gravi-
tational and magnetic fields. How does this compare with the motion in the
presence of an electric field? Does the motion produce a net current? How large
is it?

3. Optional. Study the motion of a charged particle in a time-varying magnetic
field: is the motion with closed orbits? [Hint: recall that a time-varying magnetic
field will produce a non-uniform electric field].
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Lecture XIV
1. Study the motion of a charged particle in a time-varying magnetic field: is the

motion with closed orbits? [Hint: recall that a time-varying magnetic field will
produce a non-uniform electric field].

2. Derive the secular drift velocity for a charged particle in a non-uniform magnetic
field. [Hint: recall that you are interested in the secular behaviour, which can be
obtained after a time integration over a period].

3. Optional. The Earth’s magnetic field in the equatorial plane is

B
E

= 3× 10−1

(
R

E

r

)3

G (85)

where R
E

= 6.37 × 108 cm. At about five Earth’s radii, r/R
E

= 5 and in one
of the Van Allen radiation belts, the electrons have an energy of 30 keV and the
protons an energy of 1 eV.

(a) Calculate the total drift for both protons and electrons. Considering that the
magnetic field has a north pole at the Earth’s north pole, describe the sense
of motion of these drifts.

(b) Calculate the ring current density when the plasma has a number density
n = 10−1 cm−3.

(c) Calculate the time to drift once around the Earth.
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Lecture XV
1. Compute the Debye length λ

D
and the plasma paramater Λ for an electron (e)

and a proton (p) under the same physical conditions considered for Exercise 1.
of Lecture XIII.

2. If the collision frequency for an electron in a plasma at temperature T is given
by

fcoll :=

√
2ω4

P,e

64πne

(
kBT

me

)−3/2

ln Λ , (86)

compute the collision frequency in the same physical conditions above and com-
pare it with the plasma frequency ωP,e.
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Lectures XVI
1. Consider the induction equation in the ideal-MHD limit

∂t ~B = ∇×
(
~v × ~B

)
, (87)

and prove that the right-hand side can be decomposed into an advection term, an
expansion term and a stretching term.

2. Consider the induction equation in the ideal-MHD limit and show that it satisfies
the thesis of the frozen-flux theorem, that is

d

dt
Φ

~B
= 0 , (88)

where
Φ

~B
:=

∫
Σ

~B · ~n ds , (89)

is the flux of magnetic field across the open surface Σ of local norm ~n.

3. Consider the ideal-MHD limit and determine the additional terms that appear in
the equation of conservation of the total energy as a result of a nonzero magnetic
field.

4. Optional. Derive the expressions for the linearized MHD equations in the ideal-
MHD limit.
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