
UNRUH EFFECT

Marc Wagner

mcwagner@theorie3.physik.uni-erlangen.de

http://theorie3.physik.uni-erlangen.de/∼mcwagner

8th August 2005

1

Outline

• Introduction

• Accelerated motion in Minkowski spacetime

• Coordinates of an accelerated frame

• Rindler spacetime

• Massless scalar field in Minkowski and in Rindler spacetime

• Lightcone coordinates

• Bogolyubov transformation (relation between creation and an-

nihilation operators in Minkowski and in Rindler spacetime)

• Particle numbers of the Minkowski vacuum in an accelerated

frame

• Unruh temperature

Marc Wagner, “Unruh effect”, 8th August 2005

2

Introduction

Literature

• V. F. Mukhanov and S. Winitzki, Introduction to Quantum

Fields in Classical Backgrounds, 2005.

www.theorie.physik.uni-muenchen.de/∼serge/T6/

What is the Unruh effect?

• Vacuum state in Minkowski spacetime: state where no parti-

cles are present; lowest energy eigenstate.

• Unruh effect: an accelerated observer moving through the

Minkowski vacuum detects particles (Minkowski vacuum and

vacuum in the frame of the accelerated observer are different

quantum states).

• In this talk: observer moves in 1+1 dimensions with constant

acceleration.
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Accelerated motion (1)

Three different frames

• Laboratory frame (inertial frame; coordinates xµ = (t, x)):

the usual inertial frame.

• Accelerated frame or proper frame (non inertial frame; coor-

dinates (τ, ξ)): the frame where the accelerated observer is at

rest.

• Comoving frames (inertial frames; coordinates x′µ = (t′, x′)):
frames where the accelerated observer is momentarily at rest.
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Accelerated motion (2)

Constant acceleration (i)

• Constant acceleration: constant four acceleration in the co-

moving frames.

• Any inertial frame:

uµu
µ = 1

→ 0 =
d

dτ
(uµu

µ) = 2uµ
d

dτ
uµ = 2uµa

µ. (1)

• Comoving frame (at that time when the accelerated observer

is at rest):

u′
µ = (1, 0) → a′µ = (0, A). (2)
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Accelerated motion (3)

Constant acceleration (ii)

• A is the ordinary three acceleration a′ in the comoving frame

(at the time when the accelerated observer is at rest):

u′0 =
dt′

dτ
→ d

dτ
=

dt′

dτ

d

dt′
= u′0 d

dt′
(3)

A =
d2

dτ 2
x′ =

d

dτ

(

u′0 d

dt′
x′

)

=
d

dτ

(

u′0v′
)

=

=

(

d

dτ
u′0

)

v′ + u′0
(

d

dτ
v′

)

=

= a′0v′ +
(

u′0)2
(

d

dt′
v′

)

= a′. (4)

• Constant three acceleration in the laboratory frame (or any

inertial frame) is impossible. a = dv/dt = constant would

imply that the observer can move faster than the speed of

light.
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Accelerated motion (4)

Trajectory of the accelerated observer

• Two equations:

(

u0
)2 −

(

u1
)2

= uµu
µ = 1 (5)

(

d

dτ
u0

)2

−
(

d

dτ
u1

)2

= aµa
µ = a′µa

′µ = −a′2. (6)

• Solution:

u0 = cosh(a′τ ) , u1 = sinh(a′τ ). (7)

• Trajectory (initial conditions xµ(0) = (0, 1/a′), uµ(0) = (1, 0),

e. g. at t = τ = 0 the particle is at rest at x = 1/a′):

t =
1

a′
sinh(a′τ ) , x =

1

a′
cosh(a′τ ). (8)

Marc Wagner, “Unruh effect”, 8th August 2005

7

Accelerated frame (coordinates) (1)

• To describe quantum fields in the accelerated frame and to

compare them with quantum fields in the laboratory frame we

need coordinates (τ, ξ) in the accelerated frame and transfor-

mation laws t = t(τ, ξ) and x = x(τ, ξ).

• τ = proper time of the observer (or anybody moving along the

trajectory ξ = 0).

• ξ = spatial distance from the observer at ξ = 0.

• Consider a measuring stick of length ξ0 in the accelerated

frame. In the current comoving frame it is represented by the

four vector s′µ = (0, ξ0) (the measuring stick is momentarily

at rest in the current comoving frame).

• Four vector of the measuring stick in the laboratory system:

sµ =
1√

1 − v2

(

1 v

v 1

) (

0

ξ0

)

=

=

(

u0 u1

u1 u0

) (

0

ξ0

)

=

(

u1ξ0

u0ξ0

)

. (9)
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Accelerated frame (coordinates) (2)

• The far end of the measuring stick has proper coordinates

(τ, ξ0). From that, (8) and (9) the transformation law between

laboratory coordinates (t, x) and proper coordinates (τ, ξ) can

be derived:

t =
1

a′
sinh(a′τ ) + u1ξ =

1 + a′ξ

a′
sinh(a′τ ) (10)

x =
1

a′
cosh(a′τ ) + u0ξ =

1 + a′ξ

a′
cosh(a′τ ). (11)

• Inverse transformation law:

τ =
1

2a′
ln

(

x + t

x − t

)

, τ ∈ (−∞,∞) (12)

ξ =
√

x2 − t2 − 1

a′
, ξ ∈ [−1/a′,∞). (13)
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Rindler spacetime (1)

• (10) and (11):

dt =
dt

dτ
dτ +

dt

dξ
dξ =

= (1 + a′ξ) cosh(a′τ )dτ + sinh(a′τ )dξ (14)

dx =
dx

dτ
dτ +

dx

dξ
dξ =

= (1 + a′ξ) sinh(a′τ )dτ + cosh(a′τ )dξ. (15)

• Rindler spacetime:

ds2 = dt2 − dx2 = (1 + a′ξ)2dτ 2 − dξ2. (16)
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Rindler spacetime (2)

Conformally flat Rindler spacetime (i)

• Quantising fields in conformally flat spacetime in 1+1 dimen-

sions is as easy as quantising fields in Minkowski spacetime.

• To get a conformally flat metric we need a coordinate trans-

formation ξ = ξ(ξ̃) with

dξ = (1 + a′ξ)dξ̃. (17)

• Separation of variables yields

ξ̃ =

∫

dξ
1

1 + a′ξ
=

1

a′
ln(1 + a′ξ) ,

ξ̃ ∈ (−∞,∞). (18)

• This is a rescaling of the spatial coordinate ξ. ξ̃ is not the

spatial distance but parameterises the spatial distance ξ.

• Conformally flat Rindler spacetime:

ds2 = e2a′ξ̃
(

dτ 2 − dξ̃2
)

. (19)
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Rindler spacetime (3)

Conformally flat Rindler spacetime (ii)

• Transformation law between laboratory coordinates (t, x) and

conformally flat Rindler coordinates (τ, ξ̃):

t =
ea′ξ̃

a′
sinh(a′τ ) (20)

x =
ea′ξ̃

a′
cosh(a′τ ). (21)
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Massless scalar field (1)

• Action of a minimally coupled massless scalar field:

S[φ] =

∫

d2x
√
−g

1

2
gµν(∂µφ)(∂νφ). (22)

• Laboratory frame (Minkowski spacetime):

S[φ] =

∫

dt dx
1

2

(

(∂tφ)2 − (∂xφ)2
)

. (23)

• Accelerated frame (conformally flat Rindler spacetime;√−g = e2a′ξ̃, gµν = diag(e−2a′ξ̃, e−2a′ξ̃)):

S[φ] =

∫

dτ dξ̃
1

2

(

(∂τφ)2 −
(

∂ξ̃φ
)2

)

. (24)

• In 1+1 dimensions minimal coupling is equivalent to confor-

mal coupling. Therefore the action in conformally flat Rindler

spacetime is identical to the action in Minkowski spacetime.

Quantising the field φ in conformally flat Rindler spacetime is

therefore as easy as in Minkowski spacetime.
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Massless scalar field (2)

Quantisation in Minkowski spacetime

• Field operator in laboratory coordinates (a(k) = annihilation

operators, a†(k) = creation operators):

φ(t, x) =

=
1√
2π

∫

dk
1

√

2|k|
(

e−i|k|t+ikxa(k) + ei|k|t−ikxa†(k)
)

. (25)

• Minkowski vacuum:

a(k)|0M〉 = 0. (26)

• Expectation values of certain operators, e. g. H (energy), P

(momentum), T µν (energy momentum tensor, i. e. energy

and momentum density), allow a physical interpretation of

a-particle states.

• Example: a†(k)|0M〉 represents a particle with definite mo-

mentum k.
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Massless scalar field (3)

Quantisation in Rindler spacetime

• Field operator in conformally flat Rindler coordinates (b(k) =

annihilation operators, b†(k) = creation operators):

φ(τ, ξ̃) =

=
1√
2π

∫

dk
1

√

2|k|
(

e−i|k|τ+ikξ̃b(k) + ei|k|τ−ikξ̃b†(k)
)

. (27)

• Rindler vacuum:

b(k)|0R〉 = 0. (28)

• Physical interpretation of b-particle states: analogous to physi-

cal interpretation of a-particle states (the action which is iden-

tical in both cases determines the physical meaning of all quan-

tum states).
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Massless scalar field (4)

• The field operators represent the same quantum field, i. e.

φ(t, x) = φ(τ, ξ̃).

• The creation and annihilation operators a(k), a†(k) and b(k),

b†(k) are different, i. e. they create or annihilate different field

excitations.

• Therefore the Minkowski vacuum |0M〉 and the Rindler vac-

uum |0R〉 are different quantum states.
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Lightcone coordinates

• Get the relation between a(k), a†(k) and b(k), b†(k) by com-

paring the left and right hand side of

φ(t, x) = φ(τ, ξ̃). (29)

• Lightcone coordinates will simplify this procedure:

u = t − x , v = t + x (30)

ũ = τ − ξ̃ , ṽ = τ + ξ̃. (31)

• Relation between (u, v) and (ũ, ṽ):

u = t − x =
ea′ξ̃

a′
sinh(a′τ ) − ea′ξ̃

a′
cosh(a′τ ) =

= − 1

a′
ea′(ξ̃−τ) = − 1

a′
e−a′ũ (32)

v = t + x =
ea′ξ̃

a′
sinh(a′τ ) +

ea′ξ̃

a′
cosh(a′τ ) =

=
1

a′
ea′(ξ̃+τ) =

1

a′
ea′ṽ (33)

• Lightcone coordinates do not mix: u = u(ũ), v = v(ṽ).
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Bogolyubov transformation (1)

• Field operator in (u, v)-coordinates:

φ(u, v) =

=
1√
2π

∫

dk
1

√

2|k|
(

e−i|k|t+ikxa(k) + ei|k|t−ikxa†(k)
)

=

=
1√
2π

∫ ∞

0

dω
1√
2ω

(

e−iω(t−x)a(ω) + eiω(t−x)a†(ω)
)

+

1√
2π

∫ 0

−∞
dω

1√
−2ω

(

eiω(t+x)a(ω) + e−iω(t+x)a†(ω)
)

=

=
1√
2π

∫ ∞

0

dω
1√
2ω

(

e−iωua(ω) + eiωua†(ω) +

e−iωva(−ω) + eiωva†(−ω)
)

=

= A(u) + B(v). (34)

• Advantage: φ(u, v) now is a sum of a u-dependent part and a

v-dependent part.
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Bogolyubov transformation (2)

• Field operator in (ũ, ṽ)-coordinates:

φ(ũ, ṽ) =

=
1√
2π

∫ ∞

0

dΩ
1√
2Ω

(

e−iΩũb(Ω) + eiΩũb†(Ω) +

e−iΩṽb(−Ω) + eiΩṽb†(−Ω)
)

=

= P (ũ) + Q(ṽ). (35)

• The u-dependent parts of (34) and (35) must be equal:

1√
2π

∫ ∞

0

dω
1√
2ω

(

e−iωu(ũ)a(ω) + eiωu(ũ)a†(ω)
)

=

=
1√
2π

∫ ∞

0

dΩ
1√
2Ω

(

e−iΩũb(Ω) + eiΩũb†(Ω)
)

. (36)

• Can be solved for b(Ω) and b†(Ω) by performing a Fourier

transformation on both sides:

1√
2π

∫

dũ eiΩũ . . . . (37)
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Bogolyubov transformation (3)

• Right hand side:

1√
2π

∫

dũ eiΩũ 1√
2π

∫ ∞

0

dΩ′ 1√
2Ω′

(

e−iΩ′ũb(Ω′) + eiΩ′ũb†(Ω′)
)

=

=

∫ ∞

0

dΩ′ 1√
2Ω′

1

2π

∫

dũ eiΩũ

(

e−iΩ′ũb(Ω′) + eiΩ′ũb†(Ω′)
)

=

=

∫ ∞

0

dΩ′ 1√
2Ω′

(

δ(Ω − Ω′)b(Ω′) + δ(Ω + Ω′)b†(Ω′)
)

=

=

{

b(Ω)/
√

2Ω for Ω > 0

b†(−Ω)/
√
−2Ω for Ω < 0

. (38)
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Bogolyubov transformation (4)

• Left hand side:

1√
2π

∫

dũ eiΩũ 1√
2π

∫ ∞

0

dω
1√
2ω

(

e−iωu(ũ)a(ω) + eiωu(ũ)a†(ω)
)

=

=

∫ ∞

0

dω
1√
2ω

(

a(ω)

∫

dũ
1

2π
eiΩũ−iωu(ũ)+

a†(ω)

∫

dũ
1

2π
eiΩũ+iωu(ũ)

)

=

=

∫ ∞

0

dω
1√
2ω

(

a(ω)

∫

dũ
1

2π
exp

(

iΩũ + iω
1

a′
e−a′ũ

)

+

a†(ω)

∫

dũ
1

2π
exp

(

iΩũ − iω
1

a′
e−a′ũ

))

. (39)
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Bogolyubov transformation (5)

• Result (Ω > 0):

b(Ω) =

∫ ∞

0

dω
(

αω,Ωa(ω) + βω,Ωa†(ω)
)

(40)

αωΩ =

√

|Ω|
ω

∫

dũ
1

2π
exp

(

iΩũ + iω
1

a′
e−a′ũ

)

(41)

βωΩ =

√

|Ω|
ω

∫

dũ
1

2π
exp

(

iΩũ − iω
1

a′
e−a′ũ

)

. (42)

• Result (Ω < 0; follows from an analogous calculation with the

v-dependent parts of (34) and (35)):

b(Ω) =

∫ ∞

0

dω
(

αω,−Ωa(−ω) + βω,−Ωa†(−ω)
)

. (43)

• Transformations like (40) and (43) which relate two differ-

ent sets of creation and annihilation operators are called Bo-

golyubov transformations. The coefficients (41) and (42) are

called Bogolyubov coefficients.
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Particle numbers

• Expectation value of the number of b-particles with “momen-

tum” Ω in the Minkowski-vacuum (Ω > 0):

〈0M |b†(Ω)b(Ω)|0M〉 =

= 〈0M |
∫ ∞

0

dω
(

α∗
ω,Ωa†(ω) + β∗

ω,Ωa(ω)
)

∫ ∞

0

dω′ (

αω′,Ωa(ω′) + βω′,Ωa†(ω′)
)

|0M〉 =

=

∫ ∞

0

dω

∫ ∞

0

dω′ β∗
ω,Ωβω′,Ω〈0M |a(ω)a†(ω′)|0M〉 =

=

∫ ∞

0

dω |βω,Ω|2 . (44)

• The integral on the right hand side of (44) can be solved

(Mukhanov et al., page 112 and 113):

〈0M |b†(Ω)b(Ω)|0M〉 =
1

e2πΩ/a − 1
. (45)

• An analogous calculation for Ω < 0 can be carried out. The

result for arbitrary Ω is

〈0M |b†(Ω)b(Ω)|0M〉 =
1

e2π|Ω|/a − 1
. (46)
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Unruh temperature

• Comparing (46) with the Bose distribution

n(Ω) =
1

e|Ω|/T − 1
(47)

yields the Unruh temperature

T =
a

2π
. (48)

• Conclusion: An accelerated observer moving through the

Minkowski vacuum has the impression of moving through a

thermal bath of b-particles with temperature T .
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