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Introduction

Literature

e V. F. Mukhanov and S. Winitzki, Introduction to Quantum
Fields in Classical Backgrounds, 2005.
www.theorie.physik.uni-muenchen.de/~serge/T6/

What is the Unruh effect?

e Vacuum state in Minkowski spacetime: state where no parti-
cles are present; lowest energy eigenstate.

e Unruh effect: an accelerated observer moving through the
Minkowski vacuum detects particles (Minkowski vacuum and
vacuum in the frame of the accelerated observer are different
quantum states).

e In this talk: observer moves in 1+1 dimensions with constant
acceleration.

Marc Wagner, “Unruh effect”, 8" August 2005

3

Outline

e Introduction

e Accelerated motion in Minkowski spacetime

e Coordinates of an accelerated frame

e Rindler spacetime

e Massless scalar field in Minkowski and in Rindler spacetime
e Lightcone coordinates

e Bogolyubov transformation (relation between creation and an-
nihilation operators in Minkowski and in Rindler spacetime)

e Particle numbers of the Minkowski vacuum in an accelerated
frame

e Unruh temperature
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Accelerated motion (1)

Three different frames

e Laboratory frame (inertial frame; coordinates 2 = (¢, z)):
the usual inertial frame.

e Accelerated frame or proper frame (non inertial frame; coor-
dinates (7,&)): the frame where the accelerated observer is at
rest.

e Comoving frames (inertial frames; coordinates 2 = (¢, 2')):

frames where the accelerated observer is momentarily at rest.
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Accelerated motion (2)

Constant acceleration (i)

e Constant acceleration: constant four acceleration in the co-
moving frames.

e Any inertial frame:

waul =1

- 0 = i(u u') = 2u,—u" = 2u,ad. (1)
dr " "dr "

e Comoving frame (at that time when the accelerated observer

is at rest):

w, = (1,) — d" = (0,4). (2)

"
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Accelerated motion (4)

Trajectory of the accelerated observer

e Two equations:

@)= ()" = war = 1 (5)

d02 d127 N AN /T 2

e Solution:

uw’ = cosh(a't) , w' = sinh(d'7). (7)

e Trajectory (initial conditions 2/(0) = (0,1/a’), w"(0) = (1,0),
e. g. at t = 7 = 0 the particle is at rest at x = 1/a/):

1 1
t = Esinh(a%) . x o= Ecosh(a’T). (8)

Accelerated motion (3)
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Constant acceleration (ii)

e A is the ordinary three acceleration @’ in the comoving frame
(at the time when the accelerated observer is at rest):

dt’ d dt’ d d
n o _ 4t - - =2 _ 0=
“ A dr drar "t ar ®)
d2 / d 0 d / d 0,/
= FZ = E (u @.L = E (LL v )
o d 0 / 0 d / o
= (Eu ) v tu Ev =

2 d
a®v' + (u’o)2 (@v/) = d. (4)

e Constant three acceleration in the laboratory frame (or any
inertial frame) is impossible. a = dv/dt = constant would
imply that the observer can move faster than the speed of
light.
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Accelerated frame (coordinates) (1)

e To describe quantum fields in the accelerated frame and to
compare them with quantum fields in the laboratory frame we
need coordinates (7, &) in the accelerated frame and transfor-
mation laws t = ¢(7,&) and x = z(7, §).

e 7 = proper time of the observer (or anybody moving along the
trajectory £ = 0).

o ¢ = spatial distance from the observer at £ = 0.

e Consider a measuring stick of length & in the accelerated
frame. In the current comoving frame it is represented by the
four vector s = (0,&) (the measuring stick is momentarily
at rest in the current comoving frame).

e Four vector of the measuring stick in the laboratory system:

o= =) (e) -

- (mw)(e) = (ue) 0
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Accelerated frame (coordinates) (2)

e The far end of the measuring stick has proper coordinates
(7,&). From that, (8) and (9) the transformation law between
laboratory coordinates (¢, x) and proper coordinates (7, §) can
be derived:

1 L+d

— ;sinh(a’T) +ulé = J;,aé sinh(a'T) (10)
1 L+d

¢ = - cosh(a'r) +u’¢ = +a/a§ cosh(a'r). (11)

e Inverse transformation law:
1 T+t
= —n , € (—o0,00 12
T 2a’ (1’ — t) 7 ( ) (12)

¢ = \/1’2—2@—& L ¢ e [-1/d, ) (13)
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Rindler spacetime (2)

Conformally flat Rindler spacetime (i)

e Quantising fields in conformally flat spacetime in 1+1 dimen-
sions is as easy as quantising fields in Minkowski spacetime.

e To get a conformally flat metric we need a coordinate trans-

formation & = £(§) with

dE = (1+d€)dE. (17)
e Separation of variables yields
- 1 1
& = /d§1+a’§ = Eln(l-&—a’f)
g € (_007 OO) (18>

e This is a rescaling of the spatial coordinate . ¢ is not the
spatial distance but parameterises the spatial distance €.

e Conformally flat Rindler spacetime:

ds? = ex'¢ (dftdg”?). (19)
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Rindler spacetime (1)

e (10) and (11):

i = g e

dr d¢
= (14 d€)cosh(a'r)dr + sinh(a'r)d¢ (14)
dx dx
de = d—TdT + d—éd{ =
= (14 d'¢)sinh(a'T)dr + cosh(a'r)dE. (15)

e Rindler spacetime:

ds® = dt* —da® = (1+d'¢)%dr* — dé. (16)
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Rindler spacetime (3)

Conformally flat Rindler spacetime (ii)

e Transformation law between laboratory coordinates (¢, x) and
conformally flat Rindler coordinates (7, §):

¢

t = = sinh(a'r) (20)
'€ ,

T = — cosh(a'r). (21)
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Massless scalar field (1)

o Action of a minimally coupled massless scalar field:
Sl = [ e v=az0 @000 22)
e Laboratory frame (Minkowski spacetime):
st = [ dedo; (00 - @.07). 2

o Accelerated frame (conformally flat Rindler spacetime;
VG = e, g = ding(e S, o))

stol = [ara (007 - (20)). (21

e In 141 dimensions minimal coupling is equivalent to confor-
mal coupling. Therefore the action in conformally flat Rindler
spacetime is identical to the action in Minkowski spacetime.
Quantising the field ¢ in conformally flat Rindler spacetime is
therefore as easy as in Minkowski spacetime.
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Massless scalar field (3)

Quantisation in Rindler spacetime

e Field operator in conformally flat Rindler coordinates (b(k) =
annihilation operators, bf (k) = creation operators):

¢(7—7€) 1: )
- 7=/

(efilk‘T‘H‘kéb(k,) 4 ez‘\k\rﬂ‘kébwk)) ‘ 27)
e Rindler vacuum:
b(k)|0r) = 0. (28)

e Physical interpretation of b-particle states: analogous to physi-
cal interpretation of a-particle states (the action which is iden-
tical in both cases determines the physical meaning of all quan-
tum states).

Massless scalar field (2)

Quantisation in Minkowski spacetime

e Field operator in laboratory coordinates (a(k) = annihilation
operators, af(k) = creation operators):

¢(t71') 1: .
v Ko

(cﬂwwma(k) " ei‘k“f*fk“aT(k)> , (25)

e Minkowski vacuum:
a(k)|0\1) = 0. (26)

e Expectation values of certain operators, e. g. H (energy), P
(momentum), 7" (energy momentum tensor, i. e. energy
and momentum density), allow a physical interpretation of
a-particle states.

e Example: af(k)|0y) represents a particle with definite mo-
mentum k.
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Massless scalar field (4)

e The field operators represent the same quantum field, i. e.
o(t, ) = ¢(7,¢).

e The creation and annihilation operators a(k), af(k) and b(k),
bl (k) are different, i. e. they create or annihilate different field
excitations.

e Therefore the Minkowski vacuum [0,/) and the Rindler vac-
uum [0p) are different quantum states.
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Lightcone coordinates

e Get the relation between a(k), af(k) and b(k), bf(k) by com-
paring the left and right hand side of

ot z) = o(7,8) (29)
e Lightcone coordinates will simplify this procedure:

u = t—x , v = t+ux (30)

@ =7-€ , 0 = 7+& (31)

e Relation between (u,v) and (@, 0):

a{ a{
u = t—x = ——sinh(d't) — —-cosh(d'T) =
1 / “77 1 )
= —Ee“ € = —e o (32)
uf a{
v o= t+z = sinh(a'r) + —- cosh(a't) =
a a
1 a(E+1 1 o
= Ee €+ — ;e (33)

e Lightcone coordinates do not mix: u = u(), v = v(0).
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Bogolyubov transformation (2)

e Ficld operator in (@, v)-coordinates:
o, 5) =
\/E/ \/2T
e (=0) + €M (-0)) =
P(u) + Q(0). (35)

’mb(Q) +eM1(Q) +

e The u-dependent parts of (34) and (35) must be equal:

1 . .
dw (e—wu(u)a<w) + ezwu(u)a’[<w>> _
2 2
VorJo o Vw

-

e Can be solved for b(Q) and () by performing a Fourier

5 (e7B(Q) + e b1(Q2)) . (36)

transformation on both sides:

%/dﬁem{‘.... (37)

Bogolyubov transformation (1)

e Ficld operator in (u, v)-coordinates:
Plu,v) =
1 1
_ / Al ———
V2 V2|k|

(e—i|k\l+7k1a<k> + ei‘k“”k"c(ﬁ(k)) =

c’i"”’(t’I)a(u}) + e“(t’”')af(w)> +

1 o 1
\/—2_7 / dw \/—_
V2T / *QW
(ew(tﬂ) ( )+ e—(w(tﬂr)a’r(w)) _

- m o (e a) + ) +
e a(—w) + ¢“val (- >) =
= A(u)+ B(v). (34)

o Advantage: ¢(u,v) now is a sum of a u-dependent part and a
v-dependent part.
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Bogolyubov transformation (3)

e Right hand side:

~ zQu

1 1
194
V2w / V2w A V20V
(6—19 ub(Q/) + 61‘(2’115((9/))

o0 1 1 I
= QY —— / di e
0 V20) 2m
(ﬂzsz’abm/) i&)’ﬁ,b]‘(Q/>> _

d(z’r( (= )b(Q) +6(2+ Q)

B b()/vV20Q for Q>0
N { (—Q)/v/—2Q for Q<0

(38)

Marc Wagner, “Unruh effect”, 8" August 2005

19

Marc Wagner, “Unruh effect”, 8" August 2005

20



Bogolyubov transformation (4)

e Left hand side:

o i
(e*w“”a(w) <>) -
7 (0

7(217,—7'w11,(f1,)+

1
T dit — iQu+iwu (i)
a (w)/ Uo—e )
o}
1
= dw ——
/0 V2w
1 o~ o1 _dq
(a(w) /dugexp ('LSZu + w—e “) +
i 1 ) o1 —ad'i
a'(w) [ du—-exp [ iQu — iw—e . (39)
2 a

Bogolyubov transformation (5)
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e Result (2 > 0):

bQ) = /mdw (aw0a(w) + Bugal (W) (40)

Q| .

Qw0 \ il /du exp (z&lu + zw c ’“‘) (41)
Q 1 1

Boo = 1/ u / du —exp | 1Qu —iw—e™ ") . (42)
w 2m a’

e Result (Q < 0; follows from an analogous calculation with the
v-dependent parts of (34) and (35)):

b(Q) = /03Q dw (au,—ga(—w) + B, —qa' (—w)) . (43)

e Transformations like (40) and (43) which relate two differ-
ent sets of creation and annihilation operators are called Bo-
golyubov transformations. The coefficients (41) and (42) are
called Bogolyubov coefficients.

Particle numbers
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e Fxpectation value of the number of b-particles with “momen-
tum” Q in the Minkowski-vacuum (€ > 0):

<Ux\f|bt(9)b<9)|£:u> =
— (0] / dw (2,001 () + B, qa(w))

/0” do' (o ga(w) + Bogal (W) [0x) =

/md"’ /OCW BalOula@)al(@)[0y) =
Uoc 0

= /0 dw |Boal* (44)

e The integral on the right hand side of (44) can be solved
(Mukhanov et al., page 112 and 113):
1
(Ou[b' (VD()0y) = e (45)

e An analogous calculation for < 0 can be carried out. The
result for arbitrary € is

(OB QB 0y) = W}—l (46)
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Unruh temperature

e Comparing (46) with the Bose distribution

1
vields the Unruh temperature
a
T = —. 48
5 (48)

e Conclusion: An accelerated observer moving through the
Minkowski vacuum has the impression of moving through a
thermal bath of b-particles with temperature 7T'.
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