Analysis aspects for 2+1+1 flavor twisted mass lattice QCD (K meson mass, D meson mass)

Marc Wagner

Humboldt University Berlin

mcwagner@physik.hu-berlin.de

http://people.physik.hu-berlin.de/~mcwagner/

May 10, 2008

Outline

- Simulation setup.
- ullet Three methods to determine the mass of the K meson and the mass of the D meson:
 - Generalized eigenvalue problem.
 - Fitting exponentials.
 - Explicit demixing.
- Summary and conclusion.

Simulation setup

- 2+1+1 twisted mass lattice QCD Dirac operators:
 - Degenerate light flavors, quark fields $\chi^{(l)} = (\chi^{(u)}\,,\,\chi^{(d)})$:

$$Q^{(l)} = \gamma_{\mu} D_{\mu} + m + i\mu \gamma_5 \tau_3 - \frac{a}{2} \square.$$

- Non-degenerate heavy flavors, quark fields $\chi^{(h)} = (\chi^{(c)}, \chi^{(s)})$:

$$Q^{(h)} = \gamma_{\mu} D_{\mu} + m + i \mu_{\sigma} \gamma_5 \tau_1 + \tau_3 \mu_{\delta} - \frac{a}{2} \square.$$

- Simulation setup for results shown in this talk:
 - 220 gauge configurations.
 - $-24^3 \times 48$ lattice.
 - $-\beta = 1.90$, $\kappa = 0.163335$, $\mu = 0.004$, $\mu_{\sigma} = 0.15$, $\mu_{\delta} = 0.19$.
 - \rightarrow Pion mass: $am_{\pi} = 0.1722(25)$.

Goal

 \bullet 4 trial states, i.e. 4×4 correlation matrices

$$C_{JJ'}(T) = \langle \phi_J(T) | \phi_{J'}(0) \rangle = \langle \Omega | \mathcal{O}_J(T) (\mathcal{O}_{J'}(0))^{\dagger} | \Omega \rangle$$

with twisted basis meson creation operators

$$\mathcal{O}_{J} \in \left\{ \bar{\chi}^{(d)} \gamma_{5} \chi^{(s)}, \, \bar{\chi}^{(d)} \gamma_{5} \chi^{(c)}, \, \bar{\chi}^{(d)} \chi^{(s)}, \, \bar{\chi}^{(d)} \chi^{(c)} \right\}.$$

- ullet Goal: determine J=0 ground state masses for the following mesons.
 - Light-strange, P=-(K meson) (" $\bar{\psi}^{(d)}\gamma_5\psi^{(s)}$ in the physical basis").
 - Light-charm, P=- (D meson) (" $\bar{\psi}^{(d)}\gamma_5\psi^{(c)}$ in the physical basis").
 - Light-strange, P=+ (" $\bar{\psi}^{(d)}\psi^{(s)}$ in the physical basis").
 - Light-charm, P=+ (" $\bar{\psi}^{(d)}\psi^{(c)}$ in the physical basis").
- Main problem: non-trivial relation between physical basis correlation functions and twisted basis correlation functions.

Generalized eigenvalue problem (1)

• Determine low lying eigenstates approximately by solving the generalized eigenvalue problem

$$C_{JJ'}(T_0)v_{J'}^{(n)} = C_{JJ'}(T_0 - 1)v_{J'}^{(n)}\lambda^{(n)}$$

at fixed time T_0 (in this talk: $T_0 = 8$).

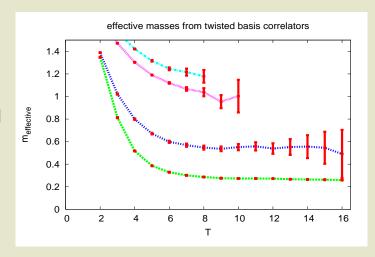
Effective masses:

$$m_{\text{effective}}^{(n)}(T) = -\log\left(\frac{(v_J^{(n)})^{\dagger}C_{JJ'}(T)v_{J'}^{(n)}}{(v_J^{(n)})^{\dagger}C_{JJ'}(T-1)v_{J'}^{(n)}}\right).$$

• Effective mass plateaus correspond to meson masses.

Generalized eigenvalue problem (2)

- Two states can clearly be identified.
- Pros and cons:
 - (+) Simple: results do not depend on the basis ("no twisted mass knowledge necessary").
 - (+) Data quality transparent.
 - (-) Parity and flavor of resulting states not obvious.



- (+) Resulting states differ in parity and flavor quantum numbers, i.e. one state for each combination P = +/P = and strange/charm.
 - \rightarrow Suited to determine the mass of the D meson.
 - * Parity and flavor can be assigned from the eigenvectors $v_J^{(n)}$ (assuming $\omega_l \approx \omega_h \approx \pi/2$ and $Z_P/Z_S \approx 1$).

Fitting exponentials (1)

- It can be shown that in the twisted basis parity even correlators are real, whereas parity odd correlators are purely imaginary.
- Ansatz to determine n low lying eigenstates $|j\rangle$:

$$|\phi_J\rangle \equiv \sum_{j=1}^n a_j^{(J)}|j\rangle$$

with $a_j^{(J)}$ real, if $|\phi_J\rangle$ is a positive parity trial state, and $a_j^{(J)}$ purely imaginary, if $|\phi_J\rangle$ is a negative parity trial state.

• Correlation matrices in terms of the ansatz:

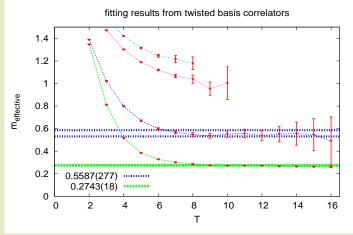
$$C_{JK}(T) = \langle \phi_J(T) | \phi_{J'}(0) \rangle \equiv \sum_{j=1}^n (a_j^{(J)})^* a_j^{(J')} e^{-E_j T} = \tilde{C}_{JJ'}(T).$$

• Determine E_j and $a_j^{(J)}$ by minimizing

$$\chi^2 = \sum_{T=T_{\min}}^{T_{\max}} \sum_{J} \sum_{K>J} \left(\frac{C_{JK}(T) - \tilde{C}_{JK}(T)}{\sigma(C_{JK}(T))} \right)^2.$$

Fitting exponentials (2)

- Two states can clearly be identified.
- Pros and cons:
 - (+) Statistical analysis more straightforward.
 - (-) Parity and flavor of resulting states not obvious.
 - (-) Resulting states do not necessarily differ in parity and flavor quantum numbers.
 - \rightarrow A determination of the mass of the D meson is difficult.
 - * Parity and flavor can be assigned from coefficients $a_j^{(J)}$ (assuming $\omega_l \approx \omega_h \approx \pi/2$ and $Z_P/Z_S \approx 1$).



Explicit demixing (1)

- For each combination P = +/P = and strange/charm determine the corresponding correlation function in the physical basis.
- Twist rotation for quark fields (in the continuum):

$$\psi^{(l)} = \frac{1}{\sqrt{2}} (\cos(\omega_l/2) + i\sin(\omega_l/2)\gamma_5\tau_3)\chi^{(l)}$$

$$\psi^{(h)} = \frac{1}{\sqrt{2}} (\cos(\omega_h/2) + i\sin(\omega_h/2)\gamma_5\tau_1)\chi^{(h)}.$$

• Twist rotation for meson creation operators (on the lattice):

$$\begin{pmatrix} \bar{\psi}^{(d)} \gamma_5 \psi^{(s)} \\ \bar{\psi}^{(d)} \gamma_5 \psi^{(c)} \\ \bar{\psi}^{(d)} \psi^{(s)} \\ \bar{\psi}^{(d)} \psi^{(c)} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} c_l c_h & s_l s_h & -i s_l c_h & +i c_l s_h \\ s_l s_h & c_l c_h & +i c_l s_h & -i s_l c_h \\ -i s_l c_h & +i c_l s_h & c_l c_h & s_l s_h \\ +i c_l s_h & -i s_l c_h & s_l s_h & c_l c_h \end{pmatrix} \begin{pmatrix} Z_P \bar{\chi}^{(d)} \gamma_5 \chi^{(s)} \\ Z_P \bar{\chi}^{(d)} \gamma_5 \chi^{(c)} \\ Z_S \bar{\chi}^{(d)} \chi^{(s)} \\ Z_S \bar{\chi}^{(d)} \chi^{(c)} \end{pmatrix},$$

where $c_l = \cos(\omega_l/2)$, $s_l = \sin(\omega_l/2)$, $c_h = \cos(\omega_h/2)$, $s_h = \sin(\omega_h/2)$.

Explicit demixing (2)

• Determine the light twist angle ω_l and the heavy twist angle ω_h and the ratio Z_P/Z_S by requiring that the physical basis correlation matrix is diagonal,

$$C_{(\gamma_{5},s),(\gamma_{5},c)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \gamma_{5} \psi^{(s)}(T) (\bar{\psi}^{(d)}(0) \gamma_{5} \psi^{(c)}(0))^{\dagger} | \Omega \rangle = 0$$

$$C_{(\gamma_{5},s),(1,s)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \gamma_{5} \psi^{(s)}(T) (\bar{\psi}^{(d)}(0) \psi^{(s)}(0))^{\dagger} | \Omega \rangle = 0$$

$$C_{(\gamma_{5},s),(1,c)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \gamma_{5} \psi^{(s)}(T) (\bar{\psi}^{(d)}(0) \psi^{(c)}(0))^{\dagger} | \Omega \rangle = 0$$

$$C_{(\gamma_{5},c),(1,s)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \gamma_{5} \psi^{(c)}(T) (\bar{\psi}^{(d)}(0) \psi^{(s)}(0))^{\dagger} | \Omega \rangle = 0$$

$$C_{(\gamma_{5},c),(1,c)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \gamma_{5} \psi^{(c)}(T) (\bar{\psi}^{(d)}(0) \psi^{(c)}(0))^{\dagger} | \Omega \rangle = 0$$

$$C_{(\gamma_{5},c),(1,c)}^{\text{physical}}(T) = \langle \Omega | \bar{\psi}^{(d)}(T) \psi^{(s)}(T) (\bar{\psi}^{(d)}(0) \psi^{(c)}(0))^{\dagger} | \Omega \rangle = 0$$

i.e. by minimizing

$$\chi^2 = \sum_{T=T_{\min}}^{T_{\max}} \sum_{J} \sum_{K \ge J} \left(\frac{C_{JK}^{\text{physical}}(T)}{\sigma(C_{JK}^{\text{physical}}(T))} \right)^2.$$

Explicit demixing (3)

• Results for different fitting ranges:

fitting range	ω_l	ω_h	Z_P/Z_S	$\chi^2/\text{d.o.f.}$
$2 \le T \le 16$	$0.7497(536) \times \pi$	$0.4857(38) \times \pi$	0.6345(52)	292.86
$3 \le T \le 16$	$0.6204(107) \times \pi$	$0.5007(14) \times \pi$	0.6380(20)	25.45
$4 \le T \le 16$	$0.6258(94) \times \pi$	$0.5079(12) \times \pi$	0.6489(19)	4.23
$5 \le T \le 16$	$0.6323(95) \times \pi$	$0.5101(13) \times \pi$	0.6543(22)	1.25
$6 \le T \le 16$	$0.6366(96) \times \pi$	$0.5105(14) \times \pi$	0.6566(24)	0.63

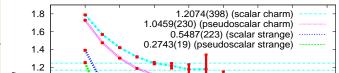
• Are lattice artifacts responsible?

Explicit demixing (4)

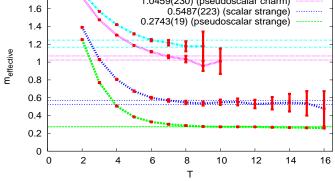
 Analysis of four individual correlation functions in the physical basis via effective masses and via fitting a single exponential.

• Results for fitting range $6 \le T \le 16$:

parity	flavor	m	$\chi^2/\text{d.o.f.}$	particle	
_	strange	0.2743(19)	0.89	K meson	
_	charm	1.0459(230)	0.74	D meson	
+	strange	0.5487(223)	0.04	ef	
+	charm	1.2074(398)	0.19	1.8 - 1.6 -	



effective masses and fitting results from physical basis correlations



Explicit demixing (5)

• Rough estimation of meson masses in physical units (assuming $a \approx 0.1 \, \mathrm{fm}$):

```
am_{\pi} = 0.1722(25) \rightarrow m_{\pi} \approx 340 \,\text{MeV} (PDG: 139.57018(35) MeV).

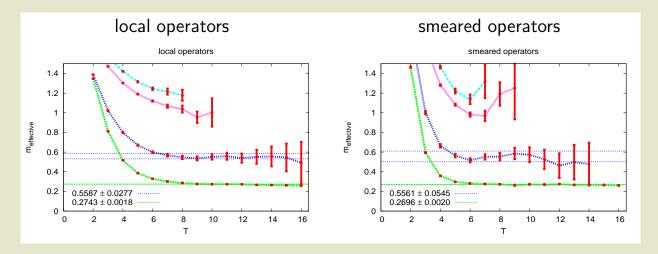
am_{K} = 0.2743(19) \rightarrow m_{K} \approx 540 \,\text{MeV} (PDG: 493.677(16) MeV).

am_{D} = 1.0459(230) \rightarrow m_{D} \approx 2100 \,\text{MeV} (PDG: 1869.62(20) MeV).
```

- Pros and cons:
 - (+) Parity and flavor of resulting states is obvious.
 - (+) Determination of the mass of the D meson seems possible with a comparatively small number of contractions.
 - (+) Data quality is still transparent, when effective masses are computed for individual physical basis correlation functions.

Local versus smeared operators

• Smearing (fuzzing) increases statistical errors.



Summary and conclusion

- ullet Comparison of three analysis methods to determine the mass of the K meson and the mass of the D meson.
 - Generalized eigenvalue problem.
 - Fitting exponentials.
 - Explicit demixing.
- Determination of the mass of the K meson is simple.
 - → All three methods agree and yield rather precise results.
- Determination of the mass of the *D* meson is significantly harder.
 - → Use explicit demixing.