BB, $B\bar{B}$ and hybrid static potentials from lattice QCD

Effective Field Theory Seminar – Technische Universität München, Germany

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

http://th.physik.uni-frankfurt.de/~mwagner/

in collaboration with Pedro Bicudo, Krzystof Cichy, Jonas Scheunert, Annabelle Uenver, Björn Wagenbach, Philipp Wolf

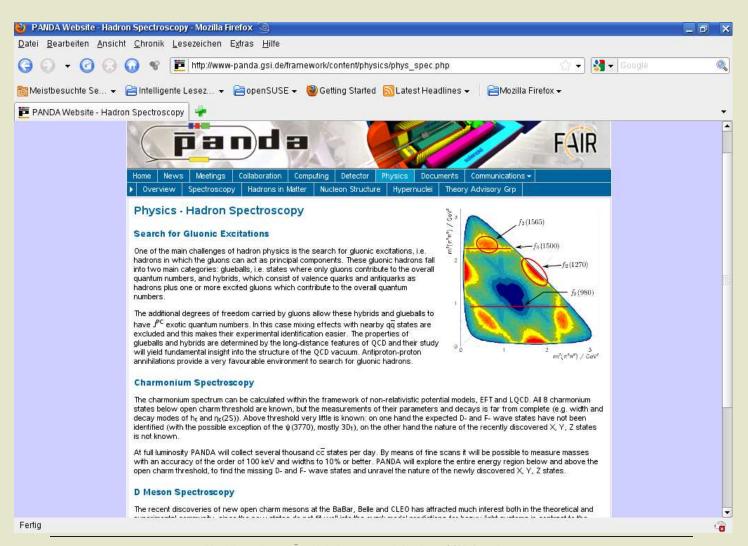
December 5, 2014

Goals, motivation (1)

- Study exotic mesons (tetraquarks/mesonic molecules, hybrid mesons) by combining lattice QCD and phenomenology/model calculations.
- Compute the potential of two heavy valence quarks
 - in the presence of two additional light valence quarks (tetraquarks/mesonic molecules),
 - in the presence of gluonic excitations (hybrid mesons)
 using lattice QCD.
- Explore, whether the potentials are sufficiently attractive to generate a bound state (a rather stable exotic meson) using phenomenology/model calculations.

Goals, motivation (2)

- Why are such investigations important?
 Quite a number of mesons are only poorly understood.
 - Example X(3872) ($\bar{c}c$ state): mass not as expected from quark models; could be a D-D* molecule, a bound diquark-antidiquark, ...
 - Example $D_{s0}^*(2317)$, $D_{s1}(2460)$: masses significantly lower than expected from quark models, almost equal or even lower than the corresponding D mesons; could be tetraquarks, ...
 - Charged bottomonium states, e.g. $Z_b(10610)^+$ and $Z_b(10650)^+$... must be four quark states.
 - Charged charmonium states, e.g. $Z_c(3940)^{\pm}$ and $Z_c(4430)^{\pm}$... must be four quark states.
 - Mesons with non-quark model quantum numbers, e.g. $\pi_1(1400)$, $\pi_1(1600)$... candidates for hybrid mesons.



Outline

- A brief introduction to lattice QCD hadron spectroscopy.
 - QCD (quantum chromodynamics).
 - Hadron spectroscopy.
 - Lattice QCD.
- Ongoing lattice projects:
 - (1) BB static potentials.
 - (2) $B\bar{B}$ static potentials.
 - (3) Hybrid static potentials.

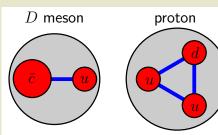
QCD (quantum chromodynamics)

- Quantum field theory of quarks (six flavors u, d, s, c, t, b, which differ in mass) and gluons.
- Part of the standard model explaining the formation of hadrons (usually mesons $=q\bar{q}$ and baryons $=qqq/\bar{q}\bar{q}\bar{q}$) and their masses; essential for decays involving hadrons.
- Definition of QCD simple:

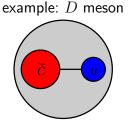
$$S = \int d^4x \left(\sum_{f \in \{u,d,s,c,t,b\}} \overline{\psi}^{(f)} \left(\gamma_{\mu} \left(\partial_{\mu} - iA_{\mu} \right) + m^{(f)} \right) \psi^{(f)} + \frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) \right)$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}].$$

- However, no analytical solutions for low energy QCD observables, e.g. hadron masses, known, because of the absence of any small parameter (i.e. perturbation theory not applicable).
 - \rightarrow Solve QCD numerically by means of lattice QCD.



Hadron spectroscopy

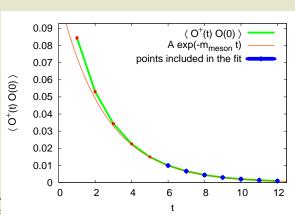


- Proceed as follows:
 - (1) Compute the temporal correlation function C(t) of a suitable hadron creation operator O (an operator O, which generates the quantum numbers of the hadron of interest, when applied to the vacuum $|\Omega\rangle$).
 - (2) Determine the corresponding hadron mass from the asymptotic exponential decay in time.
- Example: D meson mass m_D (valence quarks \bar{c} and \mathbf{u} , $J^P = 0^-$),

$$O \equiv \int d^3r \, \bar{c}(\mathbf{r}) \gamma_5 \mathbf{u}(\mathbf{r})$$

$$C(t) \equiv \langle \Omega | O^{\dagger}(t) O(0) | \Omega \rangle \stackrel{t \to \infty}{\propto}$$

$$\stackrel{t \to \infty}{\propto} \exp\left(-m_D t\right).$$



Lattice QCD (1)

ullet To compute a temporal correlation function C(t), use the path integral formulation of QCD,

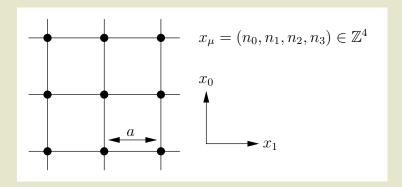
$$C(t) = \langle \Omega | O^{\dagger}(t) O(0) | \Omega \rangle =$$

$$= \frac{1}{Z} \int \left(\prod_{f} D\psi^{(f)} D\bar{\psi}^{(f)} \right) DA_{\mu} O^{\dagger}(t) O(0) e^{-S[\psi^{(f)}, \bar{\psi}^{(f)}, A_{\mu}]}.$$

- $-|\Omega\rangle$: ground state/vacuum.
- $-O^{\dagger}(t), O(0)$: functions of the quark and gluon fields (cf. previous slides).
- $-\int (\prod_f D\psi^{(f)} D\bar{\psi}^{(f)}) DA_{\mu}$: integral over all possible quark and gluon field configurations $\psi^{(f)}(\mathbf{x},t)$ and $A_{\mu}(\mathbf{x},t)$.
- $-e^{-S[\psi^{(f)},\bar{\psi}^{(f)},A_{\mu}]}$: weight factor containing the QCD action.

Lattice QCD (2)

- Numerical implementation of the path integral formalism in QCD:
 - Discretize spacetime with sufficiently small lattice spacing $a\approx 0.05\,\mathrm{fm}\dots 0.10\,\mathrm{fm}$
 - \rightarrow "continuum physics".
 - "Make spacetime periodic" with sufficiently large extension $L\approx 2.0\,{\rm fm}\ldots 4.0\,{\rm fm}$ (4-dimensional torus)
 - \rightarrow "no finite size effects".



Lattice QCD (3)

- Numerical implementation of the path integral formalism in QCD:
 - After discretization the path integral becomes an ordinary multidimensional integral:

$$\int D\psi \, D\bar{\psi} \, DA \, \dots \quad \to \quad \prod_{x_{\mu}} \left(\int \frac{d\psi}{(x_{\mu})} \, \frac{d\bar{\psi}}{(x_{\mu})} \, dU(x_{\mu}) \right) \, \dots$$

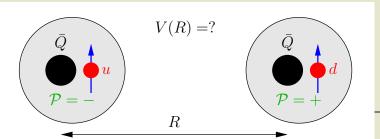
- Typical present-day dimensionality of a discretized QCD path integral:
 - * x_{μ} : $32^4 \approx 10^6$ lattice sites.
 - * $\psi = \psi_A^{a,(f)}$: 24 quark degrees of freedom for every flavor (×2 particle/antiparticle, ×3 color, ×4 spin), 2 flavors.
 - * $U = U_{\mu}^{ab}$: 32 gluon degrees of freedom (×8 color, ×4 spin).
 - * In total: $32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6$ dimensional integral.
 - \rightarrow standard approaches for numerical integration not applicable
 - → sophisticated algorithms mandatory (stochastic integration techniques, so-called Monte-Carlo algorithms).

Heavy-heavy-light-light tetraquarks (1)

- Study possibly existing $\bar{Q}\bar{Q}qq$ and $\bar{Q}Q\bar{q}q$ tetraquark states $(q\in\{u,d,s,c\})$:
 - Use the static approximation for the heavy quarks $\bar{Q}\bar{Q}$ and $\bar{Q}Q$ (reduces the necessary computation time significantly).
 - Most appropriate for $\bar{Q}\bar{Q}\equiv \bar{b}\bar{b}$ and $\bar{Q}Q\equiv \bar{b}b$, e.g. $Z_b(10610)^+$ and $Z_b(10650)^+$.
 - Could also yield information about $\bar{Q}\bar{Q}\equiv \bar{c}\bar{c}$ and $\bar{Q}Q\equiv \bar{c}c$, e.g. $Z_c(3940)^\pm$ and $Z_c(4430)^\pm$.
- Proceed in two steps:
 - (1) Compute the potential of two heavy quarks $\bar{Q}\bar{Q}$ and $\bar{Q}Q$ in the background of two light quarks qq and $\bar{q}q$ by means of lattice QCD.
 - (2) Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks $\bar{Q}\bar{Q}$ and $\bar{Q}Q$; a bound state would indicate a tetraquark state.

Heavy-heavy-light-light tetraquarks (2)

- Since heavy b quarks are treated in the static approximation, their spins are irrelevant (mesons are labeled by the spin of the light degrees of freedom j).
- Consider only pseudoscalar/vector mesons ($j^{\mathcal{P}}=(1/2)^-$, PDG: B, B^*) and scalar/pseudovector mesons ($j^{\mathcal{P}}=(1/2)^+$, PDG: B_0^* , B_1^*), which are among the lightest static-light mesons.
- ullet Study the dependence of the mesonic potential V(R) on
 - the "light" quark flavors u, d, s and/or c (isospin),
 - the "light" quark spin (the static quark spin is irrelevant),
 - the type of the meson S and/or P_- .
 - \rightarrow Many different channels/quantum numbers ... attractive, repulsive ...

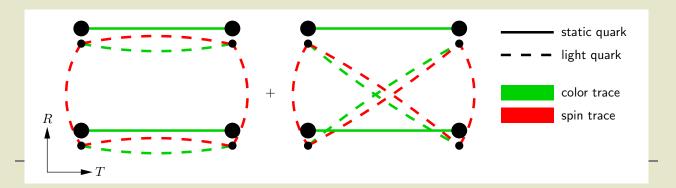


BB static potentials/tetraquarks (1)

- In the following $\bar{Q}\bar{Q}qq$, i.e. "BB" (not $\bar{Q}Q\bar{q}q$, i.e. " $B\bar{B}$ ").
- To extract the potential(s) of a given sector $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$, compute the temporal correlation function of the trial state

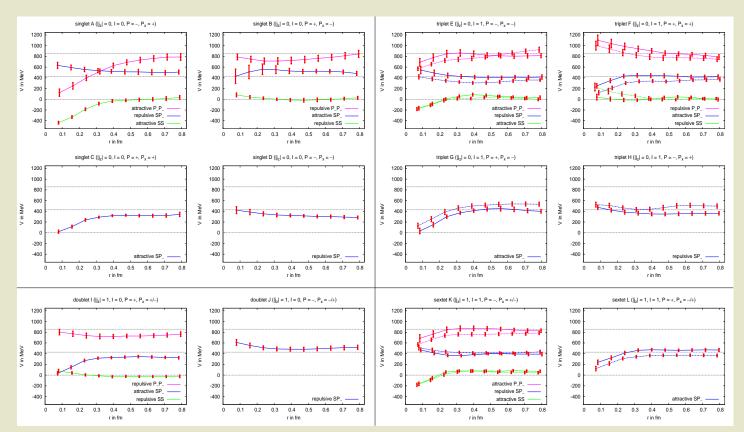
$$(C\Gamma)_{AB}\Big(\bar{Q}_C(-R/2)q_A^{(1)}(-R/2)\Big)\Big(\bar{Q}_C(+R/2)q_B^{(2)}(+R/2)\Big)|\Omega\rangle.$$

- $-\mathcal{C} = \gamma_0 \gamma_2$ (charge conjugation matrix).
- $-q^{(1)}q^{(2)} \in \{ud du, uu, dd, ud + du, ss, cc\}$ (isospin I, I_z).
- $-\Gamma$ is an arbitrary combination of γ matrices (spin $|j_z|$, parity \mathcal{P} , \mathcal{P}_x).



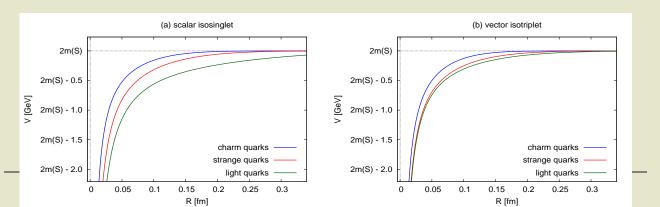
BB static potentials/tetraquarks (2)

• I = 0 (left) and I = 1 (right); $|j_z| = 0$ (top) and $|j_z| = 1$ (bottom).



BB static potentials/tetraquarks (3)

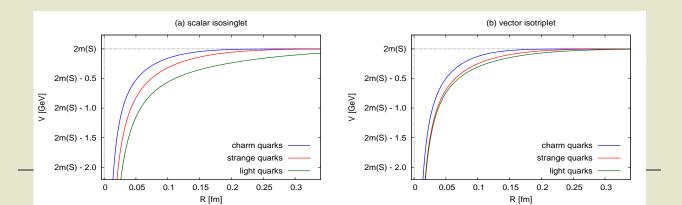
- Focus on the two attractive channels between ground state static-light mesons "B and/or B^* " (probably the best candidates to find a tetraquark):
 - Scalar isosinglet (more attractive): $qq = (ud du)/\sqrt{2}, \ \Gamma = \gamma_5 + \gamma_0\gamma_5,$ quantum numbers $(I, |j_z|, \mathcal{P}, \mathcal{P}_x) = (0, 0, -, +).$
 - Vector isotriplet (less attractive): $qq \in \{uu, (ud+du)/\sqrt{2}, dd\}, \Gamma = \gamma_j + \gamma_0 \gamma_j,$ quantum numbers $(I, |j_z|, \mathcal{P}, \mathcal{P}_x) = (1, \{0, 1\}, -, \pm).$
- Computations for $qq = ll, ss, cc \ (l \in \{u, d\})$ to study the mass dependence.



BB static potentials/tetraquarks (4)

- Two competing effects:
 - The potential for light quarks is wider/deeper, i.e. favors the existence of a bound state (a tetraquark).
 - Heavier quarks correspond to heavier mesons $(m(B) < m(B_s) < m(B_c))$, which form more readily a bound state (a tetraquark), i.e. require a less wide/deep potential for a bound state.

```
[M.W., PoS LATTICE 2010, 162 (2010) [arXiv:1008.1538]] [M.W., Acta Phys. Polon. Supp. 4, 747 (2011) [arXiv:1103.5147]] [B. Wagenbach, P. Bicudo, M.W., arXiv:1411.2453]
```



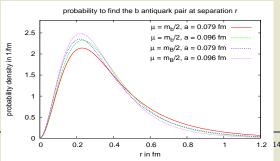
BB static potentials/tetraquarks (5)

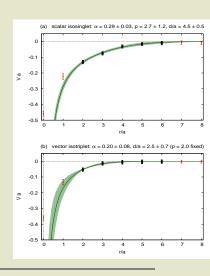
• Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks $\bar{Q}\bar{Q}$,

$$\left(-\frac{1}{2\mu}\Delta + V(r)\right)\underbrace{\psi(\mathbf{r})}_{=B(r)/r} = E\psi(\mathbf{r}) , \quad \mu = m(B_{(s,c)})/2;$$

a bound state, i.e. $E_0 < 0$, would be an indication for a tetraquark state.

- Clear indication for a bound state for the scalar isosinglet and qq=ll (i.e. BB), binding energy $E\approx -50\,\mathrm{MeV}$, confidence level $\approx 2\,\sigma$.
- No binding for the vector isotriplet or for qq = ss, cc (i.e. B_sB_s , B_cB_c).





BB static potentials/tetraquarks (6)

• To quantify "no binding", we list for each channel the factor, by which the effective mass μ in Schrödinger's equation has to be multiplied, to obtain binding with confidence level 1σ and 2σ (the potential is not changed).

flavor	light		strange		charm	
confidence level for binding	1σ	2σ	1σ	2σ	1σ	2σ
scalar isosinglet	0.8	1.0	1.9	2.2	3.1	3.2
vector isotriplet	1.9	2.1	2.5	2.7	3.4	3.5

- Factors ≤ 1.0 indicate binding.
- Light quarks (u/d) are unphysically heavy (correspond to $m_\pi \approx 340\, {\rm MeV}$); physically light u/d quarks are expected to yield stronger binding for the scalar isosinglet, might lead to binding also for the vector isotriplet (computations in progress).
- Mass splitting $m(B^*) m(B) \approx 50 \, \text{MeV}$, neglected at the moment, is expected to weaken binding (coupled channel analysis in progress).
- [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
- [B. Wagenbach, P. Bicudo, M.W., arXiv:1411.2453]

$B\bar{B}$ static potentials/tetraquarks (1)

• Experimentally more interesting case: $\bar{Q}Q\bar{q}q$, i.e. " $B\bar{B}$ ", trial states

$$\gamma_{5,AB}\Gamma_{CD}\Big(\bar{Q}_A(-R/2)q_D^{(1)}(-R/2)\Big)\Big(\bar{q}_C(+R/2)Q_B^{(2)}(+R/2)\Big)|\Omega\rangle.$$

- At the moment only preliminary results for $\bar{q}q=\bar{c}c$, "I=1".
- Qualitative difference to $\bar{Q}\bar{Q}qq$: all channels are attractive (for $\bar{Q}\bar{Q}qq$ half of them are attractive, half of them are repulsive).
 - Can be understood by comparing the potential of $\bar{Q}Q$ and of $\bar{Q}\bar{Q}$ generated by one-gluon exchange.
 - For $\bar{Q}\bar{Q}$ the Pauli principle applied to qq implies either a symmetric (sextet) or an antisymmetric (triplet) color orientation of the static quarks corresponding to a repulsive or attractive interaction, respectively.
 - For $\bar{Q}Q$ no such restriction is present, i.e. all channels contain contributions of the attractive color singlet, which dominates the repulsive color octet.

Heavy-heavy-light-light tetraquarks (3)

- Future plans for BB and $B\bar{B}$:
 - Computations with light u/d quarks of physical mass ($m_{\pi} \approx 140 \, \text{MeV}$ instead of $m_{\pi} \approx 340 \, \text{MeV}$).
 - Light quarks of different mass: BB_s , BB_c and B_sB_c potentials.
 - Refined model calculations with the resulting static-static-light-light potentials: take mass splitting $m(B^*)-m(B)\approx 50\,\mathrm{MeV}$ into account (coupled channel analysis).

Heavy-heavy-light-light tetraquarks (4)

- Future plans for BB and $B\bar{B}$:
 - Study the structure of the states corresponding to the computed potentials:
 - * In a lattice computation two different creation operators generating the same quantum numbers yield the same potential.
 - * At the moment exclusively creation operators of mesonic molecule type.
 - * For BB use also
 - · creation operators of diquark-antidiquark type.
 - * For $B\bar{B}$ use also
 - · creation operators of diquark-antidiquark type,
 - · creation operators of bottomonium + pion type $(Q\bar{Q} \text{ string} + \pi)$,
 - · for I=0 creation operators of bottomonium type (QQ string).
 - * Resulting correlation matrices provide information about the structure.

Hybrid static potentials (1)

• Hybrid mesons:

- Quark antiquark states with excited gluonic fields.
- Not restricted to quark model quantum numbers J^{PC} , where $P = (-1)^{L+1}$ and $C = (-1)^{L+S}$ (L: angular momentum, S: spin).
- Exotic states with $J^{PC}=0^{+-},0^{--},1^{-+},\ldots$ can be realized by excited gluonic fields.
- Examples for $J^{PC} = 1^{-+}$ states: $\pi_1(1400)$, $\pi_1(1600)$.

Hybrid static potentials (2)

- Quantum numbers of states with a static quark and a static antiquark:
 - Angular momentum j_z with respect to the axis of separation; states with $j_z=0,\pm 1,\pm 2,\ldots$ are also labeled by Σ,Π,Δ,\ldots
 - The combination of parity and charge conjugation $P \circ C$; states with $P \circ C = +, -$ are also labeled by g, u.
 - Rotational invariant Σ states are either symmetric or antisymmetric with respect to spatial reflections along an axis perpendicular to the axis of separation denoted by $P_x = +, -$.
- ullet Example: the ordinary static potential has quantum numbers $J^{P_x}_{P\circ C}=\Sigma^+_g$.
- ullet Hybrid static potentials: quantum numbers different from Σ_g^+ .

Hybrid static potentials (3)

Hybrid creation operators:

$$O \equiv \bar{Q}(-R/2)U(-R/2;0)$$
 insertion $U(0;+R/2)Q(+R/2)$.

- -Q(+R/2), $\bar{Q}(-R/2)$: static quark antiquark pair at separation R.
- $U(z_1,z_2)$: gluonic parallel transporter along the axis of separation,

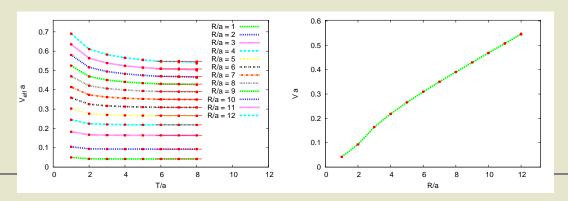
$$U(z_1, z_2) \equiv P\left(\exp\left(i\int_{z_1}^{z_2} dz A_z(z)\right)\right).$$

"insertion": cf. table.

quantum numbers $J_{P\circ C}^{P_x}$	operator insertions			
Σ_g^+	$1 , \mathbf{R} \cdot \mathbf{E} , \mathbf{R} \cdot (\mathbf{D} \times \mathbf{B})$			
Π_g	$\mathbf{R} imes \mathbf{E}$, $\mathbf{R} imes (\mathbf{D} imes \mathbf{B})$			
Σ_u^-	$\mathbf{R} \cdot \mathbf{B}$, $\mathbf{R} \cdot (\mathbf{D} \times \mathbf{E})$			
Π_u	$\mathbf{R} imes \mathbf{B}$, $\mathbf{R} imes (\mathbf{D} imes \mathbf{E})$			
Σ_g^-	$(\mathbf{R} \cdot \mathbf{D})(\mathbf{R} \cdot \mathbf{B})$			

Hybrid static potentials (4)

- Preliminary SU(2) results.
- Lattice setup:
 - More than 700 essentially independent gauge link configurations.
 - -24^4 lattice sites.
 - Lattice spacing $a \approx 0.073$ fm (when identifying r_0 with 0.46 fm).
- Extract a potential value V(R) from the plateau of the corresponding effective mass $V(R) = \ln(C(R,t+a)/C(R,t))/a$, where C(R,t) are Wilson loops with the previously discussed insertions.



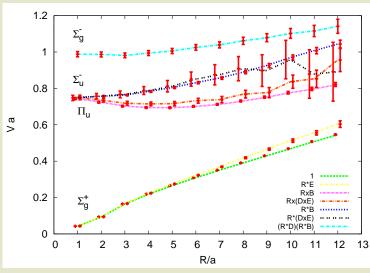
Hybrid static potentials (5)

- Quantum numbers Σ_g^+ , Π_u , Σ_u^- and Σ_g^- (two different hybrid creation operators for Σ_q^+ , Π_u and Σ_u^-):
 - Resulting potentials identical within statistical errors.
 - $-\ \Sigma_g^+$ (ordinary static potential): Wilson loops (green) superior to

 $\mathbf{R} \cdot \mathbf{E}$ (yellow).

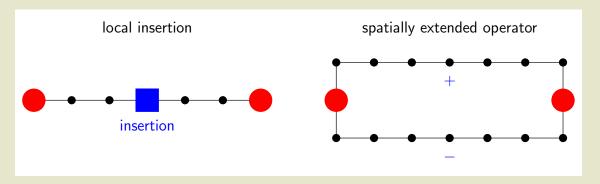
- $-\Pi_u$: $\mathbf{R} \times \mathbf{B}$ (magenta) superior to $\mathbf{R} \times (\mathbf{D} \times \mathbf{E})$ (orange).
- $-\Sigma_u^-$: $\mathbf{R} \cdot \mathbf{B}$ (blue) superior to $\mathbf{R} \cdot (\mathbf{D} \times \mathbf{E})$ (black).
- → Certain information about the gluonic string.

[Philipp Wolf, M.W., arXiv:1410.7578]



Hybrid static potentials (6)

- Statistical errors of hybrid static potentials quite large
 - → local insertions might generate structures rather different from those of the corresponding physical states.
- Implement spatially extended creation operators generating the same quantum numbers $(\Sigma_q^+, \Pi_u, \Sigma_u^-, \Sigma_q^-, ...)$
 - → corresponding correlation functions could be dominated by the ground state already at small temporal separations
 - \rightarrow smaller statistical errors expected.



Hybrid static potentials (7)

Goals:

- Precise results for hybrid static potentials for SU(3) Yang-Mills theory and QCD.
- Use these results to estimate masses of hybrid mesons by solving a Schrödinger-like equation with the computed hybrid static potentials.
- In the context of effective field theories like pNRQCD there might be interest in the short distance behavior of hybrid static potentials, which is related to gluelump masses …?

[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]

Conclusions

• Lattice QCD computations with static quarks combined with model calculations could provide interesting qualitative and to some extent also quantitative insights.