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Original motivation (1)

• Determination of ΛMS from the (singlet) static potential for nf = 0
(Yang-Mills theory) and nf = 2, 3 (QCD) and gauge group SU(3):

– Fit the perturbative result, which depends on the perturbative scale ΛMS,
to the corresponding lattice result, where the scale has been set e.g. by
the typical non-perturbative scale r0 ≈ 0.45 fm . . . 0.50 fm (or by other

hadronic quantities, e.g. mπ and fπ).

– Similar problem: relate the perturbative scale ΛMS and the
non-perturbative scale r0 by determining the dimensionless quantity

ΛMSr0.

– Instead of ΛMS one can also determine αs at some fixed scale.

[N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo, Phys. Rev. Lett. 105, 212001 (2010)
[arXiv:1006.2066 [hep-ph]]]

[K. Jansen, F. Karbstein, A. Nagy and M. Wagner et al. [ETM Collaboration], JHEP 1201, 025 (2012)
[arXiv:1110.6859 [hep-ph]]]

[A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto and A. Vairo, Phys. Rev. D 86, 114031
(2012) [arXiv:1205.6155 [hep-ph]]]
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Original motivation (2)

• Perturbative calculation of the color adjoint static potential up to 2 loops,
recently also up to 3 loops (the “octet static potential” for gauge group

SU(3)).

[T. Collet and M. Steinhauser, Phys. Lett. B 704, 163 (2011) [arXiv:1107.0530 [hep-ph]]]
[C. Anzai, M. Prausa, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, arXiv:1308.1202 [hep-ph]]

• Plan:

– Compute the octet static potential using lattice QCD.

– Determine ΛMS using perturbative and lattice results for the octet static
potential.

• We encountered some conceptual problems, lattice results and perturbative
results show strong qualitative differences ...
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Original motivation (3)

• This work is concerned with the interpretation of the colour adjoint static
potential from Wilson loops with generator insertions (using different

gauges).

• We discuss both non-perturbative (lattice) and perturbative calculations; the

focus, however, will be on the non-perturbative side.

Marc Wagner, Owe Philipsen, “The colour adjoint static potential from Wilson loops with generator insertions and its physical interpretation”, Jul 29, 2013



Lattice Yang Mills theory/QCD (1)

• Lattice gauge theory is based on the path integral formulation of Yang Mills
theory/QCD,

〈Ω|O[ψ(f), ψ̄(f), Aµ]|Ω〉 =

=
1

Z

∫ (∏

f

Dψ(f)Dψ̄(f)
)

DAµO[ψ(f), ψ̄(f), Aµ]e
−S[ψ(f),ψ̄(f),Aµ].

– |Ω〉: ground state/vacuum.

– O[ψ(f), ψ̄(f), Aµ]: functional of the quark and gluon fields.

–
∫
(
∏

f Dψ
(f)Dψ̄(f))DAµ: integral over all possible quark and gluon field

configurations ψ(f)(x, t) and Aµ(x, t).

– e−S[x]: weight factor containing the Yang-Mills/QCD action.
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Lattice Yang Mills theory/QCD (2)

• Numerical implementation of the path integral formalism in Yang Mills
theory/QCD:

– Discretise spacetime with sufficiently small lattice spacing
a ≈ 0.05 fm . . . 0.10 fm

→ “continuum physics”.

– “Make spacetime periodic” with sufficiently large extension
L ≈ 2.0 fm . . . 4.0 fm (4-dimensional torus)

→ “no finite size effects”.
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Lattice Yang Mills theory/QCD (3)

• After discretization the path integral becomes an ordinary multidimensional
integral:
∫

DψDψ̄ DA . . . →
∏

xµ

(∫

dψ(xµ) dψ̄(xµ) dU(xµ)
)

. . . ,

where

Uν(xµ) = P
(

exp
(

ig

∫ xµ+ae
(ν)
µ

xµ

dzρAρ(z)
))

,

i.e. the lattice gauge field is stored in parallel transporters connecting
neighbouring lattice sites (so-called links).

• Advantages/disadvantages of lattice Yang Mills theory/QCD:

(+) Exact Yang Mills/QCD results (no approximations, no model
assumptions, etc.).

(−) Only numerical results, i.e. numbers, no analytical functions, etc.
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Introduction: singlet static potential (1)

• The (singlet) static potential V 1 is a very common and important observable
in lattice gauge theory.

• It is the energy of a static antiquark Q̄(x) and a static quark Q(y) in a
colour singlet (i.e. a gauge invariant) orientation as a function of the

separation r ≡ |x− y|.

• The spin of a static quark is irrelevant, i.e. in the following

– no spin indices or γ matrices,

– only spinless colour charges,
Q̄a
A(x) = (Qa,†(x)γ0)A → Qa,†(x),

Qa
A(y) → Qa(y),

where a denotes a colour index and A a spin
index.
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Introduction: singlet static potential (2)

• The singlet static potential for gauge group SU(N) can be obtained as
follows:

(1) Define a trial state

|Φ1〉 ≡ Q̄(x)U(x,y)Q(y)|0〉.

(2) The temporal correlation function of this trial state simplifies to the well
known Wilson loop,

〈Φ1(t2)|Φ
1(t1)〉 = e−2M∆tN

〈

W1(r,∆t)
〉

, ∆t ≡ t2 − t1 > 0,

where

W1(r,∆t) =

=
1

N
Tr

(

P
(

exp
(

ig

∮

dzµAµ(z)
)))

.
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Introduction: singlet ...

• The singlet static potential for gauge group SU(N)
can be obtained as follows:

(3) The singlet static potential V 1 ≡ V 1
0 can be

obtained from the asymptotic exponential behaviour of the Wilson loop,
〈

W1(r,∆t)
〉

∝ 〈Φ1(t2)|Φ
1(t1)〉 = e+E0∆t〈Φ1(t1)|e

−H∆t|Φ1(t1)〉 =

=
∞∑

n=0

〈Φ1|n〉e−V
1
n (r)∆t〈n|Φ1〉 =

=

∞∑

n=0

∣
∣
∣〈Φ1|n〉

∣
∣
∣

2

︸ ︷︷ ︸
=cn

e−V
1
n (r)∆t

∆t→∞
∝ exp

(

− V 1(r)∆t
)

V 1(r) = − lim
∆t→∞

〈Ẇ1(r,∆t)〉

〈W1(r,∆t)〉

(
∑

n is the sum over eigenstates of the Hamiltonian, which have the
quantum numbers of |Φ1〉, in particular a static QQ̄ pair at x and y).
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Colour adjoint static potential (1)

• Goal of this work: compute and interpret the potential of a static antiquark
Q̄(x) and a static quark Q(y) in a colour adjoint (i.e. a gauge variant)

orientation in various gauges as a function of the separation r ≡ |x− y|.

• A colour adjoint orientation of a static antiquark and a static quark can be

obtained by inserting the generators of the colour group T a (e.g. for SU(3),
T a = λa/2), i.e. Q̄T aQ|0〉.

• If the static antiquark and the static quark are separated in space, a
straightforward generalisation is

|ΦT a

〉 ≡ Q̄(x)U(x,x0)T
aU(x0,y)Q(y)|0〉.

• A corresponding definition of the colour adjoint static potential has been
proposed and used in pNRQCD (a framework based on perturbation theory).

[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]
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Colour adjoint static ... (2)

• We discuss non-perturbative calculations analogous
as for the singlet static potential in various gauges,

〈ΦT a

(t2)|Φ
T a

(t1)〉 = e−2M∆tN
〈

WT a(r,∆t)
〉

,

WT a(r,∆t) ≡
1

N
Tr

(

T aURT
a,†UL

)

〈

WT a(r,∆t)
〉

=
∞∑

n=0

cn exp
(

− V T a

n (r)∆t
)

∆t→∞
∝ exp

(

− V T a

(r)∆t
)

.

• In particular we are interested,

– whether the colour adjoint static potential V T a

≡ V T a

0 is gauge invariant

(i.e. whether the obvious gauge dependence of the correlation function
〈WT a(r,∆t)〉 only appears in the matrix elements cn),

– whether V T a

indeed corresponds to the potential of a static antiquark
and a static quark in a colour adjoint orientation, or whether it has to be

interpreted differently.
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V T
a
without gauge fixing

• Without gauge fixing

〈

WT a(r,∆t)
〉

= 0,

because this correlation function is gauge variant (and does not contain any
gauge invariant contribution).

→ Without gauge fixing the calculation of a colour adjoint static potential fails.
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V T
a
in Coulomb gauge

• Coulomb gauge: ∇Ag(x) = 0, which amounts to an independent condition
on every time slice t.

• The remaining residual gauge symmetry corresponds to global independent
colour rotations hres(t) ∈ SU(N) on every time slice t; with respect to this
residual gauge symmetry the colour adjoint Wilson loop transforms as

〈

WT a(r,∆t)
〉

=
1

N
Tr

(

T aURT
a,†UL

)

→hres

→hres
1

N
Tr

(

hres,†(t1)T
ahres(t1)URh

res(t2)T
a,†hres,†(t2)UL

)

.

• Since hres(t1) and h
res(t2) are independent, the situation is analogous to that

without gauge fixing, i.e.

〈

WT a(r,∆t)
〉

Coulomb gauge
= 0.

→ In Coulomb gauge the calculation of a colour adjoint static potential fails.
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V T
a
in Lorenz gauge

• Lorenz gauge: ∂µA
g
µ(x) = 0.

• In Lorenz gauge a Hamiltonian or a transfer matrix does not exist.

• Only gauge invariant correlation functions like the ordinary Wilson loop
〈W1(r,∆t)〉 exhibit an asymptotic exponential behaviour and, therefore,
allow the determination of energy eigenvalues.

• The colour adjoint Wilson loop 〈WT a(r,∆t)〉Lorenz gauge does not decay
exponentially in the limit of large ∆t.

→ The physical meaning of a colour adjoint static potential determined from
〈WT a(r,∆t)〉Lorenz gauge is unclear.
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V T
a
in temporal gauge (1)

• Temporal gauge: ∂µA
g
0(x) = 0 or equivalently U g

0 (x) = 1.

• Temporal links gauge transform as

U g
0 (t,x) = g(t,x)U0(t,x)g

†(t+ a,x) , g(t,x) ∈ SU(N).

• A possible choice to implement temporal gauge is

g(t = 2a,x) = U0(t = a,x),

g(t = 3a,x) = g(t = 2a,x)U0(t = 2a,x) = U0(t = a,x)U0(t = 2a,x),

g(t = 4a,x) = g(t = 3a,x)U0(t = 3a,x) = . . . ,

. . . = . . .
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V T
a
in temporal gauge (2)

• By inserting the transformation to temporal gauge g(t,x), the gauge variant
colour adjoint Wilson loop turns into a gauge invariant observable:

〈

WT a(r,∆t)
〉

temporal gauge
=

=
1

N

〈

Tr
(

UT a,g(t1;x,y)U
T a,†,g(t2;y,x)

)〉

temporal gauge
= . . . =

=
2

N(N2 − 1)

∑

a

∑

b

〈

Tr
(

T aURT
bUL

)

Tr
(

T aU(t1, t2;x0)T
bU(t2, t1;x0)

)〉

(UT a

(x,y) = U(x,x0)T
aU(x0,y)).

• Tr(T aURT
bUL): Wilson loop with generator insertions.

• Tr(T aU(t1, t2;x0)T
bU(t2, t1;x0)): propagator of a static adjoint quark.

→ The colour adjoint Wilson loop in temporal gauge is a correlation function of
a gauge invariant three-quark state, one fundamental static quark, one
fundamental static anti-quark, one adjoint static quark.
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V T
a
in temporal gauge (3)

• Equivalently, after defining

|ΦQQ̄Qad

〉 ≡ Qad,a(x0)(Q̄(x)U
T a

(x,y)Q(y))|0〉,

one can verify

〈ΦQQ̄Qad

(t2)|Φ
QQ̄Qad

(t1)〉 ∝
〈

WT a(r,∆t)
〉

temporal gauge
.

→ V T a

in temporal gauge should not be interpreted as the potential of a static
quark and a static anti-quark, which form a colour-adjoint state.

→ V T a

in temporal gauge is the potential of a colour-singlet three-quark state.

→ V T a

in temporal gauge does not only depend on the QQ̄ separation

r = |x− y|, but also on the position s = |x− x0|/2− |y − x0|/2 of the
static adjoint quark Qad, i.e. V T a

(r, s) (in the following we work with the

symmetric alignment x0 = (x+ y)/2).
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V T
a
in temporal gauge (4)

• A different approach, leading to the same result, is the transfer matrix
formalism.

[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]
[O. Philipsen, Nucl. Phys. B 628, 167 (2002) [hep-lat/0112047]]

• One can perform a spectral analysis of the colour adjoint Wilson loop:

〈

WT a(r,∆t)
〉

temporal gauge
=

1

N

∑

k

e−(V Ta

k (r)−E0)∆t
∑

α,β

∣
∣
∣〈kaαβ|U

T a

αβ (x,y)|0〉
∣
∣
∣

2

,

where |kaαβ〉 denotes states containing three static quarks (one fundamental

static quark, one fundamental static anti-quark, one adjoint static quark).

→ Again the conclusion is that V T a

in temporal gauge is the potential of a

colour-singlet three-quark state.
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A gauge invariant definition via B fields?

• In the literature one can also find a proposal of a gauge invariant quantity to
determine a colour adjoint static potential,

WB(r,∆t) ≡
1

N
Tr

(

T aURT
b,†UL

)

Ba(x0, t1)B
b(x0, t2),

i.e. open colour indices are saturated by colour magnetic fields.

[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]

• Using the transfer matrix formalism one can again perform a spectral analysis
and show that only states with a fundamental quark and a fundamental

antiquark |kαβ〉 (i.e. singlet static potentials) contribute:

〈

WB(r,∆t)
〉

=
∑

k

e−(V 1,−
k (r)−E0)∆t

∑

α,β

∣
∣
∣〈kαβ|U

T aBa

αβ (x,y)|0〉
∣
∣
∣

2

.

→ 〈WB(r,∆t)〉 is suited to extract colour singlet static potentials only

(quantum numbers “parity” [PC, Px] and angular momentum may differ
from the ordinary singlet static potential → hybrid potentials).
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Numerical lattice results for SU(2)

• SU(2) colour group, four different lattice spacings a = 0.038 fm . . . 0.102 fm.

• In temporal gauge the colour adjoint (or rather QQ̄Qad) static potential V T a

is attractive,

– for small separations stronger than the singlet static potential V 1,

– for large separations the slope is the same as for the singlet static
potential V 1 (indicates flux tube formation between QQad and Q̄Qad).
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LO perturbative calculations (1)

• Perturbation theory for static potentials is a good approximation for small
quark separations and should agree in that region with corresponding

non-perturbative results.

• Singlet static potential (gauge invariant, i.e. the gauge is not important):

V 1(r) = −
(N2 − 1)g2

8Nπr
+ const +O(g4).

• Colour adjoint static potential (in Lorenz gauge):

V T a

(r) = +
g2

8Nπr
+ const +O(g4).

– In Lorenz gauge a Hamiltonian or a transfer matrix does not exist, i.e.

the physical meaning is unclear; appears frequently in the literature.

– The repulsive behaviour is not reproduced by any of the presented
non-perturbative considerations or computations.
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LO perturbative calculations (2)

• Colour adjoint static potential (“in temporal gauge”; more precisely:
perturbative calculation in Lorenz gauge of the gauge invariant observable,

which is equivalent to the colour adjoint Wilson loop in temporal gauge):

V T a

(r, s = 0) = V QQ̄Qad

(r, s = 0) = −
(4N2 − 1)g2

8Nπr
+ const +O(g4).

– Attractive and stronger by a factor 4 . . . 5 than the singlet static
potential (depending on N).

– Qualitative agreement with numerical lattice results for SU(2).
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Matching lattice/perturbative results (1)

• Lattice results for the static potential exhibit large discretisation errors for
r < 2a (for our ensembles 2a ≈ 0.08 fm . . . 0.20 fm).

• Perturbative results for the static potential are only trustworthy for
separations <

∼ 0.2 fm.

→ Small region of overlap between lattice and perturbative results.

• The leading order of perturbation theory, which we will use in the following,

V 1,LO(r) = −
3g2

16πr
+ const , V T a,LO(r, s = 0) = −

15g2

16πr
+ const

(here specialized to gauge group SU(2)) is known to be a rather poor
approximation.
→ Only qualitative agreement expected, when comparing to lattice results.
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Matching lattice/perturbative results (2)

• We determine αs ≡ g2/4π from the corresponding static forces
FX(r) = dV X(r)/dr, X ∈ {1, T a}; one the lattice the derivative is defined

by a finite difference,

V 1,lattice(3a)− V 1,lattice(2a)

a
=

3α1
s

4(2.5× a)2

V T a,lattice(6a)− V T a,lattice(4a)

2a
=

15αT
a

s

4(5× a)2

(static colour charges are separated by at least 2a, while at the same time

their separation is still quite small).

• ∆αrel
s is quite small.

→ A clear sign of agreement between
lattice and perturbative results.

• αs < 0.5 for β = 2.60 , 2.70.

→ Perturbation theory “valid”.
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β a in fm α1
s αT

a

s ∆αrel
s

2.40 0.102 0.89 0.75 17%

2.50 0.073 0.59 0.52 13%
2.60 0.050 0.43 0.40 9%

2.70 0.038 0.36 0.33 6%



Conclusions

• We have discussed the non-perturbative definition of a static potential V T a

for a quark antiquark pair in a colour adjoint orientation, based on Wilson
loops with generator insertions 〈WT a(r,∆t)〉 in various gauges:

– Without gauge fixing/Coulomb gauge: 〈WT a(r,∆t)〉 = 0, i.e. the
calculation of a potential V T a

fails.

– Lorenz gauge: a Hamiltonian or a transfer matrix does not exist, the

physical meaning of a corresponding potential V T a

is unclear.

– Temporal gauge: a strongly attractive potential V T a

, which should be

interpreted as the potential of three quarks, i.e. V T a

= V QQ̄Qad

.

• Saturating open colour indices with Ba, yields a singlet static potential (a

hybrid potential).

• LO perturbation theory in Lorenz gauge has long predicted V T a

to be

repulsive; it appears impossible, to reproduce this repulsive behaviour by a
non-perturbative computation based on Wilson loops.
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