Studying tetraquark candidates using lattice QCD

Theoretical Physics Seminar, Sapienza – Universita di Roma, Italy

Marc Wagner

in collaboration with Abdou Abdel-Rehim, Constantia Alexandrou, Joshua Berlin, Mattia Dalla Brida, Jan Daldrop, Mario Gravina, Giannis Koutsou, Luigi Scorzato, Annabelle Uenver, Carsten Urbach, Christian Wiese

Februray 17, 2014

Introduction, motivation (1)

• The nonet of light scalar mesons $(J^P = 0^+)$

```
\begin{split} &-\sigma \equiv f_0(500), \ I=0, \ 400 \dots 550 \ \mathsf{MeV} \qquad (\bar{s}s \ \dots?), \\ &-\kappa \equiv K_0^*(800), \ I=1/2, \ 682 \pm 29 \ \mathsf{MeV} \qquad (\bar{s}u, \ \bar{s}d, \ \bar{u}s, \ \bar{d}s \ \dots?), \\ &-a_0(980), \ I=1, \ 980 \pm 20 \ \mathsf{MeV} \qquad (\bar{u}d, \ \bar{d}u, \ \bar{u}u - \bar{d}d \ \dots?) \\ &f_0(980), \ I=0, \ 990 \pm 20 \ \mathsf{MeV} \qquad (\bar{u}u + \bar{d}d \ \dots?) \end{split}
```

is poorly understood:

- All nine states are unexpectedly light (should rather be close to the corresponding $J^P=1^+,2^+$ states around $1200\dots1500\,\mathrm{MeV}$).
- The ordering of states is inverted compared to expectation:
 - * E.g. in a $q\bar{q}$ picture the I=1 $a_0(980)$ states must necessarily be formed by two u/d quarks, while the I=1/2 κ states are made from an s and a u/d quark; since $m_s>m_{u/d}$ one would expect $m(\kappa)>m(a_0(980))$.

Introduction, motivation (2)

- * In a tetraquark picture the quark content could e.g. be the following: $\kappa \equiv \bar{s}u(\bar{u}u + \bar{d}d) \text{ (one } s \text{ quark, three light quarks)}$ $a_0(980) \equiv \bar{s}u\bar{d}s \text{ (two } s \text{ quarks, two light quarks);}$ this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g. $a_0(980)$ readily decays to $K + \bar{K}$, which indicates that besides the two light quarks required by I = 1 also an $s\bar{s}$ pair is present.
- ightarrow Study such states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.

Introduction, motivation (3)

- Examples of heavy mesons, which are tetraquark candidates:
 - $-D_{s0}^*(2317)^{\pm}$, $D_{s1}(2460)^{\pm}$,
 - charmonium states X(3872), $Z(4430)^{\pm}$, $Z(4050)^{\pm}$, $Z(4250)^{\pm}$, ...
 - \(\bar{c}c\bar{c}c\) (experimentally not yet observed, predicted by theory) ...?
 [W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]
 - $-bb(\bar{u}\bar{d}-\bar{d}\bar{u})$ (experimentally not yet observed, predicted by theory) ...? [P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274 [hep-ph]].]

Outline

- (1) Wilson twisted mass study of $a_0(980)$:
 - [C. Alexandrou et al. [ETM Collaboration], JHEP 1304, 137 (2013) [arXiv:1212.1418 [hep-lat]]]
 - Wilson twisted mass fermions (generated by the ETM Collaboration).
 [R. Baron et al., JHEP 1006, 111 (2010) [arXiv:1004.5284 [hep-lat]]]
 - Computations at light u/d quark masses corresponding to $m_\pi \gtrsim 280 \text{MeV}$.
 - No disconnected diagrams/closed fermion loops.
- (2) Recent technical advances:
 - Wilson + clover fermions (generated by the PACS-CS Collaboration).
 [S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
 - Computations close to physically light u/d quark masses.
 - Inclusion of disconnected diagrams/closed fermion loops.
- (3) Exploring a possibly existing $\bar{c}c\bar{c}c$ tetraquark.
- (4) Static-static-light-light tetraquarks (close to $bb(\bar{u}\bar{d}-\bar{d}\bar{u})$).

Lattice QCD hadron spectroscopy (1)

• Lattice QCD: discretized version of QCD,

$$S = \int d^4x \left(\sum_{\psi \in \{u,d,s,c,t,b\}} \overline{\psi} \left(\gamma_{\mu} \left(\partial_{\mu} - iA_{\mu} \right) + m^{(\psi)} \right) \psi + \frac{1}{2g^2} \operatorname{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) \right)$$

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i[A_{\mu}, A_{\nu}].$$

- Let \mathcal{O} be a suitable "hadron creation operator", i.e. an operator formed by quark fields ψ and gluonic fields A_{μ} such that $\mathcal{O}|\Omega\rangle$ is a state containing the hadron of interest ($|\Omega\rangle$: QCD vacuum).
- More precisely: ... an operator such that $\mathcal{O}|\Omega\rangle$ has the same quantum numbers $(J^{\mathcal{PC}}, \text{ flavor})$ as the hadron of interest.
- Examples:
 - Pion creation operator: $\mathcal{O} = \int d^3x \, \bar{u}(\mathbf{x}) \gamma_5 d(\mathbf{x})$.
 - Proton creation operator: $\mathcal{O} = \int d^3x \, \epsilon^{abc} u^a(\mathbf{x}) (u^{b,T}(\mathbf{x}) C \gamma_5 d^c(\mathbf{x})).$

Lattice QCD hadron spectroscopy (2)

• Determine the mass of the ground state of the hadron of interest from the exponential behavior of the corresponding correlation function C at large Euclidean times t:

$$\mathcal{C}(t) = \langle \Omega | \mathcal{O}^{\dagger}(t) \mathcal{O}(0) | \Omega \rangle = \langle \Omega | e^{+Ht} \mathcal{O}^{\dagger}(0) e^{-Ht} \mathcal{O}(0) | \Omega \rangle =$$

$$= \sum_{n} \left| \langle n | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp\left(- (E_{n} - E_{\Omega})t \right) \approx \text{ (for "} t \gg 1")$$

$$\approx \left| \langle 0 | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp\left(- \underbrace{(E_{0} - E_{\Omega})}_{m(\text{hadron})} t \right).$$

 Usually the exponent is determined by identifying the plateau value of a so-called effective mass:

$$m_{ ext{effective}}(t) = \frac{1}{a} \ln \left(\frac{\mathcal{C}(t)}{\mathcal{C}(t+a)} \right) \approx (\text{for "}t \gg 1")$$

 $\approx E_0 - E_\Omega = m(\text{hadron}).$

0.4
0.35
0.3
0.25
0.1
0.05
0
0 2 4 6 8 10 12 14

Part 1: Wilson twisted mass study of $a_0(980)$

Tetraquark creation operators

- $a_0(980)$:
 - Quantum numbers $I(J^P) = 1(0^+)$.
 - $\text{ Mass } 980 \pm 20 \text{ MeV}.$

- Two light quarks needed, due to I = 1, e.g. ud.
- $-a_0(980)$ decays to KK ... suggests an additional $s\bar{s}$ pair.
- -KK molecule type (models a bound KK state):

$$\mathcal{O}^{K\bar{K} \text{ molecule}}_{a_0(980)} \ = \ \sum_{\mathbf{x}} \Big(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big) \Big(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\Big).$$

Diquark type (models a bound diquark-antidiquark):

$$\mathcal{O}_{a_0(980)}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \left(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{d}^{c,T}(\mathbf{x}) \right) \left(\epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \right).$$

Wilson twisted mass lattice setup

• Gauge link configurations generated by the ETM Collaboration. [R. Baron *et al.*, JHEP **1006**, 111 (2010) [arXiv:1004.5284 [hep-lat]]]

- 2+1+1 dynamical Wilson twisted mass quark flavors, i.e. u, d, s and c sea quarks (twisted mass lattice QCD isospin and parity are slightly broken).
- Various light u/d quark masses corresponding pion masses $m_{\pi} \approx 280 \dots 460 \, \text{MeV}.$
- Singly disconnected contributions/closed fermion loops neglected, i.e. no s quark propagation within the same timeslice ("no quark antiquark pair creation/annihilation").

Numerical results $a_0(980)$ (1)

Effective mass, molecule type operator:

$$\mathcal{O}^{K\bar{K} \text{ molecule}}_{a_0(980)} \ = \ \sum_{\mathbf{x}} \Big(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big) \Big(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\Big).$$

- The effective mass plateau indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of $K\bar{K}$ molecule type ...?

Numerical results $a_0(980)$ (2)

• Effective mass, diquark type operator:

$$\mathcal{O}_{a_0(980)}^{\mathsf{diquark}} \quad = \quad \sum_{\mathbf{x}} \Big(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{\mathbf{d}}^{c,T}(\mathbf{x}) \Big) \Big(\epsilon^{ade} \mathbf{u}^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \Big).$$

- The effective mass plateau indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of diquark type ...? Or a mixture of $K\bar{K}$ molecule and a diquark-antidiquark pair?

Numerical results $a_0(980)$ (3)

• Study both operators at the same time, extract the two lowest energy eigenstates by diagonalizing a 2×2 correlation matrix ("generalized eigenvalue problem"):

$$\begin{array}{ll} \mathcal{O}^{K\bar{K} \; \text{molecule}}_{a_0(980)} & = & \displaystyle\sum_{\mathbf{x}} \Big(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big) \Big(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\Big) \\ \\ \mathcal{O}^{\text{diquark}}_{a_0(980)} & = & \displaystyle\sum_{\mathbf{x}} \Big(\epsilon^{abc}\bar{s}^b(\mathbf{x})C\gamma_5\bar{d}^{c,T}(\mathbf{x})\Big) \Big(\epsilon^{ade}u^{d,T}(\mathbf{x})C\gamma_5 s^e(\mathbf{x})\Big). \end{array}$$

• Now two orthogonal states roughly consistent with the experimentally measured $a_0(980)$ mass $980 \pm 20 \,\text{MeV}$...?

mol(K+K), tetra(g5) (2×2 matrix)

3500

2500

1000

500

0

2

4

6

8

10

12

14

Two-particle creation operators (1)

- Explanation: there are two-particle states, which have the same quantum numbers as $a_0(980)$, $I(J^{PC})=1(0^{++})$,
 - $-K + \bar{K}$ ($m(K) \approx 500$ MeV),
 - $-\eta_s + \pi \ (m(\eta_s \equiv \bar{s}\gamma_5 s) \approx 700 \, \text{MeV}, \ m(\pi) \approx 300 \, \text{MeV} \text{ in our lattice setup)},$

which are both around the expected $a_0(980)$ mass 980 ± 20 MeV.

- What we have seen in the previous plots might actually be two-particle states (our operators are of tetraquark type, but they nevertheless generate overlap [possibly small, but certainly not vanishing] to two-particle states).
- To determine, whether there is a bound $a_0(980)$ tetraquark state, we need to resolve the above listed two-particle states $K + \bar{K}$ and $\eta_s + \pi$ and check, whether there is an additional 3rd state in the mass region around 980 ± 20 MeV; to this end we need operators of two-particle type.

Two-particle creation operators (2)

- Two-particle operators:
 - Two-particle $K + \bar{K}$ type:

$$\mathcal{O}^{K+\bar{K} \text{ two-particle}}_{a_0(980)} \ = \ \bigg(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x})\bigg) \bigg(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_5 s(\mathbf{y})\bigg).$$

- Two-particle $\eta_s + \pi$ type:

$$\mathcal{O}_{a_0(980)}^{\eta_s+\pi \text{ two-particle}} \quad = \quad \bigg(\sum_{\mathbf{x}} \bar{s}(\mathbf{x})\gamma_5 s(\mathbf{x})\bigg) \bigg(\sum_{\mathbf{y}} \bar{d}(\mathbf{y})\gamma_5 u(\mathbf{y})\bigg).$$

Numerical results $a_0(980)$ (4)

- Study all four operators ($K\bar{K}$ molecule, diquark, $K+\bar{K}$ two-particle, $\eta_s+\pi$ two-particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a 4×4 correlation matrix (left plot).
 - Still only two low-lying states around $980\pm20\,\mathrm{MeV},$ the 2nd and 3rd excitation are $\approx750\,\mathrm{MeV}$ heavier.
 - The signal of the low-lying states is of much better quality than before (when we only considered tetraquark operators)
 - → suggests that the observed low-lying states have much better overlap to the two-particle operators and are most likely of two-particle type.

Numerical results $a_0(980)$ (5)

- When determining low-lying eigenstates from a correlation matrix, one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
 - \rightarrow The ground state is a $\eta_s + \pi$ state ($\gtrsim 95\%$ two-particle $\eta_s + \pi$ content).
 - \rightarrow The first excitation is a $K+\bar{K}$ state ($\stackrel{>}{_{\sim}}95\%$ two-particle $K+\bar{K}$ content).

Numerical results $a_0(980)$ (6)

- What about the 2nd and 3rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two-particle states with one relative quantum of momentum (one particle has momentum $+p_{\min} = +2\pi/L$ the other $-p_{\min}$) also have quantum numbers $I(J^{PC}) = 1(0^{++})$; their masses can easily be estimated:
 - $-p_{\rm min}=2\pi/L\approx715\,{\rm MeV}$ (the results presented correspond to a small lattice with spatial extension $L=1.73\,{\rm fm}$);

$$-m(K(+p_{\min}) + \bar{K}(-p_{\min})) \approx 2\sqrt{m(K)^2 + p_{\min}^2} \approx 1750 \,\text{MeV};$$

$$-m(\eta(+p_{\min})+\pi(-p_{\min})) \approx \sqrt{m(\eta)^2+p_{\min}^2} + \sqrt{m(\pi)^2+p_{\min}^2} \approx 1780 \, \text{MeV}:$$

these estimated mass values are consistent with the observed mass values of the 2nd and 3rd excitation

→ suggests to interpret these states as two-particle states.

Numerical results $a_0(980)$ (7)

• Summary:

- In the $a_0(980)$ sector (quantum numbers $I(J^{PC})=1(0^{++})$) we do not observe any low-lying (mass $\lesssim 1750 \, \text{MeV}$) tetraquark state, even though we employed operators of tetraquark structure ($K\bar{K}$ molecule, diquark).
- The experimentally measured mass for $a_0(980)$ is 980 ± 20 MeV.
- Conclusion: $a_0(980)$ does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state or a rather unstable resonance.

Part 2: Recent technical advances

Wilson + clover lattice setup

- Gauge link configurations generated by the PACS-CS Collaboration. [S. Aoki *et al.* [PACS-CS Collaboration], Phys. Rev. D **79**, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
- 2+1 dynamical Wilson + clover quark flavors, i.e. u, d and s sea quarks.
 - \rightarrow In contrast to twisted mass parity and isospin are exact symmetries, i.e. no pion and kaon mass splitting, easy separation of P=+,- states, ...
- Light u/d quark masses corresponding to pion masses $m_\pi \approx 150\,\mathrm{MeV}$ and $m_\pi \approx 300\,\mathrm{MeV}$.
 - \rightarrow Computations close to physically light u/d quark masses possible.
- Singly disconnected contributions/closed fermion loops included.
 - \rightarrow s quark propagation within the same timeslice ("quark antiquark pair creation/annihilation taken into account").

Closed fermion loops (1)

- In our previous Wilson twisted mass study of $a_0(980)$ we neglected singly disconnected contributions/closed fermion loops:
 - \rightarrow We could not consider a $q\bar{q}$ operator,

$$\mathcal{O}_{a_0(980)}^{q\bar{q}} = \sum_{\mathbf{x}} \left(\bar{d}(\mathbf{x}) u(\mathbf{x}) \right),$$

because cross correlations between this operator and any of the four-quark operators $\mathcal{O}^{K\bar{K}}_{a_0(980)}$ molecule, $\mathcal{O}^{\text{diquark}}_{a_0(980)}$, $\mathcal{O}^{K+\bar{K}}_{a_0(980)}$ two-particle or $\mathcal{O}^{\eta_s+\pi \text{ two-particle}}_{a_0(980)}$ correspond to closed fermion loops.

→ Also correlations between the four-quark operators include closed fermion loops; therefore, we introduced a source of systematic error, which is difficult to estimate or to control.

Closed fermion loops (2)

- Technical aspects of disconnected diagrams/closed fermion loops:
 - Blue: point-to-all propagators applicable.
 - Red: due to \sum_{x} , timeslice-to-all propagators needed.
 - Timeslice-to-all propagators can be estimated stochastically.
 - Using several stochastic timeslice-to-all propagators results in a poor signal-to-noise ratio.
 - → Combine three point-to-all (blue) and one stochastic timeslice-to-all (red) propagator.

Closed fermion loops (3)

- Effective masses from a 4×4 correlation matrix $(\mathcal{O}_{a_0(980)}^{q\bar{q}}, \mathcal{O}_{a_0(980)}^{KK \text{ molecule}}, \mathcal{O}_{a_0(980)}^{KK \text{ molecule}}, \mathcal{O}_{a_0(980)}^{\text{diquark}})$ at $m_{\pi} \approx 300 \, \text{MeV}$:
 - Lowest (two) energy level(s) roughly consistent with $K + \bar{K}$, $\eta + \pi$ and a possibly existing additional $a_0(980)$ state.
 - For physically interesting statements we need smaller errors and to include $\mathcal{O}^{K+\bar{K} \text{ two-particle}}_{a_0(980)}$ and $\mathcal{O}^{\eta_s+\pi \text{ two-particle}}_{a_0(980)}$ (work in progress).

Work in progress, outlook

- Enlarge correlation matrices such that
 - $q\bar{q}$ operators,
 - tetraquark operators (mesonic molecules, diquark-antidiquark pairs),
 - two-meson operators

are included.

- Perform computations at pion mass $m_{\pi} \approx 150 \, \text{MeV}$.
- Address various physical questions/systems (tetraquark candidates with different flavor structure, search for additional bound states, ...).

Part 3: Exploring a possibly existing $\bar{c}c\bar{c}c$ tetraquark

$\bar{c}c\bar{c}c$ tetraquark ...? (1)

- ullet Recently a ar c c ar c c tetraquark has been predicted
 - using a coupled system of covariant Bethe-Salpeter equations,
 - mass $m(\bar{c}c\bar{c}c)=(5.3\pm0.5)\,\mathrm{GeV}$,
 - predominantly of mesonic molecule type (two η_c mesons),
 - rather strongly bound (2 × $m(\eta_c)$ = 6.0 GeV), binding energy $\Delta E = m(\bar{c}c\bar{c}c) 2 \times m(\eta_c) \approx -(0.7 \pm 0.5)$ GeV.

[W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]

- Should be within experimental reach (PANDA experiment).
- \rightarrow Investigate the existence of this $\bar{c}c\bar{c}c$ state using lattice QCD.

$\bar{c}c\bar{c}c$ tetraquark ...? (2)

- Use the same techniques and setup as discussed for the $a_0(980)$ meson.
- First attempt:
 - Molecule type $\bar{c}c\bar{c}c$ creation operator (models a bound $\eta_c\eta_c$ state):

$$\mathcal{O}_{\bar{c}c\bar{c}c}^{\underline{\eta_c\eta_c} \text{ molecule}} = \sum_{\mathbf{x}} \Big(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x})\Big) \Big(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x})\Big).$$

- Inconclusive results:
 - * Neither an indication for a $\bar{c}c\bar{c}c$ state significantly below $2\times m(\eta_c)$...
 - * ... nor can the existence of such a state be ruled out

(the effective mass still decreases at large temporal separations t, which signals a trial state $\mathcal{O}_{\bar{c}c\bar{c}c}^{\eta_c\eta_c}$ molecule $|\Omega\rangle$, which has a poor ground state overlap; the ground state could be $|\eta_c + \eta_c\rangle$ or $|\bar{c}c\bar{c}c\rangle$ of different structure).

$\bar{c}c\bar{c}c$ tetraquark ...? (3)

- The molecule type $\bar{c}c\bar{c}c$ creation operator used generates a trial state with the two η_c mesons essentially on top of each other.
- In a possibly existing $\bar{c}c\bar{c}c$ tetraquark state the two η_c mesons could be quite far separated, which would imply a poor overlap of the above trial state with the $\bar{c}c\bar{c}c$ state.
- Therefore, we also employed an improved molecule type $\bar{c}c\bar{c}c$ creation operator:

$$\mathcal{O}_{\bar{c}c\bar{c}c}^{\frac{\eta_c\eta_c}{\bar{c}c\bar{c}c}} \, {}^{\text{molecule}}(d) \quad = \quad \sum_{\mathbf{x}} \left(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x}) \right) \sum_{\mathbf{n} = \pm \mathbf{e}_x, \pm \mathbf{e}_y, \pm \mathbf{e}_z} \left(\bar{c}(\mathbf{x} + d\mathbf{n})\gamma_5 c(\mathbf{x} + r\mathbf{n}) \right)$$

(d models the size of the mesonic molecule, the separation of the two η_c mesons).

$\bar{c}c\bar{c}c$ tetraquark ...? (4)

- Still no sign of a $\bar{c}c\bar{c}c$ state significantly below $2\times m(\eta_c)$...
 - Left plot: $d \approx 0.00\,\mathrm{fm}$, $0.45\,\mathrm{fm}$, $0.72\,\mathrm{fm}$.
 - Right plot: solving a generalized eigenvalue problem.

• We plan to explore the dependence of the results on the quark masses, in particular the existence of a bound four-quark state (lattice results strongly indicate that two B mesons can form a bound $bb(\bar{u}\bar{d}-\bar{d}\bar{u})$ state) ...

Part 4: Static-static-light-light tetraquarks

Static-static-light-light tetraquarks (1)

- Study possibly existing $QQ\bar{q}\bar{q}$ (heavy-heavy-light-light) tetraquark states:
 - Use the static approximation for the heavy quarks QQ (reduces the necessary computation time significantly).
 - Most appropriate for $QQ \equiv bb$.

- Proceed in two steps:
 - (1) Compute the potential of two heavy quarks QQ in the background of two light antiquarks $\bar{q}\bar{q}$ by means of lattice QCD

$$\mathcal{O}_{QQ\bar{q}\bar{q}} = (C\Gamma)_{AB} \Big(Q_C(\mathbf{x}_1) \bar{q}_A^{(1)}(\mathbf{x}_1) \Big) \Big(Q_C(\mathbf{x}_2) \bar{q}_B^{(2)}(\mathbf{x}_2) \Big)$$

 $(R = |\mathbf{x}_1 - \mathbf{x}_2|, \bar{q}^{(1)}\bar{q}^{(2)} \in \{ud - du, uu, dd, ud + du\},$ $C = \text{charge conjugation matrix}, \ \Gamma = \text{any } \gamma \text{ combination})$

→ many different channels/quantum numbers.

[M.W., PoS LATTICE 2010, 162 (2010) [arXiv:1008.1538 [hep-lat]]] [M.W., Acta Phys. Polon. Supp. 4, 747 (2011) [arXiv:1103.5147 [hep-lat]]]

V(R) = ?

Static-static-light-light tetraquarks (2)

- (2) Solve the non-relativistic Schrödinger equation for the relative coordinate of the heavy quarks QQ.
- Clear indication for a bound state for $QQ \equiv bb$ in a specific channel:
 - Quantum numbers: $I(J^P) = 0(0^+), 0(1^+)$ (degeneracy with respect to the heavy spin).
 - Binding energy: $E \approx -50 \,\mathrm{MeV}$.

[P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274 [hep-ph]]]

- No four-quark binding in other channels.
- Next steps:
 - Extend from $QQ\bar{q}\bar{q}$ to $Q\bar{Q}q\bar{q}$ (experimentally more realistic/interesting).
 - Establish connection to computations with four quarks of finite mass.