Hybrid spin-dependent and hybrid-quarkonium mixing potentials

"QWG 2025 - 17th International Workshop on Heavy Quarkonium" - CERN

Marc Wagner

Goethe-Universität Frankfurt, Institut für Theoretische Physik

mwagner@itp.uni-frankfurt.de

http://itp.uni-frankfurt.de/~mwagner/

in collaboration with

<u>Carolin Schlosser</u>, Vilija de Jonge, Fabian Geiger (Goethe University Frankfurt)

Paul Pütz, Antonio Vairo (Technical University Munich)

November 21, 2025

Main goals / literature

- (1) Compute heavy hybrid potentials (static limit as well as $1/m_Q$ corrections), i.e. potentials of a heavy quark antiquark pair $(\bar{b}b$ or $\bar{c}c)$, where the flux tubes are excited with quantum numbers different from the ground state.
 - \rightarrow SU(3) lattice gauge theory
- (2) Use these potentials to compute the spectra of $\bar{b}b$ and $\bar{c}c$ hybrid mesons and to study their mixing with ordinary quarkonium.
 - → Effective field theory, Born-Oppenheimer approximation, quantum mechanics [Talk by Paul Pütz, "Spin dependent potentials for hybrids", Monday 17. Nov 2025, 14:20]
 - Our work mostly focuses on (1)
 [C. Schlosser, M.W., Phys. Rev. D 105, no. 5, 054503 (2022) [arXiv:2111.00741]]
 [C. Schlosser, M.W., Phys. Rev. D 111, no. 7, 074504 (2025) [arXiv:2501.08844]]
 but the talk is more about (2).
 - (my goal in this talk is to explain, why we compute heavy hybrid potentials, what one can study with them and how ... rather than explaining less interesting lattice technicalities)
 - Selected further references on (1) and (2):
 - [K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]
 - [S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]
 - [R. Oncala, J. Soto, Phys. Rev. D 96, no. 1, 014004 (2017) [arXiv:1702.03900]]
 - [J. Soto, S. T. Valls, Phys. Rev. D 108, no. 1, 014025 (2023) [arXiv:2302.01765]]
 - [M. Berwein, N. Brambilla, A. Mohapatra, A. Vairo, Phys. Rev. D 110, no. 9, 094040 (2024) [arXiv:2408.04719]]

$ar{b}b$ and $ar{c}c$ hybrid meson masses: BO

- Born-Oppenheimer approximation: Compute bb and $\bar{c}c$ hybrid meson masses in two steps.
 - (1) Compute potentials of two static quarks (bb or $\bar{c}c$) and corrections proportional to $1/m_Q$, $(1/m_Q)^2$, ... (m_Q is the heavy quark mass) in the presence of excited gluons using lattice gauge theory.
 - (2) Solve the Schrödinger equation for the relative coordinate of $\bar{b}b$ or $\bar{c}c$ using the potentials from (1),

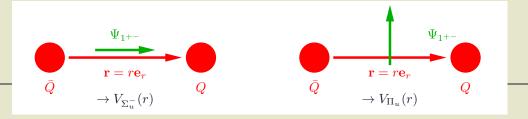
$$\left(-\frac{1}{m_Q}\Delta + V^{(0)}(\mathbf{r}) + \frac{1}{m_Q}V^{(1)}(\mathbf{r}) + \ldots\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

(Ψ has 16 components, $V^{(n)}$ is a 16×16 matrix). Energy eigenvalues E correspond to masses of $\bar{b}b$ and $\bar{c}c$ hybrid mesons.

[E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]

...

[R. Oncala, J. Soto, Phys. Rev. D 96, no. 1, 014004 (2017) [arXiv:1702.03900]]

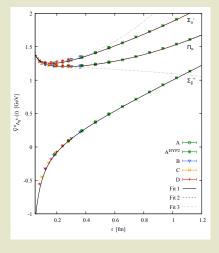

[J. Soto, S. T. Valls, Phys. Rev. D 108, no. 1, 014025 (2023) [arXiv:2302.01765]]

[C. Schlosser, M.W., Phys. Rev. D 111, no. 7, 074504 (2025) [arXiv:2501.08844]]

Potentials in the static limit, $(1/m_Q)^0$

- Heavy hybrid meson: $\overline{Q}Q$ + (valence) gluon.
- The gluon has spin 1, represented by a 3-vector,
 - a chromomagnetic field operator \mathbf{B} (in the lattice computation of hybrid potentials),
 - a 3-component wave function $\Psi_{1^{+-}}$ (in the Schrödinger equation; 1^{+-} denotes the quantum numbers of a gluon, i.e. indicates that $\Psi_{1^{+-}}$ is a hybrid wave function).
- In the static approximation (infinitely heavy quarks), quark spins are irrelevant.
- There is another 3-vector, the relative coordinate of the quarks, ${\bf r}={\bf r}_Q-{\bf r}_{\bar Q}.$
- Two possibilities:
 - B (or equivalently $\Psi_{1^{+-}}$) and ${f r}$ are parallel.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Sigma_u^-}(r).$
 - B (or equivalently $\Psi_{1^{+-}}$) and ${\bf r}$ are perpendicular.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Pi_u}(r)$.

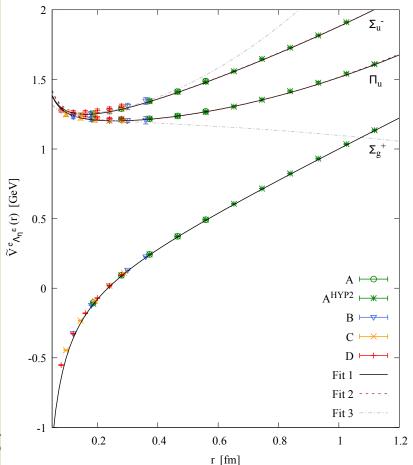
Lattice computation of $V_{\Sigma_u^-}(r)$, $V_{\Pi_u}(r)$ (1)


- Two possibilities:
 - $-\mathbf{B}$ and \mathbf{r} are parallel.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Sigma_{u}^{-}}(r)$.
 - ${f B}$ and ${f r}$ are perpendicular.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Pi_n}(r)$.
- To determine static potentials use lattice gauge theory to compute temporal correlation functions of suitable operators $\mathcal{O}(r)$

$$\lim_{t \to \infty} \langle \Omega | \mathcal{O}^{\dagger}(r, t) \mathcal{O}(r, 0) | \Omega \rangle \quad \propto \quad \exp\Big(- V(r) t \Big).$$

• Suitable operators are:

$$\mathcal{O}_{\Sigma_{u}^{-}}(r) = \bar{Q}(-r/2)U(-r/2;0)B_{z}(0)U(0;+r/2)Q(+r/2)$$


$$\mathcal{O}_{\Pi_{u}}(r) = \begin{cases} \bar{Q}(-r/2)U(-r/2;0)B_{x}(0)U(0;+r/2)Q(+r/2) \\ \bar{Q}(-r/2)U(-r/2;0)B_{y}(0)U(0;+r/2)Q(+r/2) \end{cases}$$

- Q and \bar{Q} (spinless quarks) are separated in z direction; only z coordinates are written.
- U denote straight gluonic parallel transporters (necessary for gauge invariance).

Lattice computation of $V_{\Sigma_u^-}(r)$, $V_{\Pi_u}(r)$ (2)

- Σ_g^+ : Ordinary static potential (\rightarrow ordinary quarkonium).
- Σ_u^- , Π_u : Hybrid static potentials (\rightarrow hybrid quarkonium).
- Computation on 4 ensembles with lattice spacings $a=0.040\,\mathrm{fm},\ldots,0.096\,\mathrm{fm}.$ [C. Schlosser, M.W., Phys. Rev. D **105**, no. 5, 054503 (2022) [arXiv:2111.00741]]

$(1/m_Q)^0$: Potential matrix, SE

- Two possibilities:
 - $-\Psi_{1^{+-}}$ and ${f r}$ are parallel.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Sigma_{u}^{-}}(r)$.
 - $\Psi_{1^{+-}}$ and ${\bf r}$ are perpendicular.
 - \rightarrow Corresponding hybrid static potential is denoted as $V_{\Pi_n}(r)$.
- Schrödinger equation:

$$\bigg(-\frac{1}{m_Q} \triangle + V_{1^{+-}}^{(0)}(\mathbf{r}) \bigg) \Psi_{1^{+-}}(\mathbf{r}) = E \Psi_{1^{+-}}(\mathbf{r}).$$

- \bullet $\Psi_{1^{+-}}$ is a 3-component wave function (the components represent the gluon spin)
 - \rightarrow The Hamilton operator is a 3×3 matrix.
 - \rightarrow 3 coupled PDEs.
- The 3×3 potential matrix is

$$V_{1^{+-}}^{(0)}(\mathbf{r}) = V_{\Sigma_u^-}(r) \Big(\mathbf{e}_r \otimes \mathbf{e}_r \Big) + V_{\Pi_u}(r) \Big(1 - \mathbf{e}_r \otimes \mathbf{e}_r \Big).$$

[M. Berwein, N. Brambilla, J. Tarrús Castellà, A. Vairo, Phys. Rev. D 92, no. 11, 114019 (2015) [arXiv:1510.04299]]

[C. Schlosser, M.W., Phys. Rev. D 111, no. 7, 074504 (2025) [arXiv:2501.08844]]

Radial SEs (1)

The Schrödinger equation

$$\left(-\frac{1}{m_Q}\triangle + V_{1^{+-}}^{(0)}(\mathbf{r})\right)\Psi_{1^{+-}}(\mathbf{r}) = E\Psi_{1^{+-}}(\mathbf{r})$$

(a PDE) can be decoupled into infinitely many radial equations (ODEs).

- Orbital angular momentum $L^{PC}=0^{++},1^{--},2^{++},\dots$ (spherical harmonics Y_{LM} in $\Psi_{1^{+-}}$)
- Gluon spin 1^{+-} . (3 components of $\Psi_{1^{+-}}$)
- Heavy spins are irrelevant/neglected in the static approximation.
- ightarrow Total angular momentum (with heavy spins excluded): $J'^{PC}=L^{PC}\otimes 1^{+-}.$

Radial SEs (2)

- Hybrid quantum numbers: $J'^{PC} = 1^{-+}, 2^{+-}, \dots, 0^{-+}, 1^{+-}, 2^{-+}, \dots$
- No mixing with ordinary quarkonium, which can have quantum numbers $J'^{PC} = L^{PC} = 0^{++}, 1^{--}, 2^{++}, \dots$
- Example: Radial Schrödinger equation for $J'^{PC} = 0^{-+} = 1^{--} \otimes 1^{+-}$ (H_3 multiplet).

$$-\Psi_{1^{+-}}(\mathbf{r}) = \left(\underbrace{Y_{1x}(\Omega)}_{\propto x} \left(\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}\right) + \underbrace{Y_{1y}(\Omega)}_{\propto y} \left(\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right) + \underbrace{Y_{1z}(\Omega)}_{\propto z} \left(\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix}\right)\right) R(r) \propto \mathbf{e}_r R(r).$$

• Inserting this wave function into the Schrödinger equation

$$\left(-\frac{1}{m_Q}\triangle + V_{1^{+-}}^{(0)}(\mathbf{r})\right)\Psi_{1^{+-}}(\mathbf{r}) = E\Psi_{1^{+-}}(\mathbf{r}) \qquad (3 \text{ coupled PDEs containing all } J'^{PC})$$

$$V_{1^{+-}}^{(0)}(\mathbf{r}) = V_{\Sigma_u^-}(r)\left(\mathbf{e}_r \otimes \mathbf{e}_r\right) + V_{\Pi_u}(r)\left(1 - \mathbf{e}_r \otimes \mathbf{e}_r\right)$$

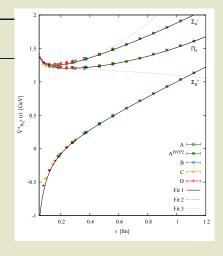
leads to the radial Schrödinger equation

$$\bigg(-\frac{1}{m_Q} \frac{d^2}{dr^2} + \frac{2}{m_Q r^2} + V_{\Sigma_u^-}(r) \bigg) R(r) \quad = \quad ER(r) \qquad \text{(1 coupled ODE for $J'^{PC} = 0^{-+}$)}.$$

Spin-dependent and mixing potentials (1)

- Currently ongoing research: inclusion of the heavy quark spins and mixing with ordinary quarkonium order by order in $1/m_Q$ (at the moment just order $1/m_Q$).
 - The $\bar{Q}Q$ pair can have spin S=0 ($S_z=0$ [\to 1 possible configuration]) or S=1 ($S_z=-1,0,+1$ [\to 3 possible configurations]), i.e. 4 spin configurations in total.
 - On previous slides: $\Psi_{1^{+-}}(\mathbf{r})$ has 3 components (gluon spin 1).
 - From now on: $\Psi_{1+-}(\mathbf{r})$ has $3 \times 4 = 12$ components (gluon spin 1, quark spin 0 or 1).
 - Moreover, there can be mixing with ordinary quarkonium (represented by a 4-component wave function $\Psi_{0^{++}}(\mathbf{r})$).
- → Including both heavy quark spins and mixing leads to
 - the 16-component wave function $\Psi(\mathbf{r}) = (\Psi_{0^{++}}(\mathbf{r}), \Psi_{1^{+-}}(\mathbf{r})),$
 - a 16×16 Hamilton operator and potential matrix $V({\bf r})=V^{(0)}({\bf r})+(1/m_Q)V^{(1)}({\bf r})$,
 - the Schrödinger equation

$$\left(-\frac{1}{m_Q}\Delta + V^{(0)}(\mathbf{r}) + \frac{1}{m_Q}V^{(1)}(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$


(16 coupled PDEs).

Spin-dependent and mixing potentials (2)

Schrödinger equation:

$$\left(-\frac{1}{m_Q} \triangle + V^{(0)}(\mathbf{r}) + \frac{1}{m_Q} V^{(1)}(\mathbf{r}) \right) \Psi(\mathbf{r}) = E \Psi(\mathbf{r})$$
 with $\Psi(\mathbf{r}) = (\Psi_{0^{++}}(\mathbf{r}), \Psi_{1^{+-}}(\mathbf{r})).$

- $V^{(0)}(\mathbf{r})$:
 - -16×16 matrix, block diagonal.
 - Upper left 4×4 block: ordinary static potential $V_{\Sigma_a^+}(r)$ ("quarkonium channels").
 - Lower right 12×12 block: hybrid static potentials $V_{\Sigma_u^-}(r)$, $V_{\Pi_u}(r)$ ("hybrid channels").
- $V^{(1)}(\mathbf{r})$:
 - -16×16 matrix, introduces heavy spin effects, couples quarkonium and hybrid channels.
 - Contains 2 hybrid spin-dependent potentials $V_{11}^{sa}(r)$, $V_{10}^{sb}(r)$.
 - Contains 2 hybrid-quarkonium mixing potentials $V_{\Sigma_u^-}^{\text{mix}}(r)$, $V_{\Pi_u}^{\text{mix}}(r)$. [R. Oncala, J. Soto, Phys. Rev. D **96**, no. 1, 014004 (2017) [arXiv:1702.03900]] [J. Soto, S. T. Valls, Phys. Rev. D **108**, no. 1, 014025 (2023) [arXiv:2302.01765]]
 - The main focus of our work is to carry out the first lattice gauge theory computation of these four $1/m_Q$ potentials.

Spin-dependent and mixing potentials (3)

- All JPC possible and included in the Schrödinger equation. (exception 0^{--})
- For each J: three PC sectors, where ordinary quarkonium and hybrids mix, one pure hybrid PC sector $(0^{+-}, 1^{-+}, 2^{+-}, ...)$.
- \bullet For each J: suitable angular momentum projections lead to radial coupled-channel Schrödinger equations with 6, 2, 4, and 4 channels, respectively (for J < 2 a smaller number of channels). [R. Oncala, J. Soto, Phys. Rev. D 96, no. 1, 014004 (2017) [arXiv:1702.03900]] [J. Soto, S. T. Valls, Phys. Rev. D 108, no. 1, 014025 (2023) [arXiv:2302.01765]]

and included in the ation. (exception $0^{}$) and included in the ation. (exception $0^{}$) and PC sectors, where implies mix, and PC sector able angular momentum to radial coupled-channel ations with 6 , 2 , 4 , and 4 dively (for $J < 2$ and 4 dively (for $J < 3$ and 4 dively (for $J < 4$ and 4 dively (for $J < 6$ and 1 [arXiv:1702.03900]] and provided the provided HTML in the provided HT	L^{PC}	gluon	J'^{PC}	multiplet	S^{PC}	J^{PC}	type
	0 ⁺⁺ 0 ⁺⁺ 2 ⁺⁺	1 ⁺⁻ 1 ⁺⁻	0 ⁺⁺ 1 ⁺⁻ 1 ⁺⁻	$H_1 \ H_1$	0 ⁻⁺ 1 1	0-+ 0-+ 0-+	ordinary hybrid hybrid
	1	1+-	1	H_3	1	0++	ordinary hybrid
	1	1+-	1-+	H_2	1	0+-	hybrid
	1 1 1 1 3	1+- 1+- 1+- 1+-	1 0-+ 1-+ 2-+ 2-+	H_3 H_2 H_4 H_4	0-+ 1 1 1 1	1+- 1+- 1+- 1+- 1+-	ordinary hybrid hybrid hybrid hybrid
	1	1+-	1	H_2	1	1 ⁺⁺ 1 ⁺⁺	ordinary hybrid
	0 ⁺⁺ 2 ⁺⁺ 0 ⁺⁺ 2 ⁺⁺	1+- 1+-	0 ⁺⁺ 2 ⁺⁺ 1 ⁺⁻ 1 ⁺⁻	$H_1 \ H_1$	1 1 0-+ 0-+	1 1 1 1	ordinary ordinary hybrid hybrid
	0 ⁺⁺ 2 ⁺⁺ 2 ⁺⁺	1 ⁺⁻ 1 ⁺⁻ 1 ⁺⁻	1 ⁺⁻ 1 ⁺⁻ 2 ⁺⁻	$H_1\\H_1\\H_5$	1 1 1	1-+ 1-+ 1-+	hybrid hybrid hybrid
	2 ⁺⁺ 0 ⁺⁺ 2 ⁺⁺ 2 ⁺⁺ 2 ⁺⁺ 4 ⁺⁺	1+- 1+- 1+- 1+- 1+-	2++ 1+- 1+- 2+- 3+- 3+-	$H_1 \\ H_1 \\ H_5$	0 ⁻⁺ 1 1 1 1 1	2-+ 2-+ 2-+ 2-+ 2-+ 2-+	ordinary hybrid hybrid hybrid hybrid hybrid
Marc Wagner, "Hybrid spin-dependent and hybrid-	qua <u>n</u> konium	potentials"	N © vember	21, 2025	1	2	ordinary

 H_5

hybrid

Lattice computation of $V_{11}^{sa}(r)$, $V_{10}^{sb}(r)$, $V_{\Sigma_u}^{\text{mix}}(r)$, $V_{\Pi_u}^{\text{mix}}(r)$ (1)

• The $1/m_Q$ potentials $V_{11}^{sa}(r)$, $V_{10}^{sb}(r)$, $V_{\Sigma_u^-}^{\text{mix}}(r)$, $V_{\Pi_u}^{\text{mix}}(r)$ are related to chromomagnetic expectation values,

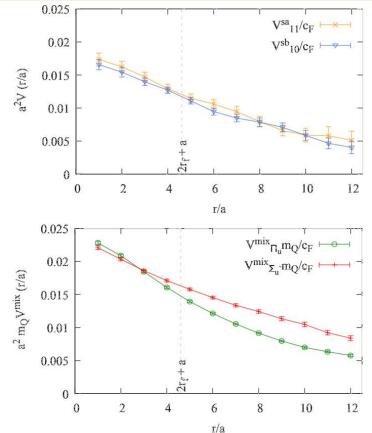
$$\begin{split} V_{11}^{sa}(r) &= +igc_F \left\langle 0, \Pi_u^- \middle| B_z(-r/2) \middle| 0, \Pi_u^+ \right\rangle(r) \\ V_{10}^{sb}(r) &= +igc_F \left\langle 0, \Sigma_u^- \middle| B_y(-r/2) \middle| 0, \Pi_u^+ \right\rangle(r) \\ V_{\Pi_u}^{\text{mix}}(r) &= +\frac{igc_F}{2m_Q} \left\langle 0, \Sigma_g^+ \middle| B_x(-r/2) \middle| 0, \Pi_u^+ \right\rangle(r) \\ V_{\Sigma_u^-}^{\text{mix}}(r) &= +\frac{igc_F}{2m_Q} \left\langle 0, \Sigma_g^+ \middle| B_z(-r/2) \middle| 0, \Sigma_u^- \right\rangle(r) \end{split}$$

(for heavy quarks separated along the z axis).

 Such matrix elements can be extracted from generalized Wilson loops,

$$W_{\Lambda_{\eta}^{\epsilon}\Lambda_{\eta}^{\epsilon'}}^{B_{k}}(t;r,T) = \begin{bmatrix} -r/2 & +r/2 \\ \Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{-}, \Pi_{u} \end{bmatrix} T$$

$$\Lambda_{\eta}^{\epsilon'} = \Sigma_{g}^{+}, \Sigma_{u}^{-}, \Pi_{u}$$


$$\begin{split} \left\langle 0, \Lambda_{\eta}^{\epsilon} \middle| B_{k}(-r/2) \middle| 0, \Lambda_{\eta}^{\epsilon \prime} \right\rangle(r) &= \lim_{T \to \infty} \frac{i}{g} R_{\Lambda_{\eta}^{\epsilon} \Lambda_{\eta}^{\epsilon \prime}}^{B_{k}}(t; r, T) \\ R_{\Lambda_{\eta}^{\epsilon} \Lambda_{\eta}^{\epsilon \prime}}^{B_{k}}(t; r, T) &= \\ &= W_{\Lambda_{\eta}^{\epsilon} \Lambda_{\eta}^{\epsilon \prime}}^{B_{k}}(t; r, T) \left(\frac{1}{W_{\Lambda_{\eta}^{\epsilon}}(r, T) W_{\Lambda_{\eta}^{\epsilon \prime}}(r, T)} \right)^{1/2} \left(\frac{W_{\Lambda_{\eta}^{\epsilon \prime}}(r, T/2 - t) W_{\Lambda_{\eta}^{\epsilon}}(r, T/2 + t)}{W_{\Lambda_{\eta}^{\epsilon}}(r, T/2 - t) W_{\Lambda_{\eta}^{\epsilon \prime}}(r, T/2 + t)} \right)^{1/2}. \end{split}$$

Lattice computation of $V_{11}^{sa}(r)$, $V_{10}^{sb}(r)$, $V_{\Sigma_u^n}^{\text{mix}}(r)$, $V_{\Pi_u}^{\text{mix}}(r)$ (2)

- Technical difficulties (compared to the computation of static [i.e. $(1/m_Q)^0$] potentials]):
 - Twice as large T extents for generalized Wilson loops needed for comparable ground state domination.
 - (-) Loops with large temporal extents are needed (poor signal-to-noise ratio).
 - (-) Chromomagnetic field insertions introduce large discretization errors.
 - Chromomagnetic field insertions need renormalization.
 - (–) Corresponding renormalization constants (= matching factors) c_F are know for the gradient flow scheme, but only perturbatively to order α_s . [N. Brambilla, X. P. Wang, JHEP **06**, 210 (2024) [arXiv:2312.05032]]
 - \rightarrow Apply **gradient flow**, which is a technique to smear gauge link configurations in a mathematically controlled way via a single parameter called gradient flow time t_f .
 - (+) Gradient Flow reduces (certain) discretization errors as well as statistical errors.
 - (-) An extrapolation to gradient flow time t_f is necessary. This requires independent computations at several different t_f . Computing time increases accordingly.
 - (–) "Gradient flow smearing" introduces systematic errors for small $\bar{Q}Q$ separations.
 - \rightarrow Discard $\bar{Q}Q$ separations $r \lesssim 2\sqrt{8t_f} + a$ (in our computation $r \leq 4a$).
 - ightarrow Time consuming computations at rather small values of the lattice spacing a with many lattice sites required.

Lattice computation of $V_{11}^{sa}(r)$, $V_{10}^{sb}(r)$, $V_{\Sigma_u}^{\text{mix}}(r)$, $V_{\Pi_u}^{\text{mix}}(r)$ (3)

- Results shown have been obtained at a single lattice spacing $a=0.060\,\mathrm{fm}$ and a single gradient flow time t_f .
 - (-) No continuum extrapolation.
 - (-) No zero flow time extrapolation, no renormalization.
 - \rightarrow Proof of principle.
 - [C. Schlosser, M.W., Phys. Rev. D **111**, no. 7, 074504 (2025) [arXiv:2501.08844]]

Summary and outlook

- ullet First lattice gauge theory computation of $\bar{Q}Q$ potentials describing heavy spin corrections for hybrid quarkonium and mixing with ordinary quarkonium.
- At the moment only results for a single lattice spacing a and a single flow time t_f .
 - \rightarrow No continuum extrapolation.
 - \rightarrow No zero flow time extrapolation, no renormalization. "Proof of principle".
- Both smaller and larger separations are needed (lattices with many sites required).
- Smaller statistical errors via longer simulations and computations.
- \rightarrow Corresponding large scale computations are about to be started.
 - Use these potentials in coupled-channel Schrödinger equations to predict masses of bb and $\bar cc$ hybrid mesons and their composition (i.e. the amount of mixing with ordinary quarkonium). [Talk by Paul Pütz, "Spin dependent potentials for hybrids", Monday 17. Nov 2025, 14:20]