Exotic meson spectroscopy from lattice QCD

"17th International Workshop on Meson Physics" - Krakow, Poland

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de http://th.physik.uni-frankfurt.de/~mwagner/

June 22, 2023

Introductory remarks

- In this talk only heavy exotic mesons:
 - tetraquarks $\overline{b}\overline{b}qq$,
 - tetraquarks $b\bar{b}\bar{q}q$,
 - hybrid mesons bb + gluons

(light quarks $q \in \{u, d, s\}$).

(possibly more about light exotic mesons in Gernot Eichmann's talk at 10:30)

- Lattice QCD = numerical QCD.
 - Lattice QCD is not a model, there are no approximations.
 - Results are in principle full and rigorous QCD results.
 - Lattice QCD simulations can be seen as computer experiments (based on the theory QCD).
 - However, the investigation of exotic mesons in lattice QCD is technically very difficult.
 - \rightarrow Even though we use lattice QCD, there are quite often assumptions and simplifying approximations (as you will see during the talk) ...

Two types of approaches

- Two types of approaches, when studying **heavy** exotic mesons with lattice QCD:
 - **Born-Oppenheimer approximation** (a 2-step procedure):
 - (1) Compute the potential V(r) of the two heavy quarks (approximated as static quarks) in the presence of two light quarks and/or gluons using lattice QCD. \rightarrow full QCD results
 - (2) Use standard techniques from quantum mechanics and V(r) to study the dynamics of two heavy quarks (Schrödinger equation, scattering theory, etc.). \rightarrow an approximation
 - \rightarrow The main focus of this talk.
 - Full lattice QCD computations of eigenvalues of the QCD Hamiltonian:
 - * Masses of stable hadrons correspond to energy eigenvalues at infinite volume (comparatively easy).
 - * Masses and decay widths of resonances can be calculated from the volume dependence of the energy eigenvalues (rather difficult).
 - \rightarrow Only a few short remarks at the end, if time is left. (possibly more about this approach in Daniel Mohler's talk at 13:00)

Part 1: Born-Oppenheimer approximation

Basic idea: lattice QCD + BO

- Start with $\overline{b}\overline{b}qq$.
- $\overline{bb}ud$ with $I(J^P) = 0(1^+)$ is the bottom counterpart of the experimentally observed T_{cc} . [R. Aaij *et al.* [LHCb], Nature Phys. **18**, 751-754 (2022) [arXiv:2109.01038]].
- Study such $\overline{bb}qq$ tetraquarks in two steps:
 - (1) Compute potentials of the two static quarks \overline{bb} in the presence of two lighter quarks qq ($q \in \{u, d, s\}$) using lattice QCD.
 - (2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (\rightarrow tetraquarks) by using techniques from quantum mechanics and scattering theory.

 $(1) + (2) \rightarrow$ Born-Oppenheimer approximation.

$\overline{b}\overline{b}qq$ / BB potentials

• To determine $\overline{b}\overline{b}$ potentials $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$, compute temporal correlation functions

 $\langle \Omega | \mathcal{O}_{BB,\Gamma}^{\dagger}(t) \mathcal{O}_{BB,\Gamma}(0) | \Omega \rangle \propto_{t \to \infty} e^{-V_{qq,jz,\mathcal{P},\mathcal{P}_x}(r)t}$

of operators

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD}\Big(\bar{Q}^a_C(-\mathbf{r}/2)q^a_A(-\mathbf{r}/2)\Big)\Big(\bar{Q}^b_D(+\mathbf{r}/2)q^b_B(+\mathbf{r}/2)\Big).$$

- Many different channels: attractive as well as repulsive, different asymptotic values ...
- The most attractive potential of a $B^{(*)}B^{(*)}$ meson pair has $(I, |j_z|, P, P_x) = (0, 0, +, -)$:

$$- \psi^{(f)}\psi^{(f')} = ud - du, \ \Gamma \in \{(1+\gamma_0)\gamma_5, \ (1-\gamma_0)\gamma_5\}.$$

$$- \ \bar{Q}\bar{Q} = \bar{b}\bar{b}, \ \tilde{\Gamma} \in \{(1+\gamma_0)\gamma_5, \ (1+\gamma_0)\gamma_j\} \ \text{(irrelevant)}$$

• Parameterize lattice results by

$$V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right) + V_0$$

(1-gluon exchange at small r; color screening at large r).

[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]

[L. Müller, unpublished ongoing work]

Stable $\overline{b}\overline{b}qq$ tetraquarks

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq$ / BB potentials,

$$\left(\frac{1}{m_b}\left(-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2}\right) + V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) - 2m_B\right)R(r) = ER(r).$$

- Possibly existing bound states, i.e. E < 0, indicate QCD-stable $\overline{b}\overline{b}qq$ tetraquarks.
- There is a bound state for orbital angular momentum L = 0 of \overline{bb} :
 - Binding energy $E = -90^{+43}_{-36}$ MeV with respect to the BB^* threshold.
 - Quantum numbers: $I(J^P) = 0(1^+)$.
 - [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

Further $\overline{b}\overline{b}qq$ results (1)

- Are there further QCD-stable $\bar{b}\bar{b}qq$ tetraquarks with other $I(J^P)$ and light flavor quantum numbers?
 - \rightarrow No, not for qq = ud (both I = 0, 1), not for qq = ss. [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
 - $\rightarrow \overline{b}\overline{b}us$ was not investigated.
 - Strong evidence from full QCD computations that a QCD-stable $\overline{b}\overline{b}us$ tetraquark exists (see part 2 of this talk).
- Effect of heavy quark spins:
 - Expected to be $\mathcal{O}(m_{B^*} m_B) = \mathcal{O}(45 \,\mathrm{MeV}).$
 - Previously ignored (potentials of static quarks are independent of the heavy spins).
 - In [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D **95**, 034502 (2017) [arXiv:1612.02758]] included in a crude phenomenological way via a BB^* and a B^*B^* coupled channel Schrödinger equation with the experimental mass difference $m_{B^*} m_B$ as input.
 - \rightarrow Binding energy reduced from around 90 MeV to 59 MeV.
 - \rightarrow Physical reason: the previously discussed attractive potential does not only correspond to a lighter BB^* pair, but has also a heavier B^*B^* contribution.

Further $\overline{b}\overline{b}qq$ results (2)

• Are there $\bar{b}\bar{b}qq$ tetraquark resonances?

- In
 - [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]]
 resonances studied via standard scattering theory from quantum mechanics textbooks.
- $\rightarrow\,$ Heavy quark spins ignored.

- → Indication for $\overline{b}\overline{b}ud$ tetraquark resonance with $I(J^P) = 0(1^-)$ found, $E = 17^{+4}_{-4} \text{ MeV}$ above the BB threshold, decay width $\Gamma = 112^{+90}_{-103} \text{ MeV}$.
 - In

[J. Hoffmann, A. Zimermmane-Santos and M.W., PoS LATTICE2022, 262 (2023) [arXiv:2211.15765]] heavy quark spins included.

- $\rightarrow \bar{b}\bar{b}ud$ resonance not anymore existent.
- \rightarrow Physical reason: the relevant attractive potential does not only correspond to a lighter BB pair, but has also a heavier B^*B^* contribution.

Further $\overline{b}\overline{b}qq$ results (3)

- Structure of the QCD-stable $\overline{b}\overline{b}ud$ tetraquark with $I(J^P) = 0(1^+)$: meson-meson (BB) versus diquark-antidiquark (Dd).
 - Use not just one but two operators,

$$\begin{aligned}
\mathcal{O}_{BB,\Gamma} &= 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD} \Big(\bar{Q}_{C}^{a}(-\mathbf{r}/2)\psi_{A}^{(f)a}(-\mathbf{r}/2) \Big) \Big(\bar{Q}_{D}^{b}(+\mathbf{r}/2)\psi_{B}^{(f')b}(+\mathbf{r}/2) \Big) \\
\mathcal{O}_{Dd,\Gamma} &= -N_{Dd} \epsilon^{abc} \Big(\psi_{A}^{(f)b}(\mathbf{z})(\mathcal{C}\Gamma)_{AB}\psi_{B}^{(f')c}(\mathbf{z}) \Big) \\
& \epsilon^{ade} \Big(\bar{Q}_{C}^{f}(-\mathbf{r}/2)U^{fd}(-\mathbf{r}/2;\mathbf{z})(\mathcal{C}\tilde{\Gamma})_{CD}\bar{Q}_{D}^{g}(+\mathbf{r}/2)U^{ge}(+\mathbf{r}/2;\mathbf{z}) \Big),
\end{aligned}$$

compare the contribution of each operator to the \overline{bb} potential $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$. [P. Bicudo, A. Peters, S. Velten, M.W., Phys. Rev. D 103, 114506 (2021) [arXiv:2101.00723]]

- $\rightarrow~r\,{\lesssim}\,0.2\,{\rm fm}:$ Clear diquark-antidiquark dominance.
- $\rightarrow~0.5\,{\rm fm}\,{\lesssim}\,r{\rm :}$ Essentially a meson-meson system.
- → Integrate over t to estimate the composition of the tetraquark: $\% BB \approx 60\%$, $\% Dd \approx 40\%$.

Bottomonium, I = 0: difference to $\overline{b}\overline{b}qq$

- Now bottomonium with I = 0, i.e. $\bar{b}b$ and/or $\bar{b}b\bar{q}q$ (with $\bar{q}q = (\bar{u}u + \bar{d}d)/\sqrt{2}, \bar{s}s$).
- Technically more complicated than $\bar{b}\bar{b}qq$, because there are two channels:
 - Quarkonium channel, $\bar{Q}Q$ (with $Q \equiv b$).
 - Heavy-light meson-meson channel, $\bar{M}M$ (with $M=\bar{Q}q$), "string breaking".

[G. S. Bali *et al.* [SESAM Collaboration], Phys. Rev. D **71**, 114513 (2005) [hep-lat/0505012]] Rather heavy u/d quark masses ($m_{\pi} \approx 650$ MeV), only 2 flavors, not 2 + 1.

- More recent work:

- Pioneering work:

 [J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar and M. Peardon, Phys. Lett. B **793**, 493-498 (2019) [arXiv:1902.04006]]
 Unfortunately, mixing potential not computed.

- Several assumptions needed to adapt the "Bali results" to 2+1 flavors and physical quark masses.
- \rightarrow Potential for a coupled channel Schrödiger equation (see next slide):

$$V(\mathbf{r}) = \begin{pmatrix} V_{\bar{Q}Q}(r) & V_{\min}(r)(1 \otimes \mathbf{e}_r) & (1/\sqrt{2})V_{\min}(r)(1 \otimes \mathbf{e}_r) \\ V_{\min}(r)(1 \otimes \mathbf{e}_r) & V_{\bar{M}M}(r) & 0 \\ (1/\sqrt{2})V_{\min}(r)(1 \otimes \mathbf{e}_r) & 0 & V_{\bar{M}M}(r) \end{pmatrix}$$

Bottomonium, I = 0: ...

• Lattice computation of potentials for both channels $(\bar{Q}Q \text{ and } \bar{M}M)$ needed, additionally also a mixing potential:

Bottomonium, I = 0: SE

- Schrödinger equation non-trivial:
 - 3 coupled channels, $\bar{b}b$, BB (3 components), B_sB_s (3 components).
 - Static potentials used as input have other symmetries and quantum numbers than bottomonium states ($\Lambda_{\eta}^{\epsilon}$ versus J^{PC}).

$$\left(-\frac{1}{2} \mu^{-1} \left(\partial_r^2 + \frac{2}{r} \partial_r - \frac{\mathbf{L}^2}{r^2} \right) + V(\mathbf{r}) + \left(\begin{array}{cc} E_{\text{threshold}} & 0 & 0 \\ 0 & 2m_M & 0 \\ 0 & 0 & 2m_{M_s} \end{array} \right) - E \right) \psi(\mathbf{r}) = 0.$$

- Project to definite total angular momentum,

- * 7 coupled PDEs \rightarrow 3 coupled ODEs for $\tilde{J} = 0$,
- * 7 coupled PDEs \rightarrow 5 coupled ODEs for $\tilde{J} \ge 1$

 $(\tilde{J}$: total angular momentum excluding the heavy quark spins).

- Add scattering boundary conditions.
- Determine scattering amplitudes and T matrices from the Schrödinger equation, find poles of T_{,j} in the complex energy plane to identify bound states and resonances.
- The components of the resulting wave functions provide the compositions of the states, i.e. the quarkonium and meson-meson percentages $\% \bar{Q}Q$ and $\% \bar{M}M$.

theory			experiment					
\tilde{J}^{PC}	n	m[GeV]	$\Gamma[MeV]$	name	m[GeV]	Γ [MeV]	$I^G(J^{PC})$	
0++	1	9.618^{+10}_{-15}	×:	$\eta_b(1S)$	9.399(2)	10(5)	$0^+(0^{+-})$	
				$\Upsilon_b(1S)$	9.460(0)	≈ 0	$0^{-}(1^{})$	
	2	10.114^{+7}_{-11}	e	$\eta_b(2S)_{\text{BELLE}}$	9.999(6)	-	0+(0+-)	
				$\Upsilon(2S)$	10.023(0)	≈ 0	$0^{-}(1^{})$	
	3	10.442_{-9}^{+7}	-	$\Upsilon(3S)$	10.355(1)	≈ 0	$0^{-}(1^{})$	
	4	10.629^{+1}_{-1}	$49.3^{+5.4}_{-3.9}$	$\Upsilon(4S)$	10.579(1)	21(3)	0-(1)	
	5	10.773^{+1}_{-2}	$15.9^{+2.9}_{-4.4}$	$\Upsilon(10750)_{\text{Belle II}}$	10.753(7)	36(22)	$0^{-}(1^{})$	
	6	10.938^{+2}_{-2}	$61.8^{+7.6}_{-8.0}$	Ύ(10860)	10.890(3)	51(7)	0-(1)	
	7	11.041^{+5}_{-7}	$45.5^{+13.5}_{-8.2}$	Ύ(11020)	10.993(1)	49(15)	$0^{-}(1^{})$	
1	1	9.930^{+43}_{-52}	12 ·	$\chi_{b0}(1P)$	9.859(1)	-	$0^+(0^{++})$	
				$h_b(1P)$	9.890(1)	=	$?^{?}(1^{+-})$	
				$\chi_{b1}(1P)$	9.893(1)	-	$0^+(1^{++})$	
				$\chi_{b2}(1P)$	9.912(1)	-	$0^+(2^{++})$	
	2	10.315_{-40}^{+29}	æ:	$\chi_{b0}(2P)$	10.233(1)	-	$0^+(0^{++})$	
				$\chi_{b1}(2P)$	10.255(1)	-	$0^+(1^{++})$	
				$h_b(2P)_{\text{BELLE}}$	10.260(2)	72	$?^{?}(1^{+-})$	
				$\chi_{b2}(2P)$	10.267(1)	-	$0^+(2^{++})$	
	3	10.594^{+32}_{-28}		$\chi_{b1}(3P)$	10.512(2)	-	$0^+(0^{++})$	
	4	10.865^{+37}_{-21}	$67.5^{+5.1}_{-4.9}$					
	5	10.932^{+33}_{-54}	$101.8^{+7.3}_{-5.1}$					
	6	11.144^{+52}_{-75}	$25.0^{+1.1}_{-1.3}$					
2++	1	10.181^{+35}_{-46}	-	$\Upsilon(1D)$	10.164(2)	2	$0^{-}(2^{})$	
	2	10.486^{+32}_{-36}					and compared provide	
	3	10.799^{+2}_{-2}	$13.0^{+2.1}_{-2.0}$					
	4	11.038^{+30}_{-44}	$40.8^{+2.0}_{-2.8}$					
3	1	10.390^{+28}_{-20}	- 2.0					
		10.639^{+31}	$\overline{2.4}^{+1.5}$					
	3	10.944^{+20}	$-\frac{-0.9}{46.8-4.6}$					
	4	11174^{+51}	10.0+6.2 $1.9^{+2.1}$					
		11.1.1-69	1.0-1.4					

Bottomonium, I = 0: results

- Results for masses of bound states and resonances consistent with experimentally observed states within expected errors.
- Errors might be large:
 - Lattice QCD results for the potentials computed with unphysically heavy u/d quarks.
 - Heavy quark spin effects and corrections due to the finite b quark mass not included.
- Several bound states in the sectors $\tilde{J} = 0, 1, 2$ with clear experimental counterparts.
- Two resonance candidates for $\Upsilon(10753)$ recently found by Belle:
 - S wave state, $\tilde{J} = 0$, n = 5 (% $\bar{Q}Q \approx 24$, % $\bar{M}M \approx 76$).
 - D wave state, $\tilde{J} = 2$, n = 3 ($\% \bar{Q} Q \approx 21$, $\% \bar{M} M \approx 79$).
- $\Upsilon(10860)$ confirmed as an S wave state, $\tilde{J} = 0$, n = 6 ($\%\bar{Q}Q \approx 35$, $\%\bar{M}M \approx 65$). [P. Bicudo, M. Cardoso, N. Cardoso, M.W., Phys. Rev. D **101**, 034503 (2020) [arXiv:1910.04827]] [P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D **103**, 074507 (2021) [arXiv:2008.05605]] [P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D **107**, 094515 (2023) [arXiv:2205.11475]]

Bottomonium, I = 0: $1/m_Q$ corrections

- Potentials of static quarks are independent of the heavy spins. \rightarrow Systematic errors are possibly large, $\mathcal{O}(m_{B^*} - m_B) = \mathcal{O}(45 \text{ MeV})$.
- Such spin effects and further corrections due to the finite b quark mass can be expressed order by order in 1/m_b.
 [E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981)]
 [N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 63, 014023 (2001) [arXiv:hep-ph/0002250]]
- The corresponding correlation functions are Wilson loops with field strength insertions.
- Computations in pure SU(3) lattice gauge theory (no light quarks) up to order $1/m_Q^2$ in [Y. Koma and M. Koma, Nucl. Phys. B **769**, 79-107 (2007) [arXiv:hep-lat/0609078]]
- $1/m_Q$ and $1/m_Q^2$ corrections used to predict low lying (stable) bottomonium states with 1st order stationary perturbation theory.
 - [Y. Koma and M. Koma, PoS LATTICE2012, 140 (2012) [arXiv:1211.6795 [hep-lat]]
 - \rightarrow Improvements, but still no satisfactory agreement with experimental results.
- Onging efforts
 - to compute these $1/m_Q$ and $1/m_Q^2$ corrections more precisely using gradient flow,
 - to replace perturbation theory by a non-perturbative coupled channel SE.

Bottomonium, I = 1: potentials

- Now bottomonium with I = 1, $\bar{b}b\bar{q}q$.
- Bottomonium with I = 1 includes the experimentally observed Z_b tetraquarks.
- Technically even more complicated than bottomonium with I = 0, because the relevant $\bar{B}^{(*)}B^{(*)}$ channel does not correspond to the ground state, but to an excited state.
 - Ordinary bottomonium $\Upsilon \equiv bb$ and a pion (possibly with non-vanishing momentum) have the same quantum numbers, but lower energies.
 - In lattice QCD you can compute the energy of an excited state, but only if you also compute all energy levels below.
- The relevant low-lying potentials were recently computed for the first time.

[S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B 805, 135467 (2020) [arXiv:1912.02656]]

- The relevant $\bar{B}^{(*)}B^{(*)}$ potential is represented by the red points.
- For small separations it corresponds to the 2nd excited state ($\Upsilon + \pi$ at rest [blue] and with 1 quantum of momentum [black] are below).

Bottomonium, I = 1: **BO results**

- Single-channel Schrödinger equation with the computed $\bar{B}^{(*)}B^{(*)}$ potential:
 - → There seems to be a bound state close to the $\bar{B}^{(*)}B^{(*)}$ threshold, binding energy $E = -48^{+41}_{-108}$ MeV.
 - \rightarrow Probably related to $Z_b(10610)$ and $Z_b(10650)$.

 \rightarrow A very interesting and impressive result. [S. Prelovsek, H. Bahtiyar, J. Petkovic, Phys. Lett. B **805**, 135467 (2020) [arXiv:1912.02656]]

- However, possibly large systematic errors:
 - Heavy spin effects and corrections due to the finite b quark mass neglected.
 - No coupling of the $\bar{B}^{(*)}B^{(*)}$ channel to the other channels, in particular $\Upsilon + \pi$.
- 3 related four-quark sectors with quantum numbers differing in parity and charge conjugation do not show any sign of a bound state.
 - [M. Sadl, S. Prelovsek, Phys. Rev. D **104**, 114503 (2021) [arXiv:2109.08560]]

Heavy hybrid mesons: potentials (1)

- Now heavy hybrid mesons, i.e. $\bar{b}b + gluons$.
- (Hybrid) static potentials can be characterized by the following quantum numbers:
 - Absolute total angular momentum with respect to the $\bar{Q}Q$ separation axis (z axis): $\Lambda = 0, 1, 2, \ldots \equiv \Sigma, \Pi, \Delta, \ldots$
 - Parity combined with charge conjugation: $\eta = +, = g, u$.
 - Relection along an axis perpendicular to the $\bar{Q}Q$ separation axis (x axis): $\epsilon = +, -$.
- The ordinary static potential has quantum numbers $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}$.
- Particularly interesting: the two lowest hybrid static potentials with $\Lambda_{\eta}^{\epsilon} = \Pi_{u}, \Sigma_{u}^{-}$.
- References:
 - [K. J. Juge, J. Kuti, C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
 - [C. Michael, Nucl. Phys. A 655, 12 (1999) [hep-ph/9810415]
 - [G. S. Bali *et al.* [SESAM and T χ L Collaborations], Phys. Rev. D 62, 054503 (2000) [hep-lat/0003012]
 - [K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]
 - [C. Michael, Int. Rev. Nucl. Phys. 9, 103 (2004) [hep-lat/0302001]
 - [G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130]
 - [P. Bicudo, N. Cardoso, M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815 [hep-lat]]]
 - [S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]

Heavy hybrid mesons: potentials (2)

 [C. Schlosser, M.W., Phys. Rev. D 105, 054503 (2022) [arXiv:2111.00741]]

Heavy hybrid mesons: SE

• Solve Schrödinger equations for the relative coordinate of $\overline{b}b$ using hybrid static potentials,

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2} + \frac{L(L+1) - 2\Lambda^2 + J_{\Lambda^{\epsilon}_{\eta}}(J_{\Lambda^{\epsilon}_{\eta}}+1)}{2\mu r^2} + V_{\Lambda^{\epsilon}_{\eta}}(r)\right)u_{\Lambda^{\epsilon}_{\eta};L,n}(r) = E_{\Lambda^{\epsilon}_{\eta};L,n}u_{\Lambda^{\epsilon}_{\eta};L,n}(r).$$

Energy eigenvalues $E_{\Lambda_n^{\epsilon};L,n}$ correspond to masses of bb hybrid mesons.

- [E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]
- [M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299]]
- [R. Oncala, J. Soto, Phys. Rev. D 96, 014004 (2017) [arXiv:1702.03900]]
- Important recent and ongoing work to include heavy spin and $1/m_b$ corrections.
 - [N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D 97, 016016 (2018) [arXiv:1707.09647]]
 - [N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D 99, 014017 (2019) [arXiv:1805.07713]]

Hybrid flux tubes (1)

• We are interested in

 $\Delta F_{\mu\nu,\Lambda_{\eta}^{\epsilon}}^{2}(r;\mathbf{x}) = \langle 0_{\Lambda_{\eta}^{\epsilon}}(r) | F_{\mu\nu}^{2}(\mathbf{x}) | 0_{\Lambda_{\eta}^{\epsilon}}(r) \rangle - \langle \Omega | F_{\mu\nu}^{2} | \Omega \rangle.$

- $-F_{\mu\nu}^2(\mathbf{x})$, $F_{\mu\nu}^2$: squared chromoelectric/chromomagnetic field strength.
- $|0_{\Lambda_n^{\epsilon}}(r)\rangle$: "hybrid static potential (ground) state" (r denotes the $\bar{Q}Q$ separation).
- $|\Omega\rangle$: vacuum state.
- The sum over the six independent $\Delta F_{\mu\nu,\Lambda_{\eta}^{\epsilon}}^{2}(r;\mathbf{x})$ is proportional to the chromoelectric and -magnetic energy density of hybrid flux tubes.

Hybrid flux tubes (2)

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), mediator plane (*x-y* plane with Q, \bar{Q} at $(0,0,\pm r/2)$), $r \approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]] $\frac{\Delta E_{x}^{2}}{\Delta B_{y}^{2}} \frac{\Delta E_{z}^{2}}{\Delta B_{z}^{2}}$

Marc Wagner, "Exotic meson spectroscopy from lattice QCD", June 19, 2023

Hybrid flux tubes (3)

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), separation plane (x-z plane with Q, \bar{Q} at $(0, 0, \pm r/2)$), $r \approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]] $\frac{\Delta E_{x}^{2}}{\Delta B_{x}^{2}} \frac{\Delta E_{y}^{2}}{\Delta B_{z}^{2}} \frac{\Delta E_{z}^{2}}{\Delta B_{x}^{2}} \frac{\Delta B_{y}^{2}}{\Delta B_{z}^{2}}$

Part 2: Full lattice QCD computations of eigenvalues of the QCD Hamiltonian

Full lattice QCD computations

- Do not treat the heavy b or c quarks as static.
- Do not separate the computations for heavy and for light quarks, i.e. no potentials.
- Compute eigenvalues of the QCD Hamiltonian at finite spatial volume.
- For QCD-stable states that might already be sufficient.
- For resonances:
 - Relate finite volume energy levels to infinite volume scattering phases (or equivalently scattering amplitudes).
 - Fit an ansatz for the scattering amplitude to the few data points from the previous step.
 - Find poles in the complex energy plane.

$\bar{b}\bar{b}ud$, $I(J^P)=0(1^+)$ and $\bar{b}\bar{b}us$, $J^P=1^+$

- QCD-stable $\bar{b}\bar{b}ud$ tetraquark, $I(J^P) = 0(1^+)$, $\approx 130 \text{ MeV}$ below the BB^* threshold.
- QCD-stable $\bar{b}\bar{b}us$ tetraquark, $J^P = 1^+$, $\approx 90 \text{ MeV}$ below the BB^*_s threshold.
- Lattice QCD results from independent groups consistent within statistical errors.
 - [A. Francis, R. J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. **118**, 142001 (2017) [arXiv:1607.05214]] (*bbud*, *bbus*)
 - [P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D **99**, 034507 (2019) [arXiv:1810.12285]] (*bbud*, *bbus*)
 - [L. Leskovec, S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 100, 014503 (2019) [arXiv:1904.04197]] (bbud)
 - [P. Mohanta, S. Basak, Phys. Rev. D 102, 094516 (2020) [arXiv:2008.11146]] (bbud)
 - [S. Meinel, M. Pflaumer, M.W., Phys. Rev. D 106, 034507 (2022) [arXiv:2205.13982]] (bbus)
 - [R. J. Hudspith, D. Mohler, Phys. Rev. D 107, 114510 (2023) [arXiv:2303.17295]] (bbud, bbus)

[T. Aoki, S. Aoki, T. Inoue, [arXiv:2306.03565]] (*bbud*)

• Strong discrepancies between non-lattice QCD results.

Conclusions

- Significant progress and interesting lattice QCD results in the past ≈ 10 years on heavy exotic mesons ... but still a lot to do and several problems to solve.
- This talk: focus on heavy exotics with two bottom (anti)quarks in the Born-Oppenheimer approximation.
 - Lattice QCD used to compute bb and $\bar{b}b$ potentials in QCD.
 - Majority of presented results obtained with static b quarks. \rightarrow Crude, errors of order $\mathcal{O}(m_{B^*} - m_B) = \mathcal{O}(45 \text{ MeV})$ expected.
 - The computation of potentials provides interesting insights, e.g. composition of exotic mesons or hybrid flux tubes.
 - For solid quantitative results heavy spin and finite b quark mass corrections needed (ongoing work, challenge for the near future).
- Full lattice QCD computations, i.e. not Born-Oppenheimer: mostly studies of $\bar{Q}\bar{Q}qq$.
- At the moment quantitatively reliable results only for two systems, the QCD-stable tetraquarks $\bar{b}\bar{b}ud$ with $I(J^P) = 0(1^+)$ and $\bar{b}\bar{b}us$ with $J^P = 1^+$.