The static-light meson spectrum from twisted mass lattice QCD

Karl Jansen, Chris Michael, Andrea Shindler, Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mowagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/~mcwagner/ June 26, 2008

European Twisted Mass Collaboration

- Cyprus: University of Nikosia.
- France: University of Paris Sud, LPSC Grenoble.
- Germany: Humboldt University Berlin, University of Münster, DESY Hamburg, DESY Zeuthen.
- Great Britain: University of Glasgow,
 University of Liverpool.
- Italy: University of Rome I, University of Rome II, University of Rome III, ECT* Trento.
- Netherlands: University of Groningen.
- Spain: University of Valencia.
- Switzerland: University of Bern.

Introduction

- Static-light meson: a bound state of an infinitely heavy quark and a light quark ("a B-meson in leading order").
- Static-light mesons can be classified according to certain quantum numbers:
- Total angular momentum $F=0,1,2,3, \ldots$
- Parity $P= \pm$.
- Goal: compute static-light meson masses for low lying states (ground state, first excited state) for different quantum numbers F and P.

Outline

- Basic principle.
- Twisted mass lattice QCD.
- Static-light meson creation operators on the lattice.
- Simulation setup and numerical results.
- Summary and outlook.

Basic principle (1)

- Let $\mathcal{O}(\mathbf{x})$ be a suitable "static-light meson creation operator", i.e. an operator such that $\mathcal{O}(\mathrm{x})|\Omega\rangle$ is a state containing a static-light meson at position $\mathrm{x}(|\Omega\rangle$: vacuum $)$.
- Determine the mass of the ground state of the corresponding static-light meson from the exponential behavior of the corresponding correlation function \mathcal{C} at large Euclidean times T :

$$
\begin{aligned}
\mathcal{C}(T) & =\langle\Omega|(\mathcal{O}(\mathbf{x}, T))^{\dagger} \mathcal{O}(\mathbf{x}, 0)|\Omega\rangle= \\
= & \langle\Omega| e^{+H T}(\mathcal{O}(\mathbf{x}, 0))^{\dagger} e^{-H T} \mathcal{O}(\mathbf{x}, 0)|\Omega\rangle= \\
= & \left.\sum_{n}|\langle n| \mathcal{O}(\mathbf{x}, 0)| \Omega\right\rangle\left.\right|^{2} \exp \left(-\left(E_{n}-E_{\Omega}\right) T\right) \approx \quad(\text { for } T \gg 1) \\
& \approx|\langle 0| \mathcal{O}(\mathbf{x}, 0)| \Omega\rangle\left.\right|^{2} \exp (-\underbrace{\left(E_{0}-E_{\Omega}\right)}_{\text {meson mass }} T) .
\end{aligned}
$$

Basic principle (2)

- To compute the static-light spectrum, i.e. meson masses for different quantum numbers, consider extended meson creation operators with different spatial structure and different spin structure yielding well defined total angular momentum F.
- Static-light meson masses are degenerate with respect to the static spin.
- Therefore, it is more appropriate to label static-light mesons by $J=L \pm 1 / 2$, where L is the angular momentum quantum number and \pm describes the coupling of the light spin.
- Parity P is also a good quantum number.
- Since static-light mesons are made from non-identical quarks, charge conjugation is not a useful quantum number (static-light meson masses are degenerate with respect to charge conjugation).

Basic principle (3)

- General form of a static-light meson creation operator:

$$
\mathcal{O}(\mathbf{x})=\bar{Q}(\mathbf{x}) \int d \hat{\mathbf{n}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}}) q(\mathbf{x}+d \hat{\mathbf{n}})
$$

$-\bar{Q}(\mathbf{x})$ creates an infinitely heavy i.e. static antiquark at position \mathbf{x}.
$-q(\mathbf{x}+d \hat{\mathbf{n}})$ creates a light quark at position $\mathbf{x}+d \hat{\mathbf{n}}$ separated by a distance d from the static antiquark.

- The spatial parallel transporter

$$
U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}})=P\left\{\exp \left(+i \int_{\mathbf{x}}^{\mathbf{x}+d \hat{\mathbf{n}}} d z_{j} A_{j}(\mathbf{z})\right)\right\}
$$

connects the antiquark and the quark in a gauge invariant way via gluons.

- The integration over the unit sphere $\int d \hat{\mathbf{n}}$ combined with a suitable weight factor $\Gamma(\hat{\mathbf{n}})$ yields well defined total angular momentum J and parity $P(\Gamma(\hat{\mathbf{n}})$ is a combination of spherical harmonics $[\rightarrow$ angular momentum] and γ-matrices [\rightarrow spin]; Wigner-Eckart theorem).

Basic principle (4)

- General form of a static-light meson creation operator:

$$
\mathcal{O}(\mathbf{x})=\bar{Q}(\mathbf{x}) \int d \hat{\mathbf{n}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}}) q(\mathbf{x}+d \hat{\mathbf{n}}) .
$$

- List of operators (L : angular momentum; S : total spin; F : total angular momentum; J : angular momentum and light spin; P : parity):

common notation	$\Gamma(\mathbf{x})$	L^{P}	S^{P}	F^{P}	J^{P}
S	γ_{5}	0^{+}	0^{-}	0^{-}	$(1 / 2)^{-}$
	$\gamma_{5} \gamma_{j} x_{j}$	1^{-}	1^{+}		
P_{-}	1	0^{+}	0^{+}	0^{+}	$(1 / 2)^{+}$
	$\gamma_{j} x_{j}$	1^{-}	1^{-}		
P_{+}	$\gamma_{1} x_{1}-\gamma_{2} x_{2}$	1^{-}	1^{-}	2^{+}	$(3 / 2)^{+}$
D_{-}	$\gamma_{5}\left(\gamma_{1} x_{1}-\gamma_{2} x_{2}\right)$	1^{-}	1^{+}	2^{-}	$(3 / 2)^{-}$
D_{+}	$\gamma_{1} x_{2} x_{3}+\gamma_{2} x_{3} x_{1}+\gamma_{3} x_{1} x_{2}$	2^{+}	1^{-}	3^{-}	$(5 / 2)^{-}$
F_{-}	$\gamma_{5}\left(\gamma_{1} x_{2} x_{3}+\gamma_{2} x_{3} x_{1}+\gamma_{3} x_{1} x_{2}\right)$	2^{+}	1^{+}	3^{+}	$(5 / 2)^{+}$

Twisted mass lattice QCD

- Twisted mass action (two degenerate flavors, "continuum version"):

$$
S_{\text {fermionic }}=\int d^{4} x \bar{\chi}(\gamma_{\mu} D_{\mu}+m+\underbrace{i \mu \gamma_{5} \tau_{3}}_{\text {twisted mass term }}-\underbrace{\frac{a}{2} \square}_{\text {Wilson term }}) \chi
$$

(ψ : physical basis quark fields; χ : twisted basis quark fields; μ : twisted mass; τ_{3} : third Pauli matrix acting in flavor space; a : lattice spacing).

- Wilson term: removes fermionic doublers.
- Twisted mass term: automatic $\mathcal{O}(a)$ improvement, when tuned to maximal twist ($\omega=\pi / 2$).
+ Automatic $\mathcal{O}(a)$ improvement.
+ Numerically cheap, i.e. large lattices and small lattice spacings possible.
- Explicit breaking of parity and flavor symmetry.

Meson operators on the lattice (1)

- Static-light meson creation operators in the continuum:
$\mathcal{O}(\mathbf{x})=\bar{Q}(\mathbf{x}) \int d \hat{\mathbf{n}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}}) q(\mathbf{x}+d \hat{\mathbf{n}})$.
- Static-light meson creation operators on the lattice:

$$
\begin{array}{ll}
\mathcal{O}^{6-\mathrm{path}}(\mathbf{x})=\bar{Q}(\mathbf{x}) \sum_{\hat{\mathbf{n}= \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}, \pm \mathrm{e}_{3}}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}}) q(\mathbf{x}+d \hat{\mathbf{n}}), & d \in \mathbb{N}_{+} \\
\mathcal{O}^{8-\mathrm{path}}(\mathbf{x})=\bar{Q}(\mathbf{x}) \sum_{\hat{\mathbf{n}}= \pm \mathbf{e}_{1} \pm \mathrm{e}_{2} \pm \mathrm{e}_{3}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x} ; \mathbf{x}+d \hat{\mathbf{n}}) q(\mathbf{x}+d \hat{\mathbf{n}}), & d \in \mathbb{N}_{+} .
\end{array}
$$

- Main difference:
- The integrations over spheres $\int d \hat{\mathbf{n}}$ are replaced by finite sums $\sum_{\hat{\mathbf{n}}}$.
- Spherical harmonics contained in Γ are approximated by six or eight points respectively.

Meson operators on the lattice (2)

- To determine the total angular momentum quantum numbers of lattice meson creation operators, expand them in terms of spherical harmonics:
- Expansions are infinite sums.
- Lattice operators have no well defined total angular momentum; they always create an infinite superposition of total angular momentum eigenstates.
- In contrast to the continuum, where there is an infinite number of fixed angular momentum representations (continuous rotation group $\mathrm{SO}(3)$), on the lattice there are only five different representations (discrete rotation group O_{h}):

$$
\begin{aligned}
A_{1} & \rightarrow L=0,4,6,8, \ldots \\
A_{2} & \rightarrow L=3,6,7,9, \ldots \\
E & \rightarrow L=2,4,5,6, \ldots \\
T_{1} & \rightarrow L=1,3,4,5(2 \times), \ldots \\
T_{2} & \rightarrow L=2,3,4,5, \ldots
\end{aligned}
$$

Further lattice techniques

- Stochastic propagators:
- Statistical noise is significantly reduced.
- Spatial smearing is easy.
- Smearing techniques:
- HYP2 smearing of links in time direction to reduce the self energy of the static quark (\rightarrow statistical noise is reduced).
- Jacobi smearing of light quark operators and APE smearing of spatial links to increase ground state overlaps (\rightarrow allows to extract static-light meson masses at smaller temporal separations, where the signal quality is better).
- Correlation matrices:
- Increase ground state overlaps.
- Extract excited states.

Simulation setup

- $24^{3} \times 48$ lattices.
- Twisted mass Dirac operator with two degenerate flavors,

$$
\begin{aligned}
& Q^{(\chi)}=\gamma_{\mu} D_{\mu}+m+i \mu \gamma_{5}+\frac{a}{2} \square \quad, \quad m+4=\frac{1}{2 \kappa} \\
& \text { with } \kappa=0.160856 .
\end{aligned}
$$

- Tree-level Symanzik improved gauge action with $\beta=3.9$.
- Lattice spacing $a \approx 0.0855(5) \mathrm{fm}$, spatial lattice extension $24 \times a \approx 2.05 \mathrm{fm}$.

μ	m_{π} in MeV	number of gauges
0.0040	$314(2)$	1400
0.0064	$391(1)$	1450
0.0085	$448(1)$	1350
0.0100	$485(1)$	$0(\approx 1000$ planned $)$
0.0150	$597(2)$	$250(\approx 1000$ planned $)$

Results (1)

- To compute ground states and excited states, consider 6×6 correlation matrices
$\mathcal{C}_{j k}(T)=\langle\Omega|\left(\mathcal{O}_{j}(\mathbf{x}, T)\right)^{\dagger} \mathcal{O}_{k}(\mathbf{x}, 0)|\Omega\rangle$.
- Different smearing levels, i.e. different meson extensions.
- Operators with parity $P=+$ and $P=-$ in the same correlation matrix, because of parity mixing induced by the twisted mass Dirac operator.
- Fixed total angular momentum J for each correlation matrix.
- Two approaches:
- Effective masses by solving a generalized eigenvalue problem (visualization of static-light meson masses and their statistical accuracy).
$-\chi^{2}$ fitting of an ansatz of exponentials to the correlation matrices (numerical values and statistical errors for static-light meson masses).
- Both approaches yield consistent results.

Results (2)

- $\mu=0.0040, J=1 / 2: S(P=-)$ and $P_{-}(P=+)$.

Results (3)

- $\mu=0.0040, J=3 / 2: P_{+}(P=+)$ and $D_{-}(P=-)$.

Results (4)

- $\mu=0.0040, J=5 / 2: D_{+}(P=-)$ and $F_{-}(P=+)$.

Results (5)

- Linear extrapolation in $\left(m_{\pi}\right)^{2}$ to physical light quark masses:
- B mesons: u / d quark extrapolation ($m_{\pi}=139.6 \mathrm{MeV}$).
- B_{s} mesons: s quark extrapolation (" $m_{\pi}=700.0 \mathrm{MeV}$ ").
* However: sea of two degenerate s quarks.

Results (6)

- Prediction for excited B states $B_{0}^{*}, B_{1}^{*}, B_{1}$ and B_{2}^{*} (P wave states):
- Linear interpolation in m_{c} / m_{Q} to physical b quark mass (input: u / d extrapolated lattice data for $m_{Q}=\infty$, experimental data for $m_{Q}=m_{c}$).
- Status of experimental results:
- PDG: one excited state, J^{P} unknown.
- CDF and CØ collaborations (hep-ex/0612003): two excited states, B_{1} and B_{2}^{*}.

	$m-m(S)$ in MeV		
state	lattice	PDG	hep-ex/ \ldots
B_{0}^{*}	$393(28)$		-
B_{1}^{*}	$408(28)$	\uparrow	-
B_{1}	$489(42)$	$419(8)$	$455(5)$
B_{2}^{*}	$500(42)$	\downarrow	$459(6)$

Results (7)

- Prediction for excited B_{s} states $B_{s 0}^{*}, B_{s 1}^{*}, B_{s 1}$ and $B_{s 2}^{*}$ (P wave states):
- Linear interpolation in m_{c} / m_{Q} to physical b quark mass (input: s extrapolated lattice data for $m_{Q}=\infty$, experimental data for $m_{Q}=m_{c}$).
- Status of experimental results:
- PDG: one excited state, J^{P} unknown.
- CDF and CØ collaborations (hep-ex/0612003): two excited states, B_{1} and B_{2}^{*}.

	$m-m(S)$ in MeV		
state	lattice	PDG	hep-ex/...
$B_{s 0}^{*}$	$527(44)$		-
$B_{s 1}^{*}$	$592(44)$	\uparrow	-
$B_{s 1}$	$500(81)$	$484(16)$	$463(1)$
$B_{s 2}^{*}$	$534(81)$	\downarrow	$474(2)$

Summary

- Static-light meson masses have been computed via twisted mass lattice QCD at a small value of the lattice spacing $(a=0.0855 \mathrm{fm})$ and at small values of the pion mass ($m_{\pi}=314 \mathrm{MeV}, \ldots, 597 \mathrm{MeV}$):
- Total angular momentum $J=1 / 2,3 / 2,5 / 2$.
- Parity $P=+,-$
- Ground states and first excited states.
- Interpolation/extrapolation to physical quark masses allow predictions for the spectrum of B mesons and B_{s} mesons. Results are in agreement with currently available experimental results within statistical errors.

Outlook

- Extrapolate to the continuum by considering other values for the lattice spacing.
- Include a sea of u / d quarks for B_{s} computations by using $2+1+1$ flavor twisted mass lattice QCD.
- Compute static light decay constants f_{B} and $f_{B_{s}}$.

