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e Goal: construct operators creating meson-like states, which have well defined quantum
numbers with respect to total angular momentum J, parity P and charge conjugation C,
when applied to the QCD vacuum.

e Building blocks for such “meson creation operators”:

Q)U(x;y)la(y) (1)

(Q and g denote possibly different quark flavors and I' is one of 16 independent y-matrix
combinations, yielding well defined quantum numbers with respect to spin S, (spin) par-
ity P° and, in the case of identical quark flavors, (spin) charge conjugation C*° [the 16
combinations are listed e.g. in [1], page 22, and [2], page 50]).

e A meson creation operator is a suitable linear combination of building blocks (1), yield-
ing well defined quantum numbers with respect to total angular momentum .J, parity P
and, in the case of identical quark flavors, charge conjugation C' (the “spatial structure
of the meson” U [angular momentum L, (angular momentum) parity P” and (angular
momentum) charge conjugation C) and its spin part I have to be combined properly).

Parity and charge conjugation

e Parity P and charge conjugation C are discrete symmetries of the “standard Lagrangian”

L = 15%13#7/) + W/_H/) (2)
To be more precise, they have been chosen such that they are symmetries of (2).

— Parity: x — —x, no effect on spin orientations; by writing 1 in terms of creation and
annihilation operators one can show for the chiral representation

PP = 09y PP = iy, (3)
where 7 is an undetermined phase (Minkowski version; cf. [2], page 64 to 71).

— Charge conjugation: takes a fermion with a given spin orientation into an antifermion
with the same spin orientation; by writing v in terms of creation and annihilation
operators one can show for the chiral representation

_ T _ T
ciC = (=) cve = (-iin"?) (4)
(Minkowski version; cf. [2], page 64 to 71).



e Like the standard Lagrangian the QCD Lagrangian is also P- and C-invariant. Therefore,
the corresponding eigenstates can be classified according to P and C.

— When using different quark flavors, states obtained by meson creation operators (1) do
not have a well defined behavior under charge conjugation. One has to symmetrize
the operator in a symmetric/antisymmetric way by adding/subtracting the same
expression with quark flavors exchanged. On the other hand, it is easy to show that
this leads to degenerate masses with respect to charge conjugation (in simple words:
a Qg-meson and a gQ-meson have the same mass). Therefore, charge conjugation is
not a useful quantum number, when different quark flavors are considered.

Momentum

e Consider only mesons with vanishing momentum by averaging over space:

Ox)0) — % / Pz Ox)[0) = % / P P 0(0) FPX |0) =
— =1
—(21)36() (P)
7T3
= S [ inpyin.pls® P100)0) =
(2m)?
= “Z5 D In.p =0)(n.p = 0[0(0)0). (5)

e Reasons for excluding non-vanishing momenta:

— Obtain a better signal by avoiding contamination by heavier p # 0-mesons.

— Angular momentum is the same with respect to any axis, i.e. angular momentum is
definitely not connected to non-vanishing momentum (see below).

Angular momentum

e Wigner-Eckart theorem: cf. e.g. [3].

e The operator

Oui) = 4= [ d0Y1a(a() QU Gxix + 2()alx + 2(5) (6)
=F(x,x+2(9))

(z(Q2) is a vector of fixed length pointing in “Q-direction”) is a spherical tensor operator,
which, when applied to |0), creates a state with angular momentum quantum numbers L
and M (for the moment we neglect spin, e.g. by choosing I" = 5, i.e. we only consider the



spatial part of the meson creation operator):

ROLm(x)RT = ﬁ / 40V (3(Q)F(x, % + 2(R(Q))) =

————

= i/d(il(i))/ Viu(2(R7H () F(x,x +z(R(RH(Q)) =
=dQ -0

- %/dQYLM(i(R_I(Q)))F(X=X+Z(Q)) =

= (R_l)LM;L/’M/%/dQYL/M/(i(Q))F(X,X+Z(Q)), (7)

where R is a rotation around x and Ry, .1/ a is the “effect of the same rotation on spher-
ical harmonics”, i.e. an element of an irreducible representation of the group of rotations
(for the sake of simplicity, we have also assumed that F(x,y) is rotationally invariant with
respect to the axis x —y; if this is not the case, one has to include another rotation around
that axis).

e Since we consider mesons with momentum zero, angular momentum is independent of the
axis of rotation. This can be made plausible by the following classical calculation:
— Let P =}, p; = 0 be the momentum of a set of particles.
— The angular momentum with respect to the origin is given by
L(] = ZI‘j X Pj- (8)
J
It is identical to the angular momentum with respect to any other point d:
La = > (n-d)xp, = Ly-dxY p; = Lo 9)
J J
0

Therefore, no harm is done in placing the antiquark Q at the “center” x and the quark g
on a sphere surrounding the antiquark.

Spin and angular momentum

e The spin generated by the two fermion operators in (1) can be either 0 or 1 and is deter-
mined by I'.
— Example: I" = ~5 corresponds to SPPCT — o=+,
* 1py51 is a scalar. Therefore, S = 0.
« PY = —, because

Yy — PYPyPYP = ¢yt = —Psy. (10)
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- 7 . . T .7 . T
bt = CUCRCUC = (—inn(i)e) s —idwlin) =
= (WO)AB(72)BCTJZ)C(/75)ADQZE(70)EF(/72)FD =
= —¥p(10)er(2)rp(3 )pa(10)as(r2)Bete =
=~ 7 YrY = sy (11)
~—
=75
(note that 5 = ’yg in the chiral representation; moreover two additional ¢ have
been included to obtain the Euclidean version of (4)).
— Example: I' = «; corresponds to SPSC® = 1—-,
* @'ij is a vector. Therefore, S = 1.
% P% = — (same calculation as (10)).

%« CF = — (similar calculation as (11); note that in the chiral representation 7, vo
and 75 are symmetric, while 7 and 3 are antisymmetric).

— For a complete list cf. e.g. [1], page 22.
e Since we have both well defined spin S € {0,1} and well defined angular momentum
L €{0,1,2,...}, we can couple them to states with well defined total angular momentum

J via Clebsch-Gordan coefficients. Putting everything together (spatial averaging, angular
momentum, spin) yields the general form of a meson creation operator:

O§6; = #/d?):E Z C(J,J25 L, M, S, S)
M,S.

/ 40 Y01 (#(2)Q(x)U (3 x + 2(Q)) T LS g(x + 2(9)) (12)

with P = (=1)2P% and C = (—1)YC¥ (the C-quantum number of the spatial part of the
meson creation operator is the same as its P-quantum number; the reason is that charge
conjugation simply exchanges quark and antiquark).

Lattice operators

e Crucial point: the sphere of the quark field ¢ and, therefore, the spherical harmonics in
(12) have to be approximated by a finite number of lattice sites:

OFf = #> > C(J,J5L,M,S,S.)

x M,S,
N = S S
ZYLM(ZH)Q(X)U(X;X—i—zn)FgSZC q(x+zy). (13)
n=1

e To analyze the angular momentum content generated by such a lattice meson creation
operator, it is convenient to transform it back to a continuum-like expression:
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The coefficients ;" are given by

N

ot = [ ey 26@ (2 - 2)Vin(@) = 3 Viin(z) Vi (7). (14)

n=1

By applying this formula and by doing a Clebsch-Gordan decomposition one can determine,
which total angular momentum states are generated by Off

e For example in the continuum there are three “useful” ways to couple L =1 and I' = ~;
(SPFC% = 177):

— To Ofy" via
> CO.01, M1, S )Vinls = #(2m + 2 + 2). (15)
M,S.

x Continuum total angular momentum: J = 0.

« Lattice angular momentum according to (14): J = 0,4,... (alternatively, this
result can be obtained by means of discrete group theory; the corresponding
representation of the discrete rotation group Oy, is called Aj).

— To Of’jz' via,
> C(L LML S )Yyl =
M,S,
#((21 - 2352)73 - 23(71 - Z"Yz)) it J.=-1
- # (2192 — 2m) it =0 (16)
#((21 + i22>73 — 23 (71 + iw)) if J,=+1

x Continuum total angular momentum: J = 1.



« Lattice angular momentum according to (14): J = 1,3,4,... (alternatively, this
result can be obtained by means of discrete group theory; the corresponding
representation of the discrete rotation group Oy, is called T1).

— To (9;;2 via

> 2, )51, M1, S )iyl =

M5,
#(2171 — Z272 — i(il’m + 2271)) if J,=-2
#<<2l—i22>73+23<71—i72)> it J,=-1
= #(5’171 + 2972 — 22373) if J.=0 . (17)
#((21 + i22>73 + 23 (71 + iw)) it J,=+1
#(2171 — Zo72 + i(2172 + 2271)) it J, =42

x Continuum total angular momentum: J = 2.

« Lattice angular momentum according to (14): J = 2,3,4,... or J = 2,4,...
(alternatively, this result can be obtained by means of discrete group theory; the
corresponding representations of the discrete rotation group Oy, are called T5 and

The discrete rotation group Oy

e Literature: [4].

e Continuous rotation group SO(3): an infinite number of representations (dimensions 2.J+1,
J=0,1,2..).

e Discrete rotation group Op: two 1-dimensional representations A; and As, one 2-dimen-
sional representation E and two 3-dimensional representations 77 and T5.

e For the special case of “N = 6-lattice spherical harmonics” Ay, T} and E are shown
in Figure 1 (T corresponding to Z1Za, 2223 and 2321, and Ag corresponding to 21223
obviously do not exist for N = 6).

e The possible angular momentum content of these discrete representations up to J = 4 is

J=0 Aq

J=1 T

J =2 E,T,

J=3 AT1,T (1)
J=4 A17E7T17T2

(this table can be obtained by applying (14)). Note that such discrete representations
do not necessarily contain all these angular momenta. For example continuum
spherical harmonics also form representations Ay, As, E., T7 and T5, but, of course, have
“fixed angular momentum?”.
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Figure 1: Ay, T1 and FE for N = 6.

These discrete representations can be coupled forming again discrete representations (this
is similar to Clebsch-Gordan coupling in the continuum). Via (18) one can immediately
see, which total angular momentum states may be present in the result. Note again that
these states do not necessarily appear.

To identify the total angular momentum of a state computed in a lattice simulation, it is
necessary to check different discrete representations for degenerate partners (in general,
one has to compute excited states for that). For example a spin-0 meson generated via
a Th-angular momentum representation could have J = 2,3,4,...; however, if there is no
degenerate partner, i.e. no state with the same mass in either Ay or 77, J = 3 can be
excluded.

By choosing straight lines for the parallel transporters we have considered the simplest
case (N = 6). In general, one also considers arbitrary diagonal paths (N = 48) to have
the opportunity to study the 75 or A, representation for the spatial part of the meson
creation operator.



e For spin-1/2 objects, e.g. for baryons, one has to consider double cover representations of
Oy,. This gives rise to three more discrete representations, which are called G1, G2 and H.

e For very large spheres, i.e. spheres, where many lattice points are essentially right on it, and
where the direction dependence of the parallel transporters due to the lattice discretization
is negligible, another strategy is to consider different sets of 48 points. Then the weight of
the J-contributions will also be different. By choosing suitable linear combinations certain
J-contributions can be eliminated. Note that using an infinite number of such 48-point
sets, while the lattice spacing a — 0, yields the continuum limit, where a meson creation
operator has a well defined angular momentum.
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