INFLATIONÄRE KOSMOLOGISCHE MODELLE

Marc Wagner

mcwagner@stud.informatik.uni-erlangen.de
http://www.cip.informatik.uni-erlangen.de/~mcwagner
Vortrag im Seminar "Phasen des frühen Universums"
3. Dezember 2002

1

Gliederung des Vortrags

- Probleme der Standardkosmologie und inflationäre Lösungen dieser Probleme
 - Horizont-Problem
 - Flachheits-Problem
 - $-\ {\rm Monopol\text{-}Problem}$
 - $-\ Struktur-Problem$
- Physik der Inflation
 - Grundlagen
 - Präinflationäre Phase
 - Beginn der Inflation
 - Inflationäre Phase
 - Ende der Inflation
 - Postinflationäre Phase
- Notwendige Eigenschaften erfolgreicher inflationärer Modelle
- Ein spezielles inflationäres Modell: Chaotic Inflation

Inflation

Was ist Inflation?

- Exponentielle Ausdehnung des Universums: $R(t) \propto e^{Ht}$
- \bullet Zeitpunkt: Etwa $10^{-35}~\mathrm{s}$ bis $10^{-34}~\mathrm{s}$ nach dem Urknall
- Ausdehnung um einen Faktor von mindestens $e^{60}\approx 10^{26}$

Warum Inflation?

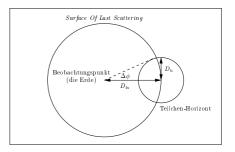
• Inflation löst verschiedene Probleme der Standardkosmologie auf elegante Art und Weise

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

2

Horizont-Problem (1)

- Temperatur der Hintergrundstrahlung nahezu richtungsunabhängig $(\Delta T/T\approx 10^{-5})$
- Naheliegende Erklärung: Thermisches Gleichgewicht der Surface Of Last Scattering zum Zeitpunkt des Last Scattering
- Unmöglich in der Standardkosmologie! Punkte auf der Surface Of Last Scattering, die mehr als $\approx 1^{\circ}$ voneinander entfernt liegen, standen zum Zeitpunkt des Last Scattering nicht in kausalem Kontakt



4

Horizont-Problem (2)

• Robertson-Walker-Metrik:

$$ds^2 \; = \; c^2 dt^2 - R(t)^2 \left(\frac{dr^2}{1 - k \, r^2} + r^2 d\Omega^2 \right)$$

• Einlaufender beziehungsweise auslaufender Lichtstrahl

$$c\frac{1}{R(t)}dt = \pm \frac{1}{(1-kr^2)^{1/2}}dr$$
Abstand in mitbewegten Koordinate

• Teilchenhorizont zum Zeitpunkt $t_{\rm ls}$ für $R \propto t^{1/2}$ (strahlungsdominiertes Universum):

$$\begin{array}{lcl} D_{\rm h}(t_{\rm ls}) & = & R(t_{\rm ls}) \, c \, \int_0^{t_{\rm ls}} \, dt \, \frac{1}{R(t)} & = \\ & = & R(t_{\rm ls}) \, c \, \int_0^{t_{\rm ls}} \, dt \, \frac{1}{t^{1/2}} \frac{t_{\rm ls}^{1/2}}{R(t_{\rm ls})} & = c t_{\rm ls}^{1/2} \left[2 t^{1/2} \right]_0^{t_{\rm ls}} & = & 2 c t_{\rm ls} \end{array}$$

 $\ \, \textcircled{\ \ }$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

5

Horizont-Problem (4)

Inflationäre Lösung des Horizont-Problems

 \bullet Teilchenhorizont zum Zeitpunkt $t_{\rm ls}$

$$D_{\rm h}(t_{
m ls}) = R(t_{
m ls}) c \int_0^{t_{
m ls}} dt \frac{1}{R(t)}$$

- Steigt R(t) mindestens so stark wie eine Gerade ($\ddot{R} \geq 0$) existiert kein Teilchenhorizont
- Argument ist fragwürdig, da jenseits der Planck-Zeit die ART ihre Gültigkeit verliert (Quantengravitationseffekte)
- Dennoch: Teilchenhorizont wächst in einer inflationären Phase verhältnismäßig schneller als in einer nicht-inflationären Phase
 - $\ddot{R}>0$: Der Großteil der Ausdehnung findet spät statt; das kleine Universum konnte davor problemlos wechselwirken
 - \ddot{R} < 0: Der Großteil der Ausdehnung findet zu Beginn statt; das Universum ist danach zu groß, als dass beliebige Raumpunkte in der verbleibenden Zeit wechselwirken hätten können

Horizont-Problem (3)

• Abstand zur Surface Of Last Scattering zum Zeitpunkt $t_{\rm ls}$ für $R \propto t^{2/3}$ (massendominiertes Universum):

$$\begin{split} D_{\rm ls}(t_{\rm ls}) &= R(t_{\rm ls}) \left(-\int_{r_{\rm ls}}^{0} dr \frac{1}{(1-kr^2)^{1/2}} \right) &= \\ &= R(t_{\rm ls}) c \int_{t_{\rm ls}}^{t_0} dt \frac{1}{R(t)} &= R(t_{\rm ls}) c \int_{t_{\rm ls}}^{t_0} dt \frac{1}{t^{2/3}} \frac{t_{\rm ls}^{2/3}}{R(t_{\rm ls})} &= \\ &= c t_{\rm ls}^{2/3} \left[3t^{1/3} \right]_{t_{\rm ls}}^{t_0} &= 3c t_{\rm ls} \left(\left(\frac{t_0}{t_{\rm ls}} \right)^{1/3} - 1 \right) \end{split}$$

• Maximaler Winkel für kausalen Kontakt ($t_{\rm ls} \approx 10^{12} \, {\rm s},$ $t_0 \approx 3 \times 10^{17} \, {\rm s}$):

$$\Delta \Phi \approx \frac{D_{\rm h}(t_{\rm ls})}{D_{\rm ls}(t_{\rm ls})} = \frac{2}{3\left(\left(\frac{t_0}{t_{\rm ls}}\right)^{1/3} - 1\right)} \approx 0.58^{\circ}$$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

6

Flachheits-Problem (1)

- Experimentelle Daten: $\Omega_0 \approx 1$
- Fine-Tuning-Problem
- Inflation macht $\Omega_0 \approx 1$ natürlich

8

Flachheits-Problem (2)

• Friedmannsche Gleichung:

$$\begin{array}{rcl} \dot{R}^2 & = & \frac{8\pi G\rho}{3}R^2 - k\,c^2 \\ -k\,c^2 & = & H^2R^2\Big(1 - \underbrace{\frac{8\pi G\rho}{3H^2}}_{=0}\Big) & = & H^2R^2(1-\Omega) \end{array} \eqno(1)$$

- Strahlungsdominiertes Universum: $\rho R^4 = \text{konstant}$ (2)
- Aus der Definition von Ω : $\rho \propto \Omega H^2$ (3)
- (3) in (2):

$$\begin{array}{ll} \Omega H^2 R^4 &=& {\rm konst}\,{\rm ant} \\ H^2 R^2 &\propto & \frac{1}{\Omega R^2} \end{array} \ (4)$$

• (4) in (1):

$$\begin{array}{ll} \frac{1-\Omega}{\Omega R^2} & = & \frac{1-\Omega_0}{\Omega_0 R_0^2} \\ \\ \Omega_0 & = & \left(1+\left(\frac{R_0}{R}\right)^2 \frac{1-\Omega}{\Omega}\right)^{-1} \end{array}$$

 $\ \, \textcircled{\ \ }$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

ē

Flachheits-Problem (4)

Inflationäre Lösung des Flachheits-Problems

• Friedmannsche Gleichung

$$\begin{array}{rcl} -k\,c^2 & = & H^2R^2(1-\Omega) \\ |1-\Omega| & = & \frac{|k|\,c^2}{H^2R^2} = & \frac{|k|\,c^2}{\dot{R}^2} \\ \frac{d}{dt}|1-\Omega| & = & |k|\,c^2\frac{-2\dot{R}\,\ddot{R}}{\dot{R}^4} = & -2|k|\,c^2\frac{\ddot{R}}{\dot{R}^3} \end{array}$$

- \bullet In einem inflationären, expandierenden Universum wird Ω exponentiell gegen 1 getrieben
- In einem nicht-inflationären, expandierenden Universum wird Ω von 1 weggetrieben

Flachheits-Problem (3)

• Entwicklung von der Planck-Zeit ($t_{\rm P} \approx 10^{-43} {\rm s}$) bis heute ($t_0 \approx 3 \times 10^{17} {\rm s}$) für $R(t) \propto t^{1/2}$:

$$\begin{split} \Omega_0 &= \left(1 + \left(\frac{R_0}{R_{\rm P}}\right)^2 \frac{1 - \Omega_{\rm P}}{\Omega_{\rm P}}\right)^{-1} &= \\ &= \left(1 + \frac{t_0}{t_{\rm P}} \frac{1 - \Omega_{\rm P}}{\Omega_{\rm P}}\right)^{-1} &\approx \\ &\approx \left(1 + \frac{3 \times 10^{17}}{10^{-43}} \frac{\rm s}{\rm s} \frac{1 - \Omega_{\rm P}}{\Omega_{\rm P}}\right)^{-1} &= \\ &= \left(1 + 3 \times 10^{60} \frac{1 - \Omega_{\rm P}}{\Omega_{\rm P}}\right)^{-1} \end{split}$$

• Aus $\Omega_0 \approx 1$ folgt $\Omega_P = 1 \pm 10^{-60}$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

1(

Monopol-Problem

- GUTs (Grand Unified Theories) postulieren magnetische Monopole in großer Zahl
 - Punktartige Fehler im Higgs-Feld (Vortrag "Strings und Domänenwände in der Kosmologie")
 - 10¹⁶-fache Protonen masse
 - Entstehung während der GUT-Symmetriebrechung
 - Anzahldichte der Monopole entspricht etwa der Anzahldichte der Baryonen
- Experimentell wurde noch nie ein magnetischer Monopol nachgewiesen!

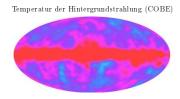
Inflationäre Lösung des Monopol-Problems

- Inflationäre Phase nach Erzeugung der Monopole
- \bullet Erfolgreiche inflationäre Modelle: Ausdehnung des Universums um einen Faktor von mindestens $e^{60}\approx 10^{26}$
- \bullet Das Volumen des Universums vergrößert sich um einen Faktor von mindestens $e^{180}\approx 10^{78}$ während sich die Anzahldichte der Monopole um den gleichen Faktor reduziert

[©] Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

Struktur-Problem (1)

- In einem massendominierten Universum entwickeln sich vorhandene Dichtefluktuationen zu den heute beobachtbaren Strukturen (Jeans-Theorie)
- Die Hintergrundstrahlung ermöglicht einen Blick auf diese frühen Dichtefluktuationen $(\Delta T/T \approx 10^{-5})$
- Woher stammen diese Dichtefluktuationen?

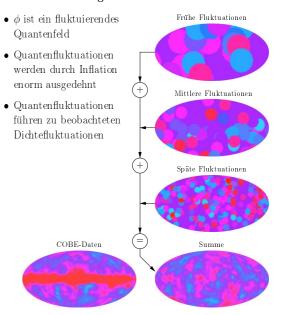


 $\ \, \textcircled{\ \ }$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

13

Struktur-Problem (2)

Inflationäre Lösung des Struktur-Problems



© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

14

Physik der Inflation (1)

- Ziel: Physikalischer Mechanismus, der über einen begrenzten Zeitraum eine exponentielle Ausdehnung des Universums bewirkt
- \bullet Friedmannsche Gleichung mit kosmologischer Konstante

$$\dot{R}^2 = \frac{8\pi G \rho}{3} R^2 - kc^2 + \frac{\Lambda}{3} R^2 = \frac{8\pi G (\rho + \rho_{\Lambda})}{3} R^2 - kc^2$$

• Näherung für ein nicht-frühes Universum ($\rho_{\Lambda}\gg\rho,\,R$ groß):

$$\begin{split} \dot{R}^2 &= \frac{8\pi G \rho_{\Lambda}}{3} R^2 \\ \dot{R} &= \pm \underbrace{\left(\frac{8\pi G \rho_{\Lambda}}{3}\right)^{1/2}}_{=H} R \\ R(t) &= \tilde{R} \exp\left(\pm \left(\frac{8\pi G \rho_{\Lambda}}{3}\right)^{1/2} t\right) &= \tilde{R} e^{\pm Ht} \end{split}$$

• Wir brauchen einen Mechanismus, der für begrenzte Zeit eine kosmologische Konstante simuliert

Skalarfeld (Energie-Impuls-Tensor)

- Einführen eines Skalarfeldes $\phi(\mathbf{r},t)$ mit Potential $V(\phi)$
- Lagrange-Dichte (Strahlung und Materie vernachlässigt):

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) = \frac{1}{2c^2} \dot{\phi}^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi)$$

 \bullet Energie-Impuls-Tensor:

$$T^{\mu\nu} = \partial^{\mu}\phi \partial^{\nu}\phi - g^{\mu\nu}\mathcal{L}$$

$$\begin{array}{lll} T^{00} & = & \partial^0\phi\partial^0\phi - g^{00}\mathcal{L} & = \\ & = & \frac{1}{c^2}\dot{\phi}^2 - \frac{1}{2c^2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V(\phi) & = \\ & = & \frac{1}{2c^2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V(\phi) & = & \rho_\phi c^2 \\ T^{ii} & = & \partial^i\phi\partial^i\phi - g^{ii}\mathcal{L} & = \\ & = & \frac{1}{3}(\nabla\phi)^2 + \frac{1}{2c^2}\dot{\phi}^2 - \frac{1}{2}(\nabla\phi)^2 - V(\phi) & = \\ & = & \frac{1}{2c^2}\dot{\phi}^2 - \frac{1}{6}(\nabla\phi)^2 - V(\phi) & = & p \end{array}$$

Skalarfeld (Zustandsgleichungen)

• Energie-Impuls-Tensor:

$$\begin{array}{lcl} T^{00} & = & \frac{1}{2c^2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V(\phi) & = & \rho_\phi c^2 \\ T^{ii} & = & \frac{1}{2c^2}\dot{\phi}^2 - \frac{1}{6}(\nabla\phi)^2 - V(\phi) & = & p \end{array}$$

- Zustandsgleichungen für drei Spezialfälle
 - $-\dot{\phi}^2$ dominant: $\rho_{\phi}c^2 = p$ $-(\nabla \phi)^2$ dominant: $\rho_{\phi}c^2 = -3p$

 $-V(\phi)$ dominant: $\rho_{\phi}c^2 = -p$

17

R(t) für dominantes $\dot{\phi}^2$ bzw. $(\nabla \phi)^2$

• $\dot{\phi}^2$ dominant: $\rho_{\phi}c^2=p$

$$R(t) = \tilde{R}t^{1/3}$$

• $(\nabla \phi)^2$ dominant: $\rho_{\phi}c^2 = -3p$

$$R(t) = \tilde{R}t$$

R(t) für dominantes $V(\phi)$

- $V(\phi)$ dominant: $\rho_{\phi}c^2 = -p$ (1)
- Adjabatische Expansion des Universums:

$$p\left(\frac{d}{dt}R^3\right) + c^2\left(\frac{d}{dt}(\rho_\phi R^3)\right) \ = \ 0 \quad (2)$$

• Einsetzen von (1) in (2):

$$\begin{array}{lcl} -\rho_{\phi}3R^2\dot{R}+\dot{\rho}_{\phi}R^3+\rho_{\phi}3R^2\dot{R}&=\dot{\rho}_{\phi}R^3&=0\\ \dot{\rho}_{\phi}&=0\\ \rho_{\phi}&=V(\phi\approx {\rm konstant})/c^2&=\tilde{V}/c^2&={\rm konstant} \end{array} \eqno(3)$$

• Friedmannsche Gleichung:

$$\dot{R}^2 = \frac{8\pi G \rho_{\phi}}{3} R^2 - kc^2 \quad (4)$$

• Einsetzen von (3) in (4) (R groß)

$$\dot{R}^2 = \frac{8\pi G\tilde{V}}{3c^2}R^2$$

$$R(t) = \tilde{R} \exp\left(\left(\frac{8\pi G\tilde{V}}{3c^2}\right)^{1/2}t\right) = \tilde{R}e^{Ht}$$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

18

Physik der Inflation (2)

- Zusammenfassung
 - Lagrange-Dichte (Strahlung und Materie vernachlässigt):

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) = \frac{1}{2c^2} \dot{\phi}^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi)$$

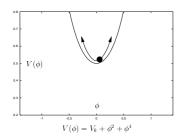
- $-\dot{\phi}^2$ dominant: $R(t) = \tilde{R}t^{1/3}$
- $-(\nabla \phi)^2$ dominant: $R(t) = \tilde{R}t$
- $-V(\phi)$ dominant: $R(t) = \tilde{R}e^{Ht}$
- Inflation nur für dominantes $V(\phi)$, das heißt für ein sich langsam bewegendes und räumlich nahezu homogenes Feld
- Wir brauchen einen Mechanismus, der für begrenzte Zeit $V(\phi)$ zur dominanten Größe macht

Präinflationäre Phase

- Keine Inflation im frühen Universum
 - Das frühe Universum ist sehr heiß $(T \propto 1/R)$
 - * Schnelle thermische Bewegung des Feldes $\rightarrow \dot{\phi}^2$ groß
 - * Starke thermische Fluktuationen $\rightarrow (\nabla \phi)^2$ groß
 - Die dominierende Energieform im frühen Universum ist Strahlung.

$$\rho R^4 = \text{konstant}$$

• Potential ähnelt einem Potentialtopf; das Feld ist darin gefangen

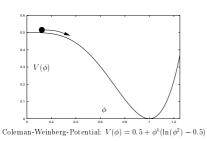


© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

21

Inflationäre Phase (1)

 \bullet Das Feld ϕ bewegt sich in einem sanft abfallenden Potential

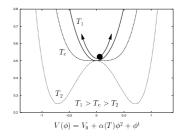


Wie entwickelt sich ϕ ?

- \bullet Gesucht: Die Bewegungsgleichung von ϕ
- Näherungen
 - $-\phi$ ist homogen, das heißt $\phi = \phi(t)$
 - Die Vakuumenergie von ϕ ist die dominierende Energie, das heißt $\rho=\rho_\phi$

Beginn der Inflation

- Das sich ausdehnende Universum kühlt sich ab $(T \propto 1/R)$
 - $-\dot{\phi}^2$ wird kleiner
 - $-(\nabla \phi)^2$ wird kleiner
 - $-V(\phi)$ gewinnt immer stärker an Gewicht
- Strahlung verliert im sich ausdehnenden Universum stark an Einfluss
- Manche Modelle: ϕ wird zufällig in einem begrenzten räumlichen Gebiet für kurze Zeit konstant
- \bullet Bei unterschreiten einer kritischen Temperatur $T_{\rm c}$ kommt es zu einem Symmetriebruch im Potential $V(\phi)$



© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

22

Inflationäre Phase (2)

• Lagrange-Dichte:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) = \frac{1}{2c^{2}} \dot{\phi}^{2} - V(\phi)$$

• Lagrange-Funktion:

$$L \ = \ \left(\frac{1}{2c^2}\dot{\phi}^2 - V(\phi)\right)R^3$$

• Lagrange-Gleichung liefert die Bewegungsgleichung des Feldes:

$$\frac{d}{dt}\frac{\partial}{\partial\dot{\phi}}L \ = \ \frac{\partial}{\partial\phi}L$$

$$\begin{split} \frac{d}{dt} \frac{\partial}{\partial \dot{\phi}} L &= \frac{d}{dt} \left(\frac{1}{c^2} \dot{\phi} R^3 \right) &= \frac{1}{c^2} \ddot{\phi} R^3 + \frac{3}{c^2} \dot{\phi} R^2 \dot{R} &= \\ &= \left(\frac{1}{c^2} \ddot{\phi} + \frac{3H}{c^2} \dot{\phi} \right) R^3 \\ \frac{\partial}{\partial \phi} L &= -V'(\phi) R^3 \end{split}$$

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi)c^2 = 0$$

Inflationäre Phase (3)

Bedingungen für eine inflationäre Phase

 $\bullet~V(\phi)$ muss in der Lagrange-Dichte

$$\mathcal{L} = \frac{1}{2c^2}\dot{\phi}^2 - V(\phi)$$

dominant sein:

$$V(\phi) \gg \frac{1}{2c^2}\dot{\phi}^2$$
 (B1)

 \bullet $\dot{\phi}$ muss klein bleiben, das heißt in der Bewegungsgleichung

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi)c^2 = 0$$

muss $\ddot{\phi}$ untergehen:

$$|\ddot{\phi}| \ll |V'(\phi)c^2|$$
 (B2)

 $\ \, \textcircled{\ \ }$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

25

Inflationäre Phase (5)

- Differenzieren von (G2): $3\dot{H}\dot{\phi} + 3H\ddot{\phi} \approx 3H\ddot{\phi} \approx -V''(\phi)\dot{\phi}c^2 \quad (G2')$
- (G2'), (G2) und (G1) in (B2):

$$\begin{split} |V'(\phi)c^2| & \gg |\ddot{\phi}| \approx \left| \frac{V''(\phi)\dot{\phi}c^2}{3H} \right| \approx \\ & \approx \left| \frac{V''(\phi)c^2}{3H} \frac{V''(\phi)c^2}{3H} \right| \\ & \approx \left| \frac{V''(\phi)c^2}{3} \frac{V'(\phi)c^2}{3} \frac{3c^2}{8\pi GV(\phi)} \right| = \\ & = \left| \frac{V''(\phi)V'(\phi)c^6}{24\pi GV(\phi)} \right| \end{split}$$

$$\left| \frac{V''(\phi)}{V(\phi)} \right| \; \ll \; \frac{24\pi G}{c^4} \quad (\text{B2}')$$

- Interpretation
 - (B1'): Inflation bei relativ schwach steigendem Potential
 - (B2'): Inflation bei relativ schwach gekrümmtem Potential

Inflationäre Phase (4)

Bedingungen für eine inflationäre Phase ausgedrückt durch ${\cal V}$

• Die Friedmannsche Gleichung vereinfacht sich wegen (B1) zu:

$$\begin{array}{lll} H^2 & = & \frac{8\pi G \rho_\phi}{3} - \frac{k\,c^2}{R^2} & \approx & \frac{8\pi G (\frac{1}{2c^2} \dot{\phi} + V(\phi))}{3c^2} & \approx \\ & \approx & \frac{8\pi G V(\phi)}{3c^2} & ({\rm G1}) \end{array}$$

• Die Bewegungsgleichung vereinfacht sich wegen (B2) zu:

$$3H\dot{\phi}~\approx~-V'(\phi)c^2~~({\rm G2})$$

• (G2) und (G1) in (B1):

$$\begin{array}{ll} V(\phi) & \gg \frac{1}{2c^2} \dot{\phi}^2 \, \approx \, \frac{1}{2c^2} \frac{V'(\phi)^2 c^4}{9H^2} \, \approx \\ & \approx \, \, \frac{1}{2c^2} \frac{V'(\phi)^2 c^4}{9} \frac{3c^2}{8\pi G V(\phi)} \, = \frac{V'(\phi)^2 c^4}{48\pi G V(\phi)} \end{array}$$

$$\left| \frac{V'(\phi)}{V(\phi)} \right| \, \ll \, \frac{\sqrt{48\pi G}}{c^2} \quad (\text{B1}')$$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

26

Inflationäre Phase (6)

Ausdehnung während der inflationären Phase

• Angabe des Expansionsfaktors in e-Foldings (inflationäre Phase von t_i bis t_f):

$$\frac{R(t_{\rm f})}{R(t_{\rm i})}~=~e^N$$

• Nebenrechnung (Kombination von (G1) und (G2)):

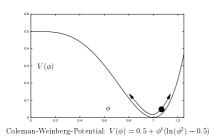
$$\begin{array}{ll} H & \approx & \displaystyle \frac{8\pi GV(\phi)}{3Hc^2} \; \approx \; & \displaystyle \frac{8\pi GV(\phi)}{3c^2} \frac{3\dot{\phi}}{-V'(\phi)c^2} \; = \\ & = & \displaystyle -\frac{8\pi GV(\phi)}{V'(\phi)c^4} \frac{d\phi}{dt} \end{array}$$

 \bullet Berechnung von N

$$\begin{array}{lll} N & = & \ln \left(\frac{R(t_{\rm f})}{R(t_{\rm i})} \right) & = & [\ln(R(t))]_{t_{\rm i}}^{t_{\rm f}} & = & \int_{t_{\rm i}}^{t_{\rm f}} dt \frac{\dot{R}(t)}{R(t)} & = \\ & = & \int_{t_{\rm i}}^{t_{\rm f}} dt H & \approx & -\frac{8\pi G}{c^4} \int_{t_{\rm i}}^{t_{\rm f}} dt \frac{V(\phi)}{V'(\phi)} \frac{d\phi}{dt} & = \\ & = & -\frac{8\pi G}{c^4} \int_{\phi_{\rm i}}^{\phi_{\rm f}} d\phi \frac{V(\phi)}{V'(\phi)} \end{array}$$

Ende der Inflation (1)

• Das Feld ϕ oszilliert um das neue globale Minimum ϕ_{\min} $(V(\phi_{\min})=0)$



- Dämpfung der Oszillationen durch
 - Ausdehnung des Universums $(3H\dot{\phi})$
 - Kopplung an andere Felder und damit verbundene Teilchenerzeugung $(\Gamma_o \dot{\phi})$
- Modifizierte Bewegungsgleichung

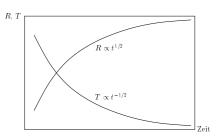
$$\ddot{\phi} + 3H\dot{\phi} + \Gamma_{\phi}\dot{\phi} + V'(\phi)c^2 = 0$$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

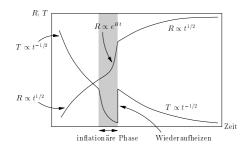
29

Ende der Inflation (3)

 \bullet R(t) und T(t) in einem Standardmodell



 \bullet R(t) und T(t) in einem inflationären Modell



Ende der Inflation (2)

Erinnerung an "Die Thermodynamik im frühen Universum"

• Für Strahlung und relativistische Teilchen gilt:

$$\rho \propto T^4$$
 $RT = \text{konstant}$
 $S \propto R^3T^3 = \text{konstant}$

Wiederaufheizen des Universums (Reheating)

- Kopplung an andere Felder dämpft wesentlich stärker als Ausdehnung des Universums, das heißt V(0) wird fast ausschließlich zur Anregung dieser Felder verwendet
- Zerfall der $\phi\text{-Partikel}$ in deutlich leichtere, relativistische Teilden
- Spezialfall: Oszillationen werden schnell gedämpft im Vergleich zur Ausdehnung des Universums:

$$\rho c^2 \approx V(0) \rightarrow T_{\rm rh} \propto V(0)^{1/4}$$

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

3(

Ende der Inflation (4)

• Enormer Entropiezuwachs wegen starkem Temperaturanstieg $(S \propto R^3 T^3)$

$$\begin{array}{lcl} T(t_{\rm i}) & = & T_{t_{\rm rh}} \\ \frac{R(t_{\rm f})}{R(t_{\rm i})} & = & e^{100} \end{array}$$

$$\begin{array}{lcl} S(t_{\rm i}) & = & CR(t_{\rm i})^3T(t_{\rm i})^3 \\ S(t_{\rm f}) & = & CR(t_{\rm f})^3T_{\rm rh}^3 = & Ce^{300}R(t_{\rm i})^3T(t_{\rm i})^3 \end{array}$$

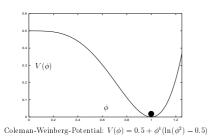
$$S(t_{\rm f}) = e^{300} S(t_{\rm i})$$

• Die Probleme der Standardkosmologie können teilweise auch so formuliert werden, dass zu ihrer Lösung ein Mechanismus erforderlich ist, der die Entropie drastisch vergrößert

 $[\]textcircled{e}$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

Postinflationäre Phase

• Das Feld ruht im neuen globalen Minimum ϕ_{\min} $(V(\phi_{\min})=0)$, das heißt es hat keinen weiteren Einfluss auf die Entwicklung des Universums



• Ab jetzt wieder Standardkosmologie

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

33

Notwendige Eigenschaften (2)

- Keine unerwünschten Relikte
 - Bekanntester Vertreter: Magnetische Monopole
 - Weitere unerwünschte Relikte können abhängig vom verwendeten Teilchenphysik-Modell auftreten; diese müssen durch die inflationäre Phase beseitigt werden
- \bullet Teil eines vernünftigen Teilchenphysik-Modells
 - Das skalare Feld ϕ sollte kein eigenständiges Konstrukt sondern Teil einer größeren Theorie sein
 - Äußerst schwierig zu erfüllen (ungelöst?)

Notwendige Eigenschaften (1)

- Physikalischer Mechanismus, der eine inflationäre Phase einleitet und wieder beendet
- Hinreichend starke Expansion
 - Zur Lösung des Horizont-Problems und des Flachheits-Problems muss $R(t_{\rm f})/R(t_{\rm i}) \gtrsim e^{60}$ gelten
 - Im Allgemeinen sehr leicht zu erfüllen
- Mit den Beobachtungen der Hintergrundstrahlung verträgliche Dichtefluktuationen
 - $-\Delta\rho/\rho\approx10^{-5}$
 - Sehr schwierig zu erfüllen
- Ausreichendes Wiederaufheizen
 - Um das beobachtete Übergewicht an leichten Elementen erklären zu können, muss $T_{\rm rh} \gtrsim 1~{\rm MeV}$ gelten (schwache Forderung)
 - Manche Teilchenphysik-Modelle erfordern sehr viel höhere Reheat-Temperaturen
 - Hohe Reheat-Temperaturen stehen im Konflikt mit akzeptablen Dichtefluktuationen

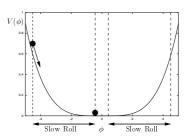
© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

34

Chaotic Inflation (1)

- A. D. Linde, Phys. Lett. B129, 177-181, 1983
- Potential:

$$V(\phi) = \lambda \phi^4$$



• Anfangsbedingungen: Das "chaotisch" fluktuierende Feld ϕ wird für kurze Zeit in einem räumlich begrenzten Bereich B konstant $(\phi(B)=\phi_{\rm i}\neq 0)$

Chaotic Inflation (2)

• Slow-Roll-Bedingungen:

$$V(\phi) = \lambda \phi^4$$

$$V'(\phi) = 4\lambda \phi^3$$

$$V''(\phi) = 12\lambda \phi^2$$

$$\begin{array}{c|c} \text{(B1')} & \left| \frac{V'(\phi)}{V(\phi)} \right| &= \left| \frac{4}{\phi} \right| & \ll & \frac{\sqrt{48\pi G}}{c^2} \\ & |\phi| \gg & \frac{4c^2}{\sqrt{48\pi G}} \approx & \frac{0,33c^2}{\sqrt{G}} \end{array}$$

$$\begin{array}{ll} \text{(B2')} & \left|\frac{V''(\phi)}{V(\phi)}\right| & = \left|\frac{12}{\phi^2}\right| & \ll \frac{24\pi G}{c^4} \\ & |\phi| \gg \frac{c^2}{\sqrt{2\pi G}} \approx \frac{0,40c^2}{\sqrt{G}} \end{array}$$

 $\ \, \ \, \ \,$ Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

37

Schlussbemerkungen

- Inflationäre Modelle lösen verschiedene Probleme der Standardkosmologie auf elegante Art und Weise
- Es existieren zahlreiche inflationäre Modelle, jeweils mit verschiedenen Stärken und Schwächen
- Das inflationäre Modell wurde noch nicht gefunden
- Gegenstand aktueller Forschung in der Kosmologie

Chaotic Inflation (3)

• e-Foldings des Expansionsfaktors:

$$\begin{array}{lll} N & = & -\frac{8\pi G}{c^4} \int_{\phi_{\rm i}}^{\phi_{\rm f}} d\phi \frac{V(\phi)}{V'(\phi)} & = & -\frac{8\pi G}{c^4} \int_{\phi_{\rm i}}^{\phi_{\rm f}} d\phi \frac{\phi}{4} & = \\ & = & -\frac{2\pi G}{c^4} \left[\frac{1}{2}\phi^2\right]_{\phi_{\rm i}}^{\phi_{\rm f}} & = & \frac{\pi G}{c^4} (\phi_{\rm i}^2 - \phi_{\rm f}^2) \end{array}$$

 \bullet Mindestwert für $|\phi_{\rm i}|$ um 60 e-Foldings zu erreichen:

$$\begin{aligned} |\phi_{\rm i}| &= \left(\frac{Nc^4}{\pi G} + \phi_{\rm f}^2\right)^{1/2} \\ |\phi_{\rm i}| &\geq \left(\frac{60c^4}{\pi G} + \frac{c^4}{2\pi G}\right)^{1/2} &\approx \frac{4,39c^2}{\sqrt{G}} \end{aligned}$$

- \bullet Durch geeignete Wahl von λ können akzeptable Dichtefluktuationen erreicht werden
- Schwäche dieses Modells: Reheating

© Marc Wagner, Vortrag "Inflationäre kosmologische Modelle", 3. Dezember 2002

38

Literatur

- J. Bernstein. An Introduction to Cosmology. Prentice Hall. 1998.
- P. Coles, F. Lucchin. Cosmology. Wiley. 2002
- E. W. Kolb, M. S. Turner. *The Early Universe*. Addison-Wesley. 1990.
- J. A. Peacock. Cosmological Physics. Cambridge University Press, 2002.
- D. J. Raine, E. J. Thomas. An Introduction to the Science of Cosmology. Institute of Physics Publishing, 2001.
- $\bullet \ \ http://www.astro.ucla.edu/\!\!\sim\!wright/cosmo_04.htm.$