Scalar mesons and tetraquarks by means of lattice QCD

Meeting of HIC for FAIR Expert Group, Frankfurt am Main

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

http://th.physik.uni-frankfurt.de/~mwagner/

in collaboration with Constantia Alexandrou, Marco Cristoforetti, Jan Daldrop, Mattia Dalla Brida, Mario Gravina, Luigi Scorzato, Carsten Urbach, Christian Wiese

July 9, 2012

Introduction, motivation (1)

- The nonet of light scalar mesons $(J^P = 0^+)$
 - $-\sigma \equiv f_0(500)$, I = 0, 400...550 MeV,
 - $-\kappa \equiv K_0^*(800)$, I = 1/2, 682 ± 29 MeV,
 - $-a_0(980)$, $f_0(980)$, I=1, $980\pm 20\,{\rm MeV}$, $990\pm 20\,{\rm MeV}$

is poorly understood:

- All nine states are unexpectedly light (should rather be close to the corresponding $J^P=1^+,2^+$ states around $1200\dots1500\,\mathrm{MeV}$).
- The ordering of states is inverted compared to expectation:
 - * E.g. in a $q\bar{q}$ picture the I=1 states $a_0(980)$, $f_0(980)$ must necessarily be formed by two u/d quarks, while the I=1/2 κ states are made from an s and a u/d quark; since $m_s>m_{u/d}$ one would expect $m(\kappa)>m(a_0(980)), m(f_0(980)).$

Introduction, motivation (2)

- * In a tetraquark picture the quark content could be the following: $\kappa \equiv \bar{s}l\bar{l}l$, while $a_0(980), f_0(980) \equiv \bar{s}l\bar{l}s$; this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g. $a_0(980)$ readily decays to $K + \bar{K}$, which indicates that besides the two light quarks required by I=1 also an $s\bar{s}$ pair is present.
- → Study these states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.
- Examples of heavy mesons, which are tetraquark candidates:
 - $-D_{s0}^*(2317)^{\pm}$ $(I(J^P)=0(0^+)), D_{s1}(2460)^{\pm}$ $(I(J^P)=0(1^+)),$
 - charmonium states X(3872), $Z(4430)^{\pm}$, $Z(4050)^{\pm}$, $Z(4250)^{\pm}$, ...
- FAIR, PANDA: charmonium spectroscopy, D meson spectroscopy (in particular D_s), search for gluonic excitations (light scalar mesons).

[http://www-panda.gsi.de/framework/content/physics/phys_spec.php]

QCD (quantum chromodynamics)

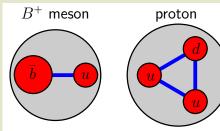
- Quantum field theory of quarks (six flavors u, d, s, c, t, b, which differ in mass) and gluons.
- Part of the standard model explaining the formation of hadrons (usually mesons $=q\bar{q}$ and baryons $=qqq/\bar{q}\bar{q}\bar{q}$) and their masses; essential for decays involving hadrons.
- Definition of QCD by means of an action simple:

$$S = \int d^4x \left(\sum_{f \in \{u,d,s,c,t,b\}} \overline{\psi}^{(f)} \left(\gamma_{\mu} \left(\partial_{\mu} - iA_{\mu} \right) + m^{(f)} \right) \psi^{(f)} + \frac{1}{2g^2} \operatorname{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) \right)$$

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i [A_{\mu}, A_{\nu}].$$

$$B^{+} \text{ meson} \qquad \text{proton}$$

 However, no analytical solutions for low energy QCD observables, e.g. hadron masses, known, because of the absence of any small parameter (i.e. perturbation theory not applicable).



Hadron spectroscopy (1)

- Let \mathcal{O} be a suitable "hadron creation operator", i.e. an operator such that $\mathcal{O}|\Omega\rangle$ is a state containing the hadron of interest ($|\Omega\rangle$: QCD vacuum).
- More precisely: ... an operator such that $\mathcal{O}|\Omega\rangle$ has the same quantum numbers $(J^{\mathcal{PC}}, \text{ flavor})$ as the hadron of interest.
- Examples:
 - Pion creation operator: $\mathcal{O} = \int d^3x \, \bar{u}(\mathbf{x}) \gamma_5 d(\mathbf{x})$.
 - Proton creation operator: $\mathcal{O} = \int d^3x \, \epsilon^{abc} u^a(\mathbf{x}) (u^{b,T}(\mathbf{x}) C \gamma_5 d^c(\mathbf{x})).$

Hadron spectroscopy (2)

• Determine the mass of the ground state of the hadron of interest from the exponential behavior of the corresponding correlation function \mathcal{C} at large Euclidean times T:

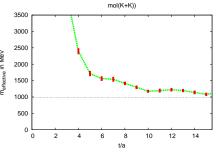
$$\mathcal{C}(t) = \langle \Omega | \left(\mathcal{O}(t) \right)^{\dagger} \mathcal{O}(0) | \Omega \rangle = \langle \Omega | e^{+Ht} \left(\mathcal{O}(0) \right)^{\dagger} e^{-Ht} \mathcal{O}(0) | \Omega \rangle =$$

$$= \sum_{n} \left| \langle n | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp \left(- (E_{n} - E_{\Omega}) t \right) \approx \text{ (for } t \gg 1)$$

$$\approx \left| \langle 0 | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp \left(- \underbrace{(E_{0} - E_{\Omega})}_{m(\text{hadron})} t \right).$$

• Usually the exponent is determined by identifying the "plateaux-value" of a so-called effective mass:

$$m_{ ext{effective}}(t) = \ln\left(rac{\mathcal{C}(t)}{\mathcal{C}(t+1)}
ight) pprox \quad ext{(for } t\gg 1)$$
 $pprox \quad E_0-E_\Omega = m(ext{hadron}).$



Tetraquark creation operators

- At the moment we study
 - $-a_0(980)$, mass $980 \pm 20 \,\text{MeV}$, quantum numbers $I(J^{PC}) = 1(0^{++})$;
 - $-\kappa \equiv K_0^*(800)$, mass $682 \pm 29 \, {\rm MeV}$, quantum numbers $I(J^P) = 1/2(0^+)$.
- Tetraquark operators for $a_0(980)$ (quantum numbers $I(J^{PC}) = 1(0^{++})$):
 - Needs two light quarks due to I=1, e.g. $u\bar{d}$.
 - $-a_0(980)$ decays to $K\bar{K}$... suggests an $s\bar{s}$ component.
 - Molecule type (models a bound $K\bar{K}$ state):

$$\mathcal{O}_{a_0(980)}^{K\bar{K} \text{ molecule}} = \int d^3x \left(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\right) \left(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\right).$$

Diquark type (models a bound diquark-antidiquark):

$$\mathcal{O}_{a_0(980)}^{\mathsf{diquark}} = \int d^3x \left(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{d}^{c,T}(\mathbf{x}) \right) \left(\epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \right).$$

Lattice QCD (1)

- Goal: compute correlation functions C(T) of the discussed tetraquark creation operators (corresponding hadron masses can directly be read off from their exponential decays).
- Use the path integral formulation of QCD,

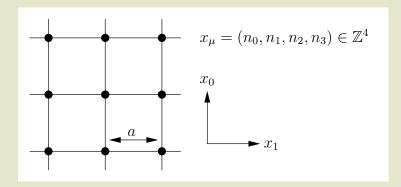
$$C(t) = \langle \Omega | \left(\mathcal{O}(\mathbf{x}, t) \right)^{\dagger} \mathcal{O}(\mathbf{x}, 0) | \Omega \rangle =$$

$$= \frac{1}{Z} \int \left(\prod_{f} D\psi^{(f)} D\bar{\psi}^{(f)} \right) DA_{\mu} \left(\mathcal{O}(\mathbf{x}, t) \right)^{\dagger} \mathcal{O}(\mathbf{x}, 0) e^{-S[\psi^{(f)}, \bar{\psi}^{(f)}, A_{\mu}]}.$$

- $-|\Omega\rangle$: ground state/vacuum.
- $-(\mathcal{O}(\mathbf{x},t))^{\dagger}\mathcal{O}(\mathbf{x},0)$: function of the quark and gluon fields (cf. previous slides).
- $-\int (\prod_f D\psi^{(f)} D\bar{\psi}^{(f)}) DA_{\mu}$: integral over all possible quark and gluon field configurations $\psi^{(f)}(\mathbf{x},t)$ and $A_{\mu}(\mathbf{x},t)$.
- $-e^{-S[x]}$: weight factor containing the QCD action.

Lattice QCD (2)

- Numerical implementation of the path integral formalism in QCD:
 - Discretize spacetime with sufficiently small lattice spacing $a\approx 0.05\,\mathrm{fm}\dots 0.10\,\mathrm{fm}$
 - → "continuum physics".
 - "Make spacetime periodic" with sufficiently large extension $L\approx 2.0\,{\rm fm}\ldots 4.0\,{\rm fm}$ (4-dimensional torus)
 - \rightarrow "no finite size effects".



Lattice QCD (3)

- Numerical implementation of the path integral formalism in QCD:
 - After discretization the path integral becomes an ordinary multidimensional integral:

$$\int D\psi \, D\bar{\psi} \, DA \, \dots \quad \to \quad \prod_{x_{\mu}} \left(\int \frac{d\psi}{(x_{\mu})} \, \frac{d\bar{\psi}}{(x_{\mu})} \, dU(x_{\mu}) \right) \, \dots$$

- Typical present-day dimensionality of a discretized QCD path integral:
 - * x_{μ} : $32^4 \approx 10^6$ lattice sites.
 - * $\psi = \psi_A^{a,(f)}$: 24 quark degrees of freedom for every flavor (×2 particle/antiparticle, ×3 color, ×4 spin), 2 flavors.
 - * $U = U_{\mu}^{ab}$: 32 gluon degrees of freedom (×8 color, ×4 spin).
 - * In total: $32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6$ dimensional integral.
 - → standard approaches for numerical integration not applicable
 - → sophisticated algorithms mandatory (stochastic integration techniques, so-called Monte-Carlo algorithms).

Lattice setup (1)

- 2+1+1 dynamical quark flavors, i.e. u, d, s and c sea quarks.
- Lattice spacing $a=0.086\,\mathrm{fm}$ (rather fine, computations at even finer lattice spacings planned).
- Various lattice volumes:
 - Small volume $L^3 \times T = 20^3 \times 48$ lattice sites, spatial extension $1.73\,\mathrm{fm}$ \to rather easy to identify momentum excitations. (Most of the numerical results shown in the following were obtained with this volume.)
 - …
 - Large volume $L^3 \times T = 32^3 \times 64$ lattice sites, spatial extension 2.75 fm \rightarrow less finite size effects.
 - Different volumes needed to study resonances in a rigorous way.
 (Not done yet ... will be one of our next steps.)

Lattice setup (2)

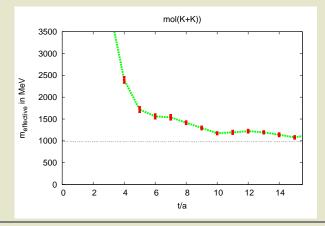
• Various light u/d quark masses, corresponding pion masses $m_{\rm PS} \approx 280\ldots 460\,{\rm MeV}$ (physical light u/d quark masses $[m_{\rm PS} = m_\pi \approx 140\,{\rm MeV}]$ are technically extremely challenging; because of that in lattice QCD one usually studies several heavier quark masses and extrapolates to the "physical point").

Numerical results $a_0(980)$ (1)

Effective mass, molecule type operator:

$$\mathcal{O}_{a_0(980)}^{K\bar{K} \text{ molecule}} = \sum_{\mathbf{x}} \Big(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big) \Big(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\Big).$$

- The effective mass plateaux indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of $K\bar{K}$ molecule type ...?

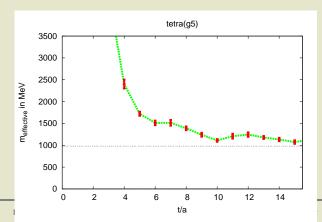


Numerical results $a_0(980)$ (2)

• Effective mass, diquark type operator:

$$\mathcal{O}_{a_0(980)}^{\text{diquark}} \quad = \quad \sum_{\mathbf{x}} \Big(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{d}^{c,T}(\mathbf{x}) \Big) \Big(\epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \Big).$$

- The effective mass plateaux indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of diquark type ...? Or a mixture of $K\bar{K}$ molecule and tetraquark?



Numerical results $a_0(980)$ (3)

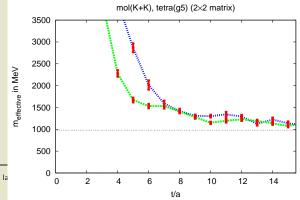
 Study both operators at the same time, extract the two lowest energy eigenstates by diagonalizing a 2×2 correlation matrix ("generalized eigenvalue problem"):

$$\mathcal{O}^{K\bar{K} \text{ molecule}}_{a_0(980)} \ = \ \sum_{\mathbf{x}} \Big(\bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big) \Big(\bar{d}(\mathbf{x})\gamma_5 s(\mathbf{x})\Big)$$

$$\mathcal{O}^{\text{diquark}}_{a_0(980)} \ = \ \sum_{\mathbf{x}} \Big(\epsilon^{abc}\bar{s}^b(\mathbf{x})C\gamma_5\bar{d}^{c,T}(\mathbf{x})\Big) \Big(\epsilon^{ade}u^{d,T}(\mathbf{x})C\gamma_5 s^e(\mathbf{x})\Big).$$

Now two orthogonal states roughly consistent with the experimentally

measured $a_0(980)$ mass 980 ± 20 MeV ...?



Two-particle creation operators (1)

- Explanation: there are two-particle states, which have the same quantum numbers as $a_0(980)$, $I(J^{PC})=1(0^{++})$,
 - $-K + \bar{K}$ ($m(K) \approx 500 \, \text{MeV}$),
 - $-\eta + \pi \ (m(\eta) \approx 700 \, \text{MeV}, \ m(\pi) \approx 300 \, \text{MeV}$ in our lattice setup),

which are both around the expected $a_0(980)$ mass 980 ± 20 MeV.

- What we have seen in the previous plots might actually be two-particle states (our operators are of tetraquark type, but they nevertheless generate overlap [possibly small, but certainly not vanishing] to two-particle states).
- To determine, whether there is a bound $a_0(980)$ tetraquark state, we need to resolve the above listed two-particle states $K+\bar{K}$ and $\eta+\pi$ and check, whether there is an additional 3rd state in the mass region around $980\pm20\,\text{MeV}$; to this end we need operators of two-particle type.

Two-particle creation operators (2)

- Two particle operators with quantum numbers $I(J^{PC}) = 1(0^{++})$:
 - Two particle $K + \bar{K}$ type:

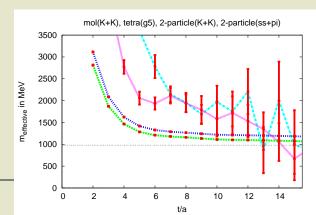
$$\mathcal{O}^{K+\bar{K}}_{a_0(980) \text{ quantum numbers}} = \left(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x})\right) \left(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_5 s(\mathbf{y})\right).$$

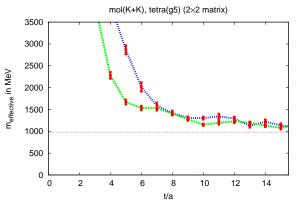
- Two particle $\eta + \pi$ type:

$$\mathcal{O}_{a_0(980) \text{ quantum numbers}}^{\eta+\pi \text{ two particle}} \ = \ \bigg(\sum_{\mathbf{x}} \bar{s}(\mathbf{x})\gamma_5 s(\mathbf{x})\bigg) \bigg(\sum_{\mathbf{y}} \bar{d}(\mathbf{y})\gamma_5 u(\mathbf{y})\bigg).$$

Numerical results $a_0(980)$ (4)

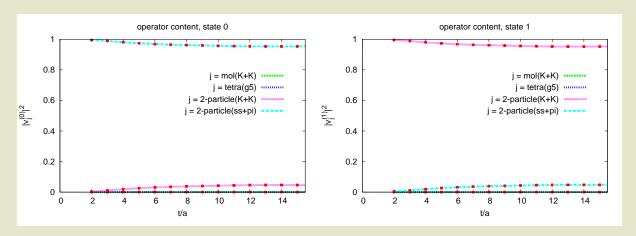
- Study all four operators ($K\bar{K}$ molecule, diquark, $K+\bar{K}$ two particle, $\eta+\pi$ two particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a 4×4 correlation matrix (left plot).
 - Still only two low lying states around 980 ± 20 MeV, the 2nd and 3rd excitation are $\approx750\,\text{MeV}$ heavier.
 - The signal of the low lying states is of much better quality than before (when we only considered tetraquark operators)
 - → suggests that the observed low lying states have much better overlap to the two-particle operators and are most likely of two-particle type.





Numerical results $a_0(980)$ (5)

- When determining low lying eigenstates from a correlation matrix one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
 - \rightarrow The ground state is a $\eta + \pi$ state ($\gtrsim 95\%$ two particle $\eta + \pi$ content).
 - \rightarrow The first excitation is a $K+\bar{K}$ state ($\gtrsim 95\%$ two particle $K+\bar{K}$ content).



Numerical results $a_0(980)$ (6)

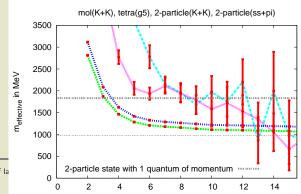
- What about the 2nd and 3rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two particle states with one relative quantum of momentum (one particle has momentum $+p_{\min} = +2\pi/L$ the other $-p_{\min}$) also have quantum numbers $I(J^{PC}) = 1(0^{++})$; their masses can easily be estimated:
 - $-p_{\rm min}=2\pi/L\approx715\,{\rm MeV}$ (the results presented correspond to the small lattice with spatial extension $L=1.73\,{\rm fm}$);

$$-m(K(+p_{\min})+\bar{K}(-p_{\min}))\approx 2\sqrt{m(K)^2+p_{\min}^2}\approx 1750\,{\rm MeV};$$

$$-m(\eta(+p_{\min})+\pi(-p_{\min})) \approx \sqrt{m(\eta)^2+p_{\min}^2} + \sqrt{m(\pi)^2+p_{\min}^2} \approx 1780 \, \text{MeV}:$$

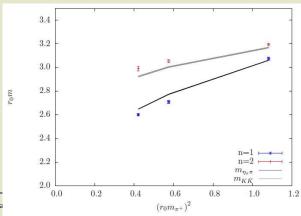
these estimated mass values are consistent with the observed mass values of the 2nd and 3rd excitation

→ suggests to interpret these states as two-particle states.



Numerical results $a_0(980)$ (7)

- Summary regarding the presented " $a_0(980)$ results":
 - In the $a_0(980)$ sector (quantum numbers $I(J^{PC})=1(0^{++})$) we do not observe any low lying (mass $\lesssim 1750 \, \text{MeV}$) tetraquark state, even though we employed operators of tetraquark structure ($K\bar{K}$ molecule, diquark).
 - The experimentally measured mass for $a_0(980)$ is 980 ± 20 MeV.
 - Conclusion: $a_0(980)$ does not seem to be a bound tetraquark state ... maybe an ordinary quark-antiquark state (unlikely, lattice results indicate the opposite) or a rather unstable resonance.
- Similar results for the range of light quark masses investigated $(m_{PS} \approx 280...460 \, \text{MeV}).$



Numerical results κ

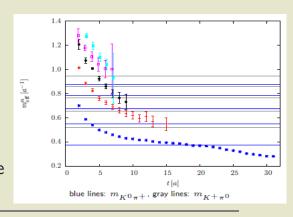
- Tetraquark operators for κ (quantum numbers $I(J^P)=1/2(0^+)$):
 - Molecule type (models a bound $K\pi$ state):

$$\mathcal{O}_{\kappa}^{K\pi \text{ molecule}} = \sum_{\mathbf{x}} \left(\bar{s}(\mathbf{x}) \gamma_5 q(\mathbf{x}) \right) \left(\bar{q}(\mathbf{x}) \gamma_5 u(\mathbf{x}) \right) , \quad q\bar{q} = u\bar{u} + d\bar{d}$$

Diquark type (models a bound diquark-antidiquark):

$$\mathcal{O}_{\kappa}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \Big(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{q}^{c,T}(\mathbf{x}) \Big) \Big(\epsilon^{ade} q^{d,T}(\mathbf{x}) C \gamma_5 u^e(\mathbf{x}) \Big).$$

- Two particle operator of $K + \pi$ type.
- An analysis yields only a single low lying state, which is of two particle $K+\pi$ nature.
- Conclusions: κ does not seem to be a bound tetraquark state ... maybe an ordinary quarkantiquark state (unlikely, lattice results indicate the opposite) or a rather unstable resonance.



Conflict with existing lattice results

• In a similar recent lattice study of $\sigma \equiv f_0(500)$ and $\kappa \equiv K_0^*(800)$ bound tetraquark states have been observed in both sectors.

```
[S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. -F. Liu, N. Mathur and D. Mohler,
Phys. Rev. D 82, 094507 (2010) [arXiv:1005.0948 [hep-lat]]
```

• In particular for κ this conflict has to be resolved.

$a_0(980)$ and κ as resonances

- A lattice study of $a_0(980)$ and κ as resonances requires rather precise computations of the masses of the two particle states $K+\bar{K}$, $\eta+\pi$ and $K+\pi$ for various spatial volumes.
- Technically very challenging.
- No results yet.

Sources of systematic error, outlook (1)

- The computations presented are technically rather challenging; there are several possible sources of systematic error, which have not yet been studied, but which need to be addressed in the future:
 - Inclusion of disconnected and partially disconnected diagrams.
 - Include also $q\bar{q}$ creation operators (implies partially disconnected diagrams), e.g. for $a_0(980)$

$$\mathcal{O}_{a_0(980)}^{q\bar{q}} = \sum_{\mathbf{x}} \bar{d}(\mathbf{x}) u(\mathbf{x}).$$

- Continuum limit (at the moment only a single value of the lattice spacing, $a=0.086\,\mathrm{fm}$, has been considered).
- Finite volume studies (extrapolate the here presented results to infinite spatial volume, determine resonance properties).

Sources of systematic error, outlook (2)

 The techniques and codes developed can be used with only minor modifications to study other tetraquark candidates, e.g.

```
-\sigma \equiv f_0(500), f_0(980),
```

- $-D_{s0}^*(2317)^{\pm}$, $D_{s1}(2460)^{\pm}$,
- charmonium states X(3872), $Z(4430)^{\pm}$, $Z(4050)^{\pm}$, $Z(4250)^{\pm}$, ...