Open flavor four-quark states from the lattice

"PANDA Collaboration Meeting" - GSI
Marc Wagner
Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@itp.uni-frankfurt.de http://itp.uni-frankfurt.de/~mwagner/

June 25, 2024

FRANKFURT AM MAIN

Exotic systems discussed in this talk

- This talk summarizes our investigations of heavy exotic mesons with lattice QCD:
- mainly open flavor four-quark states, tetraquarks $\bar{Q} \bar{Q} q q, \quad$ (heavy quarks $Q \in\{b, c\}$, light quarks $q \in\{u, d, s\}$)
- but also tetraquarks $\bar{Q} Q \bar{q} q$ and hybrid mesons $\bar{Q} Q+$ gluons (very brief).
- Why b quarks? Why not only c quarks, which are more relevant in the context of PANDA?
- b quarks are technically simpler, e.g. Heavy Quark Effective Theory or Non Relativistic QCD applicable/more accurate.
- Systems with $Q=b$ are physically simpler, e.g. certain tetraquarks are QCD-stable.
- Long-term goal: accurate predictions for exotic mesons with c quarks.
- Important intermediate steps: computations with b quarks (or even static quarks).

Two types of approaches

- Two types of approaches, when studying heavy-light exotic mesons with lattice QCD:
- Born-Oppenheimer approximation (a 2-step procedure):
* The focus of this talk.
(1) Compute the potential $V(r)$ of the two heavy quarks (approximated as static quarks) in the presence of two light quarks and/or gluons using lattice QCD. \rightarrow full QCD results
(2) Use standard techniques from quantum mechanics and $V(r)$ to study the dynamics of two heavy quarks (Schrödinger equation, scattering theory, etc.).
\rightarrow an approximation
(+) Provides physical insights (e.g. forces between quarks, quark composition).
(-) An approximation.
- Full lattice QCD computations of eigenvalues of the QCD Hamiltonian:
* Masses of stable hadrons correspond to energy eigenvalues at infinite volume.
* Masses and decay widths of resonances can be calculated from the volume dependence of the energy eigenvalues (rather difficult).

Basic idea: lattice QCD and BO

- Start with $\bar{b} \bar{b} q q$.
- $\bar{b} \bar{b} u d$ with $I\left(J^{P}\right)=0\left(1^{+}\right)$is the bottom counterpart of the experimentally observed $T_{c c}$. [R. Aaij et al. [LHCb], Nature Phys. 18, 751-754 (2022) [arXiv:2109.01038]].
- Study such $\bar{b} \bar{b} q q$ tetraquarks in two steps:
(1) Compute potentials of the two static quarks $\bar{b} \bar{b}$ in the presence of two lighter quarks $q q$ ($q \in\{u, d, s\}$) using lattice QCD.
(2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (\rightarrow tetraquarks) by using techniques from quantum mechanics and scattering theory.
$(1)+(2) \rightarrow$ Born-Oppenheimer approximation.

\rightarrow existence of a tetraquark \ldots or not

$\bar{b} \bar{b} q q / B B$ potentials (1)

- To determine $\bar{b} \bar{b}$ potentials $V_{q q, j z, \mathcal{P}, \mathcal{P}_{x}}(r)$, compute temporal correlation functions
$\langle\Omega| \mathcal{O}_{B B, \Gamma}^{\dagger}(t) \mathcal{O}_{B B, \Gamma}(0)|\Omega\rangle \propto_{t \rightarrow \infty} e^{-V_{q q, j z, \mathcal{P}, \mathcal{P}_{x}}(r) t}$
of operators
$\mathcal{O}_{B B, \Gamma}=2 N_{B B}(\mathcal{C} \Gamma)_{A B}(\mathcal{C} \tilde{\Gamma})_{C D}\left(\bar{Q}_{C}^{a}(-\mathbf{r} / 2) q_{A}^{a}(-\mathbf{r} / 2)\right)\left(\bar{Q}_{D}^{b}(+\mathbf{r} / 2) q_{B}^{b}(+\mathbf{r} / 2)\right)$.
- Many different channels (isospin/light flavor, angular momentum, parity).
\rightarrow Attractive as well as repulsive potentials.
\rightarrow Potentials with different asymptotic values (two heavy-light mesons $\in\left\{B, B^{*}, B_{0}^{*}, B_{1}^{*}\right\}$).
- The most attractive potential of a $B^{(*)} B^{(*)}$ meson pair has $\left(I,\left|j_{z}\right|, P, P_{x}\right)=(0,0,+,-)$:
$-\psi^{(f)} \psi^{\left(f^{\prime}\right)}=u d-d u, \Gamma \in\left\{\left(1+\gamma_{0}\right) \gamma_{5},\left(1-\gamma_{0}\right) \gamma_{5}\right\}$.
- $\bar{Q} \bar{Q}=\bar{b} \bar{b}, \tilde{\Gamma} \in\left\{\left(1+\gamma_{0}\right) \gamma_{5},\left(1+\gamma_{0}\right) \gamma_{j}\right\}$ (irrelevant).
[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
[P. Bicudo, M. Marinkovic, L. Müller, M.W., unpublished ongoing work]

$\bar{b} \bar{b} q q / B B$ potentials (2)

[P. Bicudo, M. Marinkovic, L. Müller, M.W., unpublished ongoing work]

$\bar{b} \bar{b} q q / B B$ potentials (3)

[P. Bicudo, M. Marinkovic, L. Müller, M.W., unpublished ongoing work]

Stable $\bar{b} \bar{b} q q$ tetraquarks

- Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b} \bar{b}$ using the previously computed $\bar{b} \bar{b} q q$ potentials,

$$
\left(\frac{1}{m_{b}}\left(-\frac{d^{2}}{d r^{2}}+\frac{L(L+1)}{r^{2}}\right)+V_{q q, j_{z}, \mathcal{P}, \mathcal{P}_{x}}(r)-2 m_{B}\right) R(r)=E R(r)
$$

- Possibly existing bound states, i.e. $E<0$, indicate QCD-stable $\bar{b} \bar{b} q q$ tetraquarks.
- There is a bound state for orbital angular momentum $L=0$ of $\bar{b} \bar{b}$:
- Binding energy $E=-90_{-36}^{+43} \mathrm{MeV}$ with respect to the $B B^{*}$ threshold.
- Quantum numbers: $I\left(J^{P}\right)=0\left(1^{+}\right)$.
[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

Further $\bar{b} \bar{b} q q$ results (1)

- Are there further QCD-stable $\bar{b} \bar{b} q q$ tetraquarks with other $I\left(J^{P}\right)$ and light flavor quantum numbers?
\rightarrow No, not for $q q=u d$ (both $I=0,1$), not for $q q=s s$.
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
$\rightarrow \bar{b} \bar{b} u s$ was not investigated.
- Strong evidence from full QCD computations that a QCD-stable $\bar{b} \bar{b} u s$ tetraquark exists.
- Effect of heavy quark spins:
- Expected to be $\mathcal{O}\left(m_{B^{*}}-m_{B}\right)=\mathcal{O}(45 \mathrm{MeV})$.
- Previously ignored (potentials of static quarks are independent of the heavy spins).
- In [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D 95, 034502 (2017) [arXiv:1612.02758]] included in a crude phenomenological way via a $B B^{*}$ and a $B^{*} B^{*}$ coupled channel Schrödinger equation with the experimental mass difference $m_{B^{*}}-m_{B}$ as input.
\rightarrow Binding energy reduced from around 90 MeV to 59 MeV .
\rightarrow Physical reason: the previously discussed attractive potential does not only correspond to a lighter $B B^{*}$ pair, but has also a heavier $B^{*} B^{*}$ contribution.

Further $\bar{b} \bar{b} q q$ results (2)

- Are there $\bar{b} \bar{b} q q$ tetraquark resonances?
- In
[P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]] resonances studied via standard scattering theory from quantum mechanics textbooks.
\rightarrow Heavy quark spins ignored.

\rightarrow Indication for $\bar{b} \bar{b} u d$ tetraquark resonance with $I\left(J^{P}\right)=0\left(1^{-}\right)$found, $E=17_{-4}^{+4} \mathrm{MeV}$ above the $B B$ threshold, decay width $\Gamma=112_{-103}^{+90} \mathrm{MeV}$.
- In
[J. Hoffmann, A. Zimermmane-Santos, M.W., PoS LATTICE2022, 262 (2023) [arXiv:2211.15765]]
[J. Hoffmann, M.W., unpublished ongoing work]
heavy quark spins included.
$\rightarrow \bar{b} \bar{b} u d$ resonance shifted upwards, slightly above the $B^{*} B^{*}$ threshold.
\rightarrow Physical reason: the relevant attractive potential does not only correspond to a lighter $B B$ pair, but has also a heavier $B^{*} B^{*}$ contribution.

Further $\bar{b} \bar{b} q q$ results (3)

- Structure of the QCD-stable $\bar{b} \bar{b} u d$ tetraquark: meson-meson ($B B$) versus diquark-antidiquark ($D d$).
- Use not just one but two operators,

$$
\begin{aligned}
\mathcal{O}_{B B, \Gamma} & =2 N_{B B}(\mathcal{C} \Gamma)_{A B}(\mathcal{C} \tilde{\Gamma})_{C D}\left(\bar{Q}_{C}^{a}(-\mathbf{r} / 2) \psi_{A}^{(f) a}(-\mathbf{r} / 2)\right)\left(\bar{Q}_{D}^{b}(+\mathbf{r} / 2) \psi_{B}^{\left(f^{\prime}\right) b}(+\mathbf{r} / 2)\right) \\
\mathcal{O}_{D d, \Gamma} & =-N_{D d} \epsilon^{a b c}\left(\psi_{A}^{(f) b}(\mathbf{z})(\mathcal{C} \Gamma)_{A B} \psi_{B}^{\left(f^{\prime}\right) c}(\mathbf{z})\right) \\
& \epsilon^{a d e}\left(\bar{Q}_{C}^{f}(-\mathbf{r} / 2) U^{f d}(-\mathbf{r} / 2 ; \mathbf{z})(\mathcal{C} \tilde{\Gamma})_{C D} \bar{Q}_{D}^{g}(+\mathbf{r} / 2) U^{g e}(+\mathbf{r} / 2 ; \mathbf{z})\right)
\end{aligned}
$$

compare the contribution of each operator to the $\bar{b} \bar{b}$ potential $V_{q q, j_{z}, \mathcal{P}, \mathcal{P}_{x}}(r)$.
[P. Bicudo, A. Peters, S. Velten, M.W., Phys. Rev. D 103, 114506 (2021) [arXiv:2101.00723]]
$\rightarrow r \lesssim 0.2 \mathrm{fm}$: Clear diquark-antidiquark dominance.
$\rightarrow 0.5 \mathrm{fm} \lesssim r$: Essentially a meson-meson system.
\rightarrow Integrate over t to estimate the composition of the tetraquark: $\% B B \approx 60 \%, \% D d \approx 40 \%$.

Quarkonium, $I=0$: difference to $\bar{Q} \bar{Q} q q$ (1)

- Now quarkonium with $I=0$, i.e. $\bar{Q} Q$ and/or $\bar{Q} Q \bar{q} q$ (with $\bar{q} q=(\bar{u} u+\bar{d} d) / \sqrt{2}, \bar{s} s)$.
- Technically more complicated than $\bar{Q} \bar{Q} q q$, because there are two channels:
- Quarkonium channel, $\bar{Q} Q$ (with $Q \equiv b$).
- Heavy-light meson-meson channel, $\bar{M} M$ (with $M=\bar{Q} q$), "string breaking".

Quarkonium, $I=0$:

- Lattice computation of potentials for both channels ($\bar{Q} Q$ and $\bar{M} M$) needed, additionally also a mixing potential:

- Pioneering work:
[G. S. Bali et al. [SESAM Collaboration], Phys. Rev. D 71, 114513 (2005) [hep-lat/0505012]] Rather heavy u / d quark masses $\left(m_{\pi} \approx 650 \mathrm{MeV}\right)$, only 2 flavors, not $2+1$.
- More recent work:
[J. Bulava, B. Hörz, F. Knechtli, V. Koch, G. Moir, C. Morningstar and M. Peardon, Phys. Lett. B 793, 493-498 (2019) [arXiv:1902.04006]]
Unfortunately, mixing potential not computed.
- Several assumptions needed to adapt the "Bali results" to $2+1$ flavors and physical quark masses.
\rightarrow Potential for a coupled channel Schrödiger equation (see next slide):

$$
V(\mathbf{r})=\left(\begin{array}{ccc}
V_{\bar{Q} Q}(r) & V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & (1 / \sqrt{2}) V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) \\
V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & V_{\bar{M} M}(r) & 0 \\
(1 / \sqrt{2}) V_{\text {mix }}(r)\left(1 \otimes \mathbf{e}_{r}\right) & 0 & V_{\bar{M} M}(r)
\end{array}\right) .
$$

Quarkonium, $I=0$: SE

- Schrödinger equation non-trivial:
- 3 coupled channels, $\bar{Q} Q, M M$ (3 components), $M_{s} M_{s}$ (3 components).
- Static potentials used as input have other symmetries than quarkonium.

$$
\left(-\frac{1}{2} \mu^{-1}\left(\partial_{r}^{2}+\frac{2}{r} \partial_{r}-\frac{\mathbf{L}^{2}}{r^{2}}\right)+V(\mathbf{r})+\left(\begin{array}{ccc}
E_{\text {threshold }} & 0 & 0 \\
0 & 2 m_{M} & 0 \\
0 & 0 & 2 m_{M_{s}}
\end{array}\right)-E\right) \psi(\mathbf{r})=0 .
$$

- Project to definite total angular momentum \tilde{J} (excluding the heavy quark spins),
* 7 coupled PDEs $\rightarrow 3$ coupled ODEs for $\tilde{J}=0$,
* 7 coupled PDEs $\rightarrow 5$ coupled ODEs for $\tilde{J} \geq 1$
- Add scattering boundary conditions.
- Determine scattering amplitudes and T matrices from the Schrödinger equation, find poles of $\mathrm{T}_{\tilde{J}}$ in the complex energy plane to identify bound states and resonances.
- The components of the resulting wave functions provide the compositions of the states, i.e. the quarkonium and meson-meson ($=$ tetraquark) percentages $\% \bar{Q} Q$ and $\% \bar{M} M$.
[P. Bicudo, M. Cardoso, N. Cardoso, M.W., Phys. Rev. D 101, 034503 (2020) [arXiv:1910.04827]]
[P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 103, 074507 (2021) [arXiv:2008.05605]]
[P. Bicudo, N. Cardoso, L. Müller, M.W., Phys. Rev. D 107, 094515 (2023) [arXiv:2205.11475]]
theory
experiment

$\tilde{J}^{P C}$	n	$m[\mathrm{GeV}]$	$\Gamma[\mathrm{MeV}]$	name	$m[\mathrm{GeV}]$	$\Gamma[\mathrm{MeV}]$	$I^{G}\left(J^{P C}\right)$
0^{++}	1	9.618_{-15}^{+10}	-	$\eta_{b}(1 S)$	9.399(2)	10(5)	$0^{+}\left(0^{+-}\right)$
				$\Upsilon_{b}(1 S)$	$9.460(0)$	≈ 0	$0^{-}\left(1^{--}\right)$
	2	10.114_{-11}^{+7}	-	$\eta_{b}(2 S)_{\text {belle }}$	$9.999(6)$	-	$0^{+}\left(0^{+-}\right)$
				$\Upsilon(2 S)$	10.023(0)	≈ 0	$0^{-}\left(1^{--}\right)$
	3	10.442_{-9}^{+7}	-	$\Upsilon(3 S)$	10.355(1)	≈ 0	$0^{-}\left(1^{--}\right)$
	4	$10.629_{-1}^{+1^{-}}$	$49 . \overline{3}+\overline{3.9}$	$\bar{\Upsilon}(4 \bar{S})$	$10.579(1)$	$21(3)$	$0^{-}\left(1^{--}\right)$
	5	10.773_{-2}^{+1}	$15.9_{-4.4}^{+2.9}$	$\Upsilon(10750)_{\text {BelLe }}$ II	10.753(7)	36(22)	$0^{-}\left(1^{--}\right)$
	$\overline{6}$	10.9388_{-2}^{+2}	$61 . \overline{8} 8$ - $7 . \overline{6}$	$\bigcirc(10860)$	10.890 (3)	$51(7)$	$0^{-}\left(1^{-}\right)$
	7	11.041_{-7}^{+5}	$45.5{ }_{-8.2}^{+13.5}$	$\Upsilon(11020)$	10.993(1)	49(15)	$0^{-}\left(1^{--}\right)$
1^{--}	1	9.930_{-52}^{+43}	-	$\chi_{b 0}(1 P)$	9.859(1)	-	$0^{+}\left(0^{++}\right)$
				$h_{b}(1 P)$	9.890 (1)	-	$?^{?}\left(1^{+-}\right)$
				$\chi_{b 1}(1 P)$	9.893(1)	-	$0^{+}\left(1^{++}\right)$
				$\chi_{b 2}(1 P)$	9.912(1)	-	$0^{+}\left(2^{++}\right)$
	2	10.315_{-40}^{+29}	-	$\chi_{b 0}(2 P)$	10.233(1)	-	$0^{+}\left(0^{++}\right)$
				$\chi_{b 1}(2 P)$	10.255(1)	-	$0^{+}\left(1^{++}\right)$
				$h_{b}(2 P)_{\text {belle }}$	10.260(2)	-	$?^{?}\left(1^{+-}\right)$
				$\chi_{b 2}(2 P)$	10.267(1)	-	$0^{+}\left(2^{++}\right)$
		$10.594_{-28}^{+32}=$	$=\frac{-}{\overline{\bar{z}}=}=\frac{\overline{\bar{\prime}}}{67.5_{-4.9}^{+\overline{1}}}=$	$===\stackrel{\chi_{b 1}(3 P)}{=}====$	$10.512(2)$	$\frac{-}{T}===$	$\begin{aligned} & 0^{+}\left(0^{++}\right) \\ & ====== \end{aligned}$
$=====$		$\begin{aligned} & ==x= \\ & 10.865_{-21}^{+37} \end{aligned}$					
		10.932_{-54}^{+33}					
	6	11.144_{-75}^{+52}	$25.0{ }_{-1.3}^{+1.1}$				
2^{++}	1	10.181_{-46}^{+35}	-	$\Upsilon(1 D)$	10.164(2)	-	$0^{-}\left(2^{--}\right)$
	2	10.486_{-36}^{+32}	--				
	$\underline{3}$	10.799 ${ }^{2}$	$13.00_{-2.0}^{+2.1}$				
	4	11.038_{-44}^{+30}	$40.8{ }_{-2.8}^{+2.0}$				
3--	1	10.390_{-39}^{+28}	- ...				
	2	$\square^{10.639} 9^{+51}$	$2 . \overline{4}+{ }_{-0.9}^{+1.5}$				
	$\overline{3}$	10.944 $\overline{-29}+$	- $46 . \overline{8} \overline{8}_{+6.2}^{-4.6}$				
	4	11.174_{-69}^{+51}	$1.9_{-1.4}^{+2.1}$				

Bottomonium, $I=0$: results (2)

- Quarkonium component,
$\bar{B} B$ component,
$\bar{B}_{s} B_{s}$ component.

Quarkonium, $I=0: 1 / m_{Q}$ corrections (1)

- Potentials of static quarks are independent of the heavy spins.
\rightarrow Systematic errors are possibly large,

$$
\mathcal{O}\left(m_{B^{*}}-m_{B}\right)=\mathcal{O}(45 \mathrm{MeV})(b \text { quarks }), \mathcal{O}\left(m_{D^{*}}-m_{D}\right)=\mathcal{O}(140 \mathrm{MeV})(c \text { quarks }) .
$$

- Such spin effects and further corrections due to the finite heavy quark mass can be expressed order by order in $1 / m_{Q}$ in terms of Wilson loops with field strength insertions.
[E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981)]
[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Phys. Rev. D 63, 014023 (2001) [arXiv:hep-ph/0002250]]
- Existing crude computations up to order $1 / m_{Q}^{2}$.
[Y. Koma and M. Koma, Nucl. Phys. B 769, 79-107 (2007) [arXiv:hep-lat/0609078]]
- Compute these $1 / m_{Q}$ and $1 / m_{Q}^{2}$ corrections more precisely using gradient flow. [M. Eichberg, M.W., PoS LATTICE2023, 068 (2024) [arXiv:2311.06560 [hep-lat]]
[M. Eichberg, invited talk at QWG 2024]

Quarkonium, $I=0: 1 / m_{Q}$ corrections (2)

- $\bar{Q} Q$ potential:

$$
V(r)=V^{(0)}(r)+\frac{1}{m_{Q}} V^{(1)}(r)+\frac{1}{m_{Q}^{2}}\left(V_{\mathrm{SD}}^{(2)}(r)+V_{\mathrm{SI}}^{(2)}(r)\right)+\mathcal{O}\left(1 / m_{Q}^{3}\right)
$$

- $V^{(0)}(r)$: the ordinary static potential.
- Can be extracted from Wilson loops.
- Technically rather simple.
[M. Eichberg, invited talk at QWG 2024]

Quarkonium, $I=0: 1 / m_{Q}$ corrections (3)

- $\bar{Q} Q$ potential:
$V(r)=V^{(0)}(r)+\frac{1}{m_{Q}} V^{(1)}(r)+\frac{1}{m_{Q}^{2}}\left(V_{\mathrm{SD}}^{(2)}(r)+V_{\mathrm{SI}}^{(2)}(r)\right)+\mathcal{O}\left(1 / m_{Q}^{3}\right)$.
- $V^{(1)}(r), V_{\mathrm{SD}}^{(2)}(r), V_{\mathrm{SI}}^{(2)}(r)$: corrections to the ordinary static potential, $\propto 1 / m_{Q}$ and $\propto 1 / m_{Q}^{2}$:
- Can be extracted from Wilson loops with chromo field insertions.
\rightarrow Loops with much larger temporal extent needed.
- Chromo field insertions exhibit rather large discretization errors:
\rightarrow "Renormalization" via gradient flow (a controlled smoothing of the gluon field).
\rightarrow Not only continuum limit, but also zero flow time limit needed.
- Matching coefficients have to be computed.
- Technically very difficult.
[M. Eichberg, invited talk at QWG 2024]

Heavy hybrid mesons: potentials (1)

- Now heavy hybrid mesons, i.e. $\bar{Q} Q+$ gluons.
- (Hybrid) static potentials can be characterized by the following quantum numbers:
- Absolute total angular momentum with respect to the $\bar{Q} Q$ separation axis (z axis): $\Lambda=0,1,2, \ldots \equiv \Sigma, \Pi, \Delta, \ldots$
- Parity combined with charge conjugation: $\eta=+,-=g, u$.
- Relection along an axis perpendicular to the $\bar{Q} Q$ separation axis (x axis): $\epsilon=+,-$.
- The ordinary static potential has quantum numbers $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}$.
- Particularly interesting: the two lowest hybrid static potentials with $\Lambda_{\eta}^{\epsilon}=\Pi_{u}, \Sigma_{u}^{-}$.
- References:
[K. J. Juge, J. Kuti, C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131]
[C. Michael, Nucl. Phys. A 655, 12 (1999) [hep-ph/9810415]
[G. S. Bali et al. [SESAM and T χ L Collaborations], Phys. Rev. D 62, 054503 (2000) [hep-lat/0003012]
[K. J. Juge, J. Kuti, C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003) [hep-lat/0207004]
[C. Michael, Int. Rev. Nucl. Phys. 9, 103 (2004) [hep-lat/0302001]
[G. S. Bali, A. Pineda, Phys. Rev. D 69, 094001 (2004) [hep-ph/0310130]
[P. Bicudo, N. Cardoso, M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815 [hep-lat]]]
[S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]

Heavy hybrid mesons: potentials (2)

- [C. Schlosser, M.W., Phys. Rev. D 105, 054503 (2022) [arXiv:2111.00741]]
- Computation of $1 / m_{Q}$ and $1 / m_{Q}^{2}$ corrections using gradient flow in progress.
[C. Schlosser, M.W., unpublished ongoing work]

Heavy hybrid mesons: SE

- Solve Schrödinger equations for the relative coordinate of $\bar{Q} Q$ using hybrid static potentials,

$$
\left(-\frac{1}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{L(L+1)-2 \Lambda^{2}+J_{\Lambda_{\eta}^{\epsilon}}\left(J_{\Lambda_{\eta}^{\epsilon}}+1\right)}{2 \mu r^{2}}+V_{\Lambda_{\eta}^{\epsilon}}(r)\right) u_{\Lambda_{\eta}^{\epsilon} ; L, n}(r)=E_{\Lambda_{\eta}^{\epsilon} ; L, n} u_{\Lambda_{\eta}^{\epsilon} ; L, n}(r)
$$

Energy eigenvalues $E_{\Lambda_{\eta}^{\epsilon} ; L, n}$ correspond to masses of $\bar{Q} Q$ hybrid mesons.
[E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]
[M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299]]
[R. Oncala, J. Soto, Phys. Rev. D 96, 014004 (2017) [arXiv:1702.03900]]

- Recent work to include heavy spin and $1 / m_{Q}$ corrections.
[N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D 97, 016016 (2018) [arXiv:1707.09647]]
[N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D 99, 014017 (2019) [arXiv:1805.07713]]
[C. Schlosser, M.W., unpublished ongoing work]

Hybrid flux tubes (1)

- We are interested in

$$
\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x})=\left\langle 0_{\Lambda_{\eta}^{\epsilon}}(r)\right| F_{\mu \nu}^{2}(\mathbf{x})\left|0_{\Lambda_{\eta}^{\epsilon}}(r)\right\rangle-\langle\Omega| F_{\mu \nu}^{2}|\Omega\rangle
$$

- $F_{\mu \nu}^{2}(\mathbf{x}), F_{\mu \nu}^{2}$: squared chromoelectric/chromomagnetic field strength.
$-\left|0_{\Lambda_{\eta}^{\epsilon}}(r)\right\rangle$: "hybrid static potential (ground) state" (r denotes the $\bar{Q} Q$ separation).
$-|\Omega\rangle$: vacuum state.
- The sum over the six independent $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x})$ is proportional to the chromoelectric and -magnetic energy density of hybrid flux tubes.

Hybrid flux tubes (2)

- $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x}), \mathrm{SU}(2)$, mediator plane $(x-y$ plane with Q, \bar{Q} at $(0,0, \pm r / 2)), r \approx 0.8 \mathrm{fm}$. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D 100, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

$$
\begin{array}{c|c|c}
\Delta E_{x}^{2} & \Delta E_{y}^{2} & \Delta E_{z}^{2} \\
\hline \Delta B_{x}^{2} & \Delta B_{y}^{2} & \Delta B_{z}^{2}
\end{array}
$$

Marc Wagner, "Open flavor four-quark states from the lattice", June 25, 2024

Hybrid flux tubes ($r \approx 0.48$ fm)

- $\Delta F_{\mu \nu, \Lambda \epsilon}^{2}(r ; \mathbf{x}), \mathrm{SU}(2)$, separation plane $(x-z$ plane with Q, \bar{Q} at $(0,0, \pm r / 2)), r \approx 0.8 \mathrm{fm}$. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D 100, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

Hybrid flux tubes ($r \approx 0.80$ fm)

- $\Delta F_{\mu \nu, \Lambda_{\eta}^{\epsilon}}^{2}(r ; \mathbf{x}), \mathrm{SU}(2)$, separation plane $(x-z$ plane with Q, \bar{Q} at $(0,0, \pm r / 2)), r \approx 0.8 \mathrm{fm}$. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D 100, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon}=\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]]

$$
\begin{array}{c|c|c}
\Delta E_{x}^{2} & \Delta E_{y}^{2} & \Delta E_{z}^{2} \\
\hline \Delta B_{x}^{2} & \Delta B_{y}^{2} & \Delta B_{z}^{2}
\end{array}
$$

Summary

- Investigations of heavy exotic mesons within the Born-Oppenheimer approximation using static potentials computed with lattice QCD:
- mainly open flavor four-quark states, tetraquarks $\bar{Q} \bar{Q} q q, \quad$ (heavy quarks $Q \in\{b, c\}$, light quarks $q \in\{u, d, s\}$)
- but also tetraquarks $\bar{Q} Q \bar{q} q$ and hybrid mesons $\bar{Q} Q+$ gluons (very brief).
- Why b quarks? Why not only c quarks, which are more relevant in the context of PANDA?
- b quarks are technically simpler, e.g. Heavy Quark Effective Theory or Non Relativistic QCD applicable/more accurate.
- Systems with $Q=b$ are physically simpler, e.g. certain tetraquarks are QCD-stable.
- Long-term goal: accurate predictions for exotic mesons with c quarks.
- Important intermediate steps: computations with b quarks (or even static quarks).

