Scalar mesons and tetraquarks by means of lattice QCD

ETMC Meeting - Frankfurt am Main, Germany
Marc Wagner
Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de http://th.physik.uni-frankfurt.de/~mwagner/
in collaboration with Constantia Alexandrou, Jan Daldrop, Mattia Dalla Brida, Mario Gravina, Luigi Scorzato, Carsten Urbach, Christian Wiese

October 25, 2012

Emmy NoetherProgramm DF

Introduction, motivation (1)

- The nonet of light scalar mesons $\left(J^{P}=0^{+}\right)$
$-\sigma \equiv f_{0}(500), I=0,400 \ldots 550 \mathrm{MeV}$,
$-\kappa \equiv K_{0}^{*}(800), I=1 / 2,682 \pm 29 \mathrm{MeV}$,
$-a_{0}(980), f_{0}(980), I=1,980 \pm 20 \mathrm{MeV}, 990 \pm 20 \mathrm{MeV}$
is poorly understood:
- All nine states are unexpectedly light (should rather be close to the corresponding $J^{P}=1^{+}, 2^{+}$states around $1200 \ldots 1500 \mathrm{MeV}$).
- The ordering of states is inverted compared to expectation:
* E.g. in a $q \bar{q}$ picture the $I=1$ states $a_{0}(980), f_{0}(980)$ must necessarily be formed by two u / d quarks, while the $I=1 / 2 \kappa$ states are made from an s and a u / d quark; since $m_{s}>m_{u / d}$ one would expect $m(\kappa)>m\left(a_{0}(980)\right), m\left(f_{0}(980)\right)$.

Introduction, motivation (2)

* In a tetraquark picture the quark content could be the following: $\kappa \equiv \bar{s} l \bar{l} l$, while $a_{0}(980), f_{0}(980) \equiv \bar{s} l \bar{l} s$; this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g. $a_{0}(980)$ readily decays to $K+\bar{K}$, which indicates that besides the two light quarks required by $I=1$ also an $s \bar{s}$ pair is present.
\rightarrow Study these states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.
- Examples of heavy mesons, which are tetraquark candidates:
$-D_{s 0}^{*}(2317)^{ \pm}\left(I\left(J^{P}\right)=0\left(0^{+}\right)\right), D_{s 1}(2460)^{ \pm}\left(I\left(J^{P}\right)=0\left(1^{+}\right)\right)$,
- charmonium states $X(3872), Z(4430)^{ \pm}, Z(4050)^{ \pm}, Z(4250)^{ \pm}, \ldots$

Tetraquark creation operators

- At the moment we study
$-a_{0}(980)$, mass $980 \pm 20 \mathrm{MeV}$, quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$;
$-\kappa \equiv K_{0}^{*}(800)$, mass $682 \pm 29 \mathrm{MeV}$, quantum numbers $I\left(J^{P}\right)=1 / 2\left(0^{+}\right)$.
- Tetraquark operators for $a_{0}(980)$ (quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$):
- Needs two light quarks due to $I=1$, e.g. $u \bar{d}$.
- $a_{0}(980)$ decays to $K \bar{K} \ldots$ suggests an $s \bar{s}$ component.
- Molecule type (models a bound $K \bar{K}$ state):

$$
\mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}=\int d^{3} x\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right)
$$

- Diquark type (models a bound diquark-antidiquark):

$$
\mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\int d^{3} x\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right)
$$

Lattice setup (1)

- Gauge link configurations generated by ETMC.
- $2+1+1$ dynamical quark flavors, i.e. u, d, s and c sea quarks.
- Lattice spacing $a=0.086 \mathrm{fm}(\beta=1.90$, computations at finer lattice spacings planned).
- Various lattice volumes:
- Small volume $L^{3} \times T=20^{3} \times 48$ lattice sites, spatial extension 1.73 fm \rightarrow rather easy to identify momentum excitations.
(Most of the numerical results shown in the following were obtained with this volume.)
- ...
- Large volume $L^{3} \times T=32^{3} \times 64$ lattice sites, spatial extension 2.75 fm \rightarrow less finite size effects.
- Different volumes needed to study resonances in a rigorous way. (Not done yet ... will be one of our next steps.)

Lattice setup (2)

- Various light u / d quark masses, corresponding pion masses $m_{\text {PS }} \approx 280 \ldots 460 \mathrm{MeV}$.
- Mixed action approach for s and c quark, to avoid mixing of s and c quarks, e.g.
$S_{\text {valence, } s}\left[\chi^{(s)}, \bar{\chi}^{(s)}, U\right]=a^{4} \sum_{x} \bar{\chi}^{(s)}(x)\left(D_{\mathrm{W}}\left(m_{0}\right)+i \mu \gamma_{5} \tau_{3}\right) \chi^{(s)}(x)$
with $\chi^{(s)}=\left(s+, s^{-}\right)$.
- (Singly) disconnected diagrams at the moment ignored.

Numerical results $a_{0}(980)(1)$

- Effective mass, molecule type operator:

$$
\mathcal{O}_{a_{0}(980)}^{K \bar{K} \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right)
$$

- The effective mass plateaux indicates a state, which is roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ is a tetraquark state of $K \bar{K}$ molecule type \ldots ?

Numerical results $a_{0}(980)$ (2)

- Effective mass, diquark type operator:

$$
\mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right)
$$

- The effective mass plateaux indicates a state, which is roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ is a tetraquark state of diquark type ...? Or a mixture of $K \bar{K}$ molecule and tetraquark?

Numerical results $a_{0}(980)$ (3)

- Study both operators at the same time, extract the two lowest energy eigenstates by diagonalizing a 2×2 correlation matrix ("generalized eigenvalue problem"):

$$
\begin{aligned}
& \mathcal{O}_{a_{0}(980)}^{K K \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\bar{d}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right) \\
& \mathcal{O}_{a_{0}(980)}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c}, T\right. \\
& (\mathbf{x}))\left(\epsilon^{a d e} u^{d, T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x})\right) .
\end{aligned}
$$

- Now two orthogonal states roughly consistent with the experimentally measured $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV} \ldots$?

Two-particle creation operators (1)

- Explanation: there are two-particle states, which have the same quantum numbers as $a_{0}(980), I\left(J^{P C}\right)=1\left(0^{++}\right)$,
$-K+\bar{K}(m(K) \approx 500 \mathrm{MeV})$,
$-\eta_{s}+\pi\left(m\left(\eta_{s} \equiv \bar{s} \gamma_{5} s\right) \approx 700 \mathrm{MeV}, m(\pi) \approx 300 \mathrm{MeV}\right.$ in our lattice setup),
which are both around the expected $a_{0}(980)$ mass $980 \pm 20 \mathrm{MeV}$.
- What we have seen in the previous plots might actually be two-particle states (our operators are of tetraquark type, but they nevertheless generate overlap [possibly small, but certainly not vanishing] to two-particle states).
- To determine, whether there is a bound $a_{0}(980)$ tetraquark state, we need to resolve the above listed two-particle states $K+\bar{K}$ and $\eta_{s}+\pi$ and check, whether there is an additional 3rd state in the mass region around $980 \pm 20 \mathrm{MeV}$; to this end we need operators of two-particle type.

Two-particle creation operators (2)

- Two-particle operators with quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$:
- Two-particle $K+\bar{K}$ type:

$$
\mathcal{O}_{a_{0}(980)}^{K+\bar{K} \text { two-particle }}=\left(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right)\left(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_{5} s(\mathbf{y})\right)
$$

- Two-particle $\eta_{s}+\pi$ type:

$$
\mathcal{O}_{a_{0}(980)}^{\eta_{s}+\pi \text { two-particle }}=\left(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_{5} s(\mathbf{x})\right)\left(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_{5} u(\mathbf{y})\right) .
$$

Numerical results $a_{0}(980)$ (4)

- Study all four operators ($K \bar{K}$ molecule, diquark, $K+\bar{K}$ two-particle, $\eta_{s}+\pi$ two-particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a 4×4 correlation matrix (left plot).
- Still only two low-lying states around $980 \pm 20 \mathrm{MeV}$, the 2nd and 3rd excitation are $\approx 750 \mathrm{MeV}$ heavier.
- The signal of the low-lying states is of much better quality than before (when we only considered tetraquark operators)
\rightarrow suggests that the observed low-lying states have much better overlap to the two-particle operators and are most likely of two-particle type.

Numerical results $a_{0}(980)$ (5)

- When determining low-lying eigenstates from a correlation matrix, one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
\rightarrow The ground state is a $\eta_{s}+\pi$ state ($\gtrsim 95 \%$ two-particle $\eta_{s}+\pi$ content).
\rightarrow The first excitation is a $K+\bar{K}$ state ($\gtrsim 95 \%$ two-particle $K+\bar{K}$ content).

Numerical results $a_{0}(980)$ (6)

- What about the 2 nd and 3 rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two-particle states with one relative quantum of momentum (one particle has momentum $+p_{\min }=+2 \pi / L$ the other $-p_{\min }$) also have quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$; their masses can easily be estimated:
$-p_{\text {min }}=2 \pi / L \approx 715 \mathrm{MeV}$ (the results presented correspond to the small lattice with spatial extension $L=1.73 \mathrm{fm}$);

$$
\begin{aligned}
& -m\left(K\left(+p_{\min }\right)+\bar{K}\left(-p_{\min }\right)\right) \approx 2 \sqrt{m(K)^{2}+p_{\min }^{2}} \approx 1750 \mathrm{MeV} ; \\
& -m\left(\eta\left(+p_{\min }\right)+\pi\left(-p_{\min }\right)\right) \approx \sqrt{m(\eta)^{2}+p_{\min }^{2}}+\sqrt{m(\pi)^{2}+p_{\min }^{2}} \approx \\
& \quad \approx 1780 \mathrm{MeV} ;
\end{aligned}
$$

these estimated mass values are consistent with the observed mass values of the 2 nd and 3rd excitation
\rightarrow suggests to interpret these states as two-particle states.

Numerical results $a_{0}(980)(7)$

- Summary regarding the presented " $a_{0}(980)$ results":
- In the $a_{0}(980)$ sector (quantum numbers $I\left(J^{P C}\right)=1\left(0^{++}\right)$) we do not observe any low-lying (mass $\lesssim 1750 \mathrm{MeV}$) tetraquark state, even though we employed operators of tetraquark structure ($K \bar{K}$ molecule, diquark).
- The experimentally measured mass for $a_{0}(980)$ is $980 \pm 20 \mathrm{MeV}$.
- Conclusion: $a_{0}(980)$ does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state (unlikely, lattice results indicate the opposite) or a rather unstable resonance.
- Similar results for the range of light quark masses investigated ($m_{\mathrm{PS}} \approx 280 \ldots 460 \mathrm{MeV}$).

Numerical results κ

- Tetraquark operators for κ (quantum numbers $I\left(J^{P}\right)=1 / 2\left(0^{+}\right)$):
- Molecule type (models a bound $K \pi$ state):

$$
\mathcal{O}_{\kappa}^{K \pi \text { molecule }}=\sum_{\mathbf{x}}\left(\bar{s}(\mathbf{x}) \gamma_{5} q(\mathbf{x})\right)\left(\bar{q}(\mathbf{x}) \gamma_{5} u(\mathbf{x})\right) \quad, \quad q \bar{q}=u \bar{u}+d \bar{d}
$$

- Diquark type (models a bound diquark-antidiquark):

$$
\mathcal{O}_{\kappa}^{\text {diquark }}=\sum_{\mathbf{x}}\left(\epsilon^{a b c} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{q}^{c, T}(\mathbf{x})\right)\left(\epsilon^{a d e} q^{d, T}(\mathbf{x}) C \gamma_{5} u^{e}(\mathbf{x})\right)
$$

- An analysis yields only the expected low-lying two-particle $K+\pi$ energy levels.
- Conclusions: κ does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state (unlikely, lattice results indicate the opposite) or a rather unstable resonance.

Conflict with existing lattice results

- In a similar recent lattice study of $\sigma \equiv f_{0}(500)$ and $\kappa \equiv K_{0}^{*}(800)$ bound tetraquark states have been observed in both sectors.
[S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. -F. Liu, N. Mathur and D. Mohler, Phys. Rev. D 82, 094507 (2010) [arXiv:1005.0948 [hep-lat]]]
- In particular for κ this conflict has to be resolved.

$a_{0}(980)$ and κ as resonances

- A lattice study of $a_{0}(980)$ and κ as resonances requires rather precise computations of the masses of the two-particle states $K+\bar{K}, \eta+\pi$ and $K+\pi$ for various spatial volumes.
- Technically very challenging.
- No results yet.

Sources of systematic error, outlook (1)

- The computations presented are technically rather challenging; there are several possible sources of systematic error, which have not yet been studied, but which need to be addressed in the future:
- Inclusion of (singly) disconnected disconnected diagrams.
- Include also $q \bar{q}$ creation operators (implies singly disconnected diagrams), e.g. for $a_{0}(980)$

$$
\mathcal{O}_{a_{0}(980)}^{q \bar{q}}=\sum_{\mathbf{x}} \bar{d}(\mathbf{x}) u(\mathbf{x}) .
$$

Singly disconnected diagrams

- Missing diagrams for e.g. $a_{0}(980), \kappa, D_{s 0}^{*}(2317)^{ \pm}, \ldots$
- Blue and red lines represent quark propagators:
- Blue: point-to-all propagators applicable.
- Red: due to \sum_{x}, all-to-all propagators needed.

- All-to-all propagators can only be estimated stochastically; using several stochastic all-to-all propagators results in a poor signal-to-noise ratio. \rightarrow combine three point-to-all (blue) and one stochastic all-to-all (red) propagator.

Sources of systematic error, outlook (2)

- Continuum limit (at the moment only a single value of the lattice spacing, $a=0.086 \mathrm{fm}$, has been considered).
- Finite volume studies (extrapolate the here presented results to infinite spatial volume, determine resonance properties).
- The techniques and codes developed can be used with only minor modifications to study other tetraquark candidates, e.g.
$-\sigma \equiv f_{0}(500), f_{0}(980)$,
$-D_{s 0}^{*}(2317)^{ \pm}, D_{s 1}(2460)^{ \pm}$,
- charmonium states $X(3872), Z(4430)^{ \pm}, Z(4050)^{ \pm}, Z(4250)^{ \pm}, \ldots$

