Investigation of heavy exotic mesons with lattice QCD

"Particle Physics Seminar" – Universität Bonn

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@itp.uni-frankfurt.de

http://itp.uni-frankfurt.de/~mwagner/

April 24, 2025

Outline

- Part 1: Basics of
 - **QCD** (= quantum chromodynamics),
 - the computation of hadron masses in QCD,
 - lattice QCD (= numerical QCD; rather technical, not ideally suited for this talk, very short).
- Part 2:

Lattice QCD investigation of **heavy exotic mesons** (in the Born-Oppenheimer approximation).

- (a) **Tetraquarks**, composed of two heavy quarks \overline{bb} and two light quarks qq.
- (b) Heavy hybrid mesons, $\bar{b}b$ + gluons.

Part 1: Basics of QCD (quantum chromodynamics), the computation of hadron masses, lattice QCD

"Standard Model of particle physics"

- Four fundamental forces mediated by gauge bosons.
- Matter: Six types of quarks (= quark flavors), six types of leptons.
- **QCD**: The quantum field theory describing **quarks**, **gluons** and their **interactions** ... and consequently the structure, mass and decays of systems composed of **quarks** and **gluons** (so-called hadrons) ... e.g. of the proton, the neutron, but also of heavy exotic mesons.

Quarks and gluons

- Quarks and antiquarks (spin 1/2):
 - 6 flavors ... up, down, strange, charm, bottom, top (masses are quite different).
 - 3 colors ... red, green, blue ("three types of charges", similar to the electric charge).

el. charge	+2/3 e	-1/3 e
	$m_{up} = 1.5 \dots 3.3 MeV/c^2$	$m_{down} = 3.5 \dots 6.0 MeV/c^2$
	$m_{charm} = 1160 \dots 1340 MeV/c^2$	$m_{strange} = 70 \dots 130 MeV/c^2$
	$m_{top} = 169100 \dots 173300 \mathrm{MeV}/c^2$	$m_{\rm bottom} = 4130 \dots 4370 \mathrm{MeV}/c^2$

(e: elementary charge; $1 \text{ MeV}/c^2 = 1.79 \times 10^{-30} \text{ kg}$)

- Gluons (spin 1):
 - Massless particles, mediating the strong interaction between quarks.
 - Carry color charge (in contrast e.g. to photons, which do not carry electrical charge); this is the main reason for certain unexpected phenomena, in particular confinement.

Confinement, hadrons

- One cannot observe/prepare isolated quarks ... they "always" appear in groups ... typically pairs or triplets, so-called **hadrons** (→ **confinement**).
- Hadrons:
 - **Mesons**: Integer spin, typically quark-antiquark pairs. Examples: $\pi \equiv \bar{u}d$, $B \equiv \bar{b}d$, ... Exotic mesons in part 2 of this talk: $\bar{b}\bar{b}ud$ tetraquarks, $\bar{b}b$ hybrid mesons.
 - **Baryons**: Half-integer spin, typically triplets of quarks or antiquarks. Examples: proton $\equiv uud$, neutron $\equiv udd$, ...
 - Several hundred different types of mesons and baryons observed in experiments ("particle zoo"); they differ in
 - * quark flavors (six possbilities for each quark/antiquark, u, d, s, c, b, t),
 - * quantum numbers similar to that of the hydrogen atom (principal quantum number, total angular momentum J, parity P, ...).

Definition of QCD

• The definition of QCD is quite simple:

$$S = \int d^4x \left(\sum_{f \in \{u,d,s,c,t,b\}} \overline{\psi}^{(f)} \left(\gamma_\mu \left(\partial_\mu - iA_\mu \right) + m^{(f)} \right) \psi^{(f)} + \frac{1}{2g^2} \operatorname{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) \right)$$

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu].$$

- QCD is a quantum field theory, particles are described by fields:
 - $\psi^{(f)}(\mathbf{r},t)$, $\bar{\psi}^{(f)}(\mathbf{r},t)$: quark fields.
 - $-A_{\mu}(\mathbf{r},t)$: gluon field.
 - A field excitation (an oscillation or a non-vanishing value of the field) at spatial point \mathbf{r} and time t represents a particle at (\mathbf{r}, t) .
- No analytic solutions for e.g. meson or baryon masses, because
 - field equations are non-linear,
 - there is no small parameter (coupling constant), i.e. perturbation theory is typically not applicable.
- Numerical methods are mandatory \rightarrow lattice QCD.

Computation of hadron masses (1)

- Lattice QCD computation of a hadron mass in three steps:
 - (1) Define a suitable hadron creation operator \mathcal{O} .
 - (2) Compute the temporal correlation function C(t) of the hadron creation operator \mathcal{O} numerically with lattice QCD.
 - (3) Extract the hadron mass from the exponential decay of the correlation function C(t).

Computation of hadron masses (2)

Step (1): Define a suitable hadron creation operator \mathcal{O}

- A hadron creation operator is composed of quark field operators $\psi^{(f)}(\mathbf{r}) \equiv u(\mathbf{r}), d(\mathbf{r}), s(\mathbf{r}), c(\mathbf{r}), b(\mathbf{r}), t(\mathbf{r})$ and gluon field operators $A_{\mu}(\mathbf{r})$.
- $u(\mathbf{r})$ creates a u quark at \mathbf{r} , $d(\mathbf{r})$ creates a d quark at \mathbf{r} , etc.
- A suitable hadron creation operator *O* creates a state, which has the same quantum numbers as the hadron of interest and a similar quark and gluon structure:
 - Details are irrelevant.
 - The resulting hadron mass is independent of these details.
 - Example: *B* meson.
 - * Essentially a quark antiquark pair $\bar{b}d$, has total angular momentum J = 0, parity P = -.
 - * A suitable creation operator for a B meson at rest:

$$\mathcal{O} \equiv \int d^3 r \, \bar{b}(\mathbf{r}) \gamma_5 d(\mathbf{r})$$

(γ_5 leads to $J^P = 0^-$, $\int d^3 r$ to momentum $\mathbf{p} = 0$).

Computation of hadron masses (3)

$\frac{\text{Step (2): Compute the temporal correlation function } C(t) \text{ of the hadron creation}}{\text{operator } \mathcal{O} \text{ numerically with lattice } \text{QCD}}$

- Correlation function: $C(t) \equiv \langle \Omega | \mathcal{O}^{\dagger}(t) \mathcal{O}(0) | \Omega \rangle$ ($| \Omega \rangle$ = vacuum).
- Lattice QCD is very technical:
 - Advanced algorithms have to be implemented ...
 - $\ \ldots$ the corresponding codes run on high performance computers for several weeks or even months \ldots
 - ... more on the following two slides.

Step (3): Extract the hadron mass from the exponential decay of the correlation function C(t)

- function C(t)
- Elementary quantum mechanics leads to

$$C(t) = \langle \Omega | \mathcal{O}^{\dagger}(t) \mathcal{O}(0) | \Omega \rangle \stackrel{t \to \infty}{\propto} e^{-m_B t}.$$

• A fit of $Ae^{-m_B t}$ to the lattice QCD results for C(t) provides the hadron mass of interest m_B .

Lattice QCD (1)

- **Goal**: Numerical computation of QCD observables, e.g. of a temporal correlation function, which allows to extract a hadron mass.
- Starting point: Path integral formulation of quantum field theory,

$$C(t) = \langle \Omega | \mathcal{O}^{\dagger}(t) \mathcal{O}(0) | \Omega \rangle = \frac{1}{Z} \underbrace{\int \left(\prod_{f} D \psi^{(f)} D \bar{\psi}^{(f)} \right) DA_{\mu}}_{\text{path integral / functional integral}} \mathcal{O}^{\dagger}(t) \mathcal{O}(0) e^{-S}$$

- $-~\int (\prod_f D\psi^{(f)}\, D\bar\psi^{(f)}) DA_\mu$ is a so-called path integral ...
- ... an integral over all mathematically possible quark and gluon field configurations $\psi^{(f)}({\bf r},t)$ and $A_\mu({\bf r},t)$...
- ... i.e. an integral over a function space ...
- ... at each of the infinitely many spacetime points (\mathbf{r}, t) one has to solve "ordinary 1-dimensional integrals" over the field values $\psi^{(f)}(\mathbf{r}, t)$ and $A_{\mu}(\mathbf{r}, t)$...
- ... i.e. a path integral is an infinitely-dimensional inegral.

Lattice QCD (2)

- Numerical implementation:
 - Discretize spacetime with a hypercubic lattice with sufficiently small lattice spacing $a \approx 0.05 \text{ fm} \dots 0.10 \text{ fm}$ \rightarrow continuum physics.
 - Compactify spacetime with sufficiently large extent $L \approx 2.0 \text{ fm} \dots 4.0 \text{ fm}$ (4-dimensional torus) \rightarrow **no finite volume corrections**.

• The path integral is now an ordinary finite-dimensional integral,

$$\int \Big(\prod_f D\psi^{(f)} D\bar{\psi}^{(f)}\Big) DA_{\mu} \quad \to \quad \prod_{x_{\nu} \in \mathsf{lattice}} \Big(\prod_f d\psi^{(f)}(x_{\nu}) d\bar{\psi}^{(f)}(x_{\nu})\Big) dU_{\mu}(x_{\nu}).$$

• Typical dimension of a lattice QCD path integral:

 $-~x_{\nu}:\,32^4\approx 10^6$ lattice sites.

 $-\psi = \psi_A^{a,(f)}$: 24 components (×2 particle/antiparticle, ×3 color, ×4 spin), 2 flavors.

 $- U_{\mu} = U_{\mu}^{ab}$: 32 components (×8 color, ×4 spin).

- In total: $32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6$ -dimensional integral.

 \rightarrow Specifically designed, technically advanced stochastic algorithms necessary (\rightarrow error bars). \rightarrow High performance computers mandatory (\rightarrow lattice QCD collaborations).

Goals of lattice QCD computations

• Typical goals of lattice QCD computations:

- ...

- Verification or falsification of QCD by comparing lattice QCD results with experimental measurements (search for new physics).
- Predictions of experimentally not yet observed mesons or baryons (→ important input for experiments).
 "Does a bbud tetraquark exist? If yes, in which energy region?"
- Investigations of the structure of mesons and baryons. "Has a $\overline{b}\overline{b}ud$ tetraquark a meson-meson or rather a diquark-antidiquark structure?" "How are the gluons arranged inside a hybrid meson?"
- Resolving currently existing contradictions between experimental results and theoretical model calculations.
- Computation of QCD observables that are experimentally difficult to measure (e.g. QCD at extreme temperatures).
- (+) No assumptions. No approximations. No model. First principles QCD results.
 (-) Very time consuming ... lattice QCD projects typically span several years.

Part 2: Lattice QCD investigation of heavy exotic mesons (in the Born-Oppenheimer approximation)

Exotic mesons (1)

- Meson: system of quarks and gluons with integer total angular momentum J = 0, 1, 2, ...
- Most mesons seem to be **quark-antiquark pairs** $\bar{q}q$, e.q. $\pi \equiv \bar{u}d$, $D \equiv \bar{c}d$, $\eta_s \equiv \bar{c}c$ (quark-antiquark model calculations reproduce the majority of experimental results).
- Certain mesons are poorly understood (e.g. significant discrepancies between experimental results and quark model calculations), could have a more complicated structure, e.g.
 - 2 quarks and 2 antiquarks (tetraquark),
 - a quark-antiquark pair and gluons (hybrid meson),
 - only gluons (glueball).
- $\rightarrow\,$ Such mesons are referred to as exotic mesons.

Exotic mesons (2)

- Experimental results on tetraquarks:
 - Electrically charged mesons $Z_b(10610)^+$ and $Z_b(10650)^+$: (2011)
 - * The mass and decay channels indicate a $b\bar{b}$ pair.
 - $*~b\bar{b}$ is electrically neutral ... where does the charge come from?
 - * In a tetraquark picture $Z_b(...)^+ \equiv b\bar{b}u\bar{d}$ obvious $(u \to +2/3 e, \bar{d} \to -1/3 e)$.
 - $-T_{cc} = \bar{c}\bar{c}ud$ with isospin I = 0 und total angular momentum/parity $J^P = 1^+$: (2021)
 - \ast Mass slightly below the lowest meson-meson threshold (DD^{\ast}).
 - * Almost QCD-stable.

[R. Aaij et al. [LHCb], Nature Phys. 18, 751-754 (2022) [arXiv:2109.01038]].

- In this talk exclusively heavy exotic mesons:
 - Tetraquarks $\overline{bb}qq$ (light quarks $q \in \{u, d, s\}$; includes the "b quark counterpart" of the previously mentioned T_{cc}).
 - Hybrid mesons $\overline{b}b$ + gluons.

Two types of approaches

- Two types of approaches, when studying heavy exotic mesons with lattice QCD:
 - Born-Oppenheimer approximation (a 2-step procedure):
 - * The focus of the following slides.
 - (1) Compute the potential V(r) of the two heavy quarks (approximated as static quarks) in the presence of two light quarks and/or gluons using lattice QCD. \rightarrow full QCD results
 - (2) Use standard techniques from quantum mechanics and V(r) to study the dynamics of two heavy quarks (Schrödinger equation, scattering theory, etc.).
 - \rightarrow an approximation
 - (+) Provides physical insights (e.g. forces between quarks, quark composition).
 - (-) An approximation.
 - Full lattice QCD computations of eigenvalues of the QCD Hamiltonian:
 - * Not discussed in the following.
 - * Masses of stable hadrons correspond to energy eigenvalues at infinite volume.
 - * Masses and decay widths of resonances can be calculated from the volume dependence of the energy eigenvalues (rather technical and difficult).

Part 2a: Tetraquarks, $\overline{b}\overline{b}qq$

Basic idea: lattice QCD and BO

- **Basic idea**: Investigate the existence of $\overline{bb}qq$ tetraquarks in two steps.
- (BO1) Compute potentials $V_{\overline{b}\overline{b}}(r)$ for the two static antiquarks $(\overline{b}\overline{b})$ in the presence of two lighter quarks $(qq, q \in \{u, d, s\})$ using lattice QCD.
- (BO2) Check, whether these potentials are sufficiently attractive to host bound states or resonances (\rightarrow correspond to $\overline{bb}qq$ tetraquarks) by using techniques from quantum mechanics and scattering theory.
- $(1) + (2) \rightarrow$ Born-Oppenheimer-Approximation:
 - Developed in the context of molecular and solid state physics.
 [M. Born, R. Oppenheimer, "Zur Quantentheorie der Molekeln," Annalen der Physik 389, Nr. 20, 1927]
 - Step (BO1) in the following not quantum mechanics, but (lattice) QCD.
 - Valid approximation for $m_q \ll m_b$ (\bar{b} quarks almost a rest compared to light quarks).

BO1: $\overline{b}\overline{b}qq/BB$ potentials (1)

• To determine $\overline{b}\overline{b}$ potentials $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$, compute temporal correlation functions

 $\langle \Omega | \mathcal{O}_{BB,\Gamma}^{\dagger}(t) \mathcal{O}_{BB,\Gamma}(0) | \Omega \rangle \propto_{t \to \infty} e^{-V_{qq,jz,\mathcal{P},\mathcal{P}_x}(r)t}$

of operators

$$\mathcal{O}_{BB,\Gamma} = 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD}\Big(\bar{Q}^a_C(-\mathbf{r}/2)q^a_A(-\mathbf{r}/2)\Big)\Big(\bar{Q}^b_D(+\mathbf{r}/2)q^b_B(+\mathbf{r}/2)\Big).$$

- Many different channels (isospin/light flavor, angular momentum, parity).
 - \rightarrow Attractive as well as repulsive potentials.
 - \rightarrow Potentials with different asymptotic values (two heavy-light mesons $\in \{B, B^*, B_0^*, B_1^*\}$).
- The most attractive potential of a $B^{(*)}B^{(*)}$ meson pair has $(I, |j_z|, P, P_x) = (0, 0, +, -)$:
 - $\psi^{(f)}\psi^{(f')} = ud du, \ \Gamma \in \{(1+\gamma_0)\gamma_5, \ (1-\gamma_0)\gamma_5\}.$ $- \ \bar{Q}\bar{Q} = \bar{b}\bar{b}, \ \tilde{\Gamma} \in \{(1+\gamma_0)\gamma_5, \ (1+\gamma_0)\gamma_j\} \ \text{(irrelevant)}.$
 - [P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]
 - [P. Bicudo, M. Marinkovic, L. Müller, M.W., PoS LATTICE2024, 124 (2024) [arXiv:2409.10786]]

BO1: $\overline{b}\overline{b}qq/BB$ potentials (2)

[P. Bicudo, M. Marinkovic, L. Müller, M.W., PoS LATTICE2024, 124 (2024) [arXiv:2409.10786]]

BO1: $\overline{b}\overline{b}qq/BB$ potentials (3)

[P. Bicudo, M. Marinkovic, L. Müller, M.W., PoS LATTICE2024, 124 (2024) [arXiv:2409.10786]]

BO2: Stable $\overline{b}\overline{b}qq$ tetraquarks

• Solve the Schrödinger equation for the relative coordinate of the heavy quarks $\bar{b}\bar{b}$ using the previously computed $\bar{b}\bar{b}qq$ potentials,

$$\left(\frac{1}{m_b}\left(-\frac{d^2}{dr^2} + \frac{L(L+1)}{r^2}\right) + V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r) - 2m_B\right)R(r) = ER(r).$$

- Possibly existing bound states, i.e. E < 0, indicate QCD-stable $\overline{b}\overline{b}qq$ tetraquarks.
- There is a bound state for orbital angular momentum L = 0 of $\overline{b}\overline{b}$:
 - Binding energy $E = -90^{+43}_{-36}$ MeV with respect to the BB^* threshold.
 - Quantum numbers: $I(J^P) = 0(1^+)$.
 - [P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]

BO2: Further $\overline{b}\overline{b}qq$ results (1)

- Are there further QCD-stable $\bar{b}\bar{b}qq$ tetraquarks with other $I(J^P)$ and light flavor quantum numbers?
 - \rightarrow No, not for qq = ud (both I = 0, 1), not for qq = ss. [P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
 - $\rightarrow \overline{b}\overline{b}us$ was not investigated.
 - Strong evidence from full QCD computations that a QCD-stable $\bar{b}\bar{b}us$ tetraquark exists.
- Effect of heavy quark spins:
 - Expected to be $\mathcal{O}(m_{B^*} m_B) = \mathcal{O}(45 \text{ MeV}).$
 - Previously ignored (potentials of static quarks are independent of the heavy spins).
 - In [P. Bicudo, J. Scheunert, M.W., Phys. Rev. D **95**, 034502 (2017) [arXiv:1612.02758]] included in a crude phenomenological way via a BB^* and a B^*B^* coupled channel Schrödinger equation with the experimental mass difference $m_{B^*} - m_B$ as input.
 - $\rightarrow\,$ Binding energy reduced from around $90\,{\rm MeV}$ to $59\,{\rm MeV}.$
 - \rightarrow Physical reason: the previously discussed attractive potential does not only correspond to a lighter BB^* pair, but has also a heavier B^*B^* contribution.

BO2: Further $\overline{b}\overline{b}qq$ results (2)

• Are there $\overline{b}\overline{b}qq$ tetraquark resonances?

- In
 - [P. Bicudo, M. Cardoso, A. Peters, M. Pflaumer, M.W., Phys. Rev. D 96, 054510 (2017) [arXiv:1704.02383]]
 resonances studied via standard scattering theory from quantum mechanics textbooks.
- $\rightarrow\,$ Heavy quark spins ignored.

- → Indication for $\bar{b}\bar{b}ud$ tetraquark resonance with $I(J^P) = 0(1^-)$ found, $E = 17^{+4}_{-4} \text{ MeV}$ above the BB threshold, decay width $\Gamma = 112^{+90}_{-103} \text{ MeV}$.
 - In

 [J. Hoffmann, A. Zimermmane-Santos, M.W., PoS LATTICE2022, 262 (2023) [arXiv:2211.15765]]
 [J. Hoffmann, M.W., unpublished ongoing work] heavy quark spins included.

- $\rightarrow \overline{b}\overline{b}ud$ resonance shifted upwards, slightly above the B^*B^* threshold.
- \rightarrow Physical reason: the relevant attractive potential does not only correspond to a lighter BB pair, but has also a heavier dominating B^*B^* contribution.

BO2: Further $\overline{b}\overline{b}qq$ results (3)

- Structure of the QCD-stable \overline{bbud} tetraquark: meson-meson (*BB*) versus diquark-antidiquark (*Dd*).
 - Use not just one but two operators,

$$\begin{aligned} \mathcal{O}_{BB,\Gamma} &= 2N_{BB}(\mathcal{C}\Gamma)_{AB}(\mathcal{C}\tilde{\Gamma})_{CD} \Big(\bar{Q}_{C}^{a}(-\mathbf{r}/2)\psi_{A}^{(f)a}(-\mathbf{r}/2) \Big) \Big(\bar{Q}_{D}^{b}(+\mathbf{r}/2)\psi_{B}^{(f')b}(+\mathbf{r}/2) \Big) \\ \mathcal{O}_{Dd,\Gamma} &= -N_{Dd}\epsilon^{abc} \Big(\psi_{A}^{(f)b}(\mathbf{z})(\mathcal{C}\Gamma)_{AB}\psi_{B}^{(f')c}(\mathbf{z}) \Big) \\ &\epsilon^{ade} \Big(\bar{Q}_{C}^{f}(-\mathbf{r}/2)U^{fd}(-\mathbf{r}/2;\mathbf{z})(\mathcal{C}\tilde{\Gamma})_{CD}\bar{Q}_{D}^{g}(+\mathbf{r}/2)U^{ge}(+\mathbf{r}/2;\mathbf{z}) \Big), \end{aligned}$$

compare the contribution of each operator to the \overline{bb} potential $V_{qq,j_z,\mathcal{P},\mathcal{P}_x}(r)$.

- [P. Bicudo, A. Peters, S. Velten, M.W., Phys. Rev. D 103, 114506 (2021) [arXiv:2101.00723]]
- $\rightarrow~r\,{\stackrel{\scriptstyle <}{\scriptstyle\sim}}\,0.2\,{\rm fm}:$ Clear diquark-antidiquark dominance.
- $\rightarrow~0.5\,{\rm fm}\,{\stackrel{\scriptstyle <}{\scriptscriptstyle \sim}}\,r:$ Essentially a meson-meson system.
- → Integrate over t to estimate the composition of the tetraquark: $\%BB \approx 60\%$, $\%Dd \approx 40\%$.

Part 2b: hybrid mesons, bb + gluons

BO1: hybrid $\overline{b}b$ potentials (1)

- Now heavy hybrid mesons, i.e. $\bar{b}b + gluons$, also in the Born-Oppenheimer approximation.
- Non-trivial gluon distributions, i.e. gluons contribute to the quantum numbers of hybrid $\bar{b}b$ potentials:
 - Absolute total angular momentum with respect to the $\bar{Q}Q$ separation axis (z axis): $\Lambda = 0, 1, 2, \ldots \equiv \Sigma, \Pi, \Delta, \ldots$
 - Parity combined with charge conjugation: $\eta=+,-=g,u.$
 - Relection along an axis perpendicular to the $\bar{Q}Q$ separation axis (x axis): $\epsilon = +, -$.
- The ordinary static potential has quantum numbers $\Lambda^{\epsilon}_{\eta} = \Sigma^{+}_{g}.$
- Particularly interesting: the two lowest hybrid static potentials with $\Lambda_{\eta}^{\epsilon} = \Pi_{u}, \Sigma_{u}^{-}$.
- References:

[K. J. Juge, J. Kuti, C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998) [hep-lat/9709131] [C. Michael, Nucl. Phys. A 655, 12 (1999) [hep-ph/9810415]

- ... [P. Bicudo, N. Cardoso, M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815 [hep-lat]]]
- [S. Capitani, O. Philipsen, C. Reisinger, C. Riehl. M.W., Phys. Rev. D 99, 034502 (2019) [arXiv:1811.11046 [hep-lat]]]

hybrid $\bar{b}b$ meson

BO1: hybrid $\overline{b}b$ potentials (2)

 [C. Schlosser, M.W., Phys. Rev. D 105, 054503 (2022) [arXiv:2111.00741]]

BO2: hybrid $\overline{b}b$ mesons

• Solve Schrödinger equations for the relative coordinate of the \overline{bb} pair using hybrid static potentials, e.g.

$$\left(-\frac{1}{2\mu}\frac{d^2}{dr^2}+\frac{L(L+1)-2\Lambda^2+J_{\Lambda^{\epsilon}_{\eta}}(J_{\Lambda^{\epsilon}_{\eta}}+1)}{2\mu r^2}+V_{\Lambda^{\epsilon}_{\eta}}(r)\right)u_{\Lambda^{\epsilon}_{\eta};L,n}(r) = E_{\Lambda^{\epsilon}_{\eta};L,n}u_{\Lambda^{\epsilon}_{\eta};L,n}(r).$$

Energy eigenvalues $E_{\Lambda_n^{\epsilon};L,n}$ correspond to masses of $\bar{b}b$ hybrid mesons.

- [E. Braaten, C. Langmack, D. H. Smith, Phys. Rev. D 90, 014044 (2014) [arXiv:1402.0438]]
- [M. Berwein, N. Brambilla, J. Tarrus Castella, A. Vairo, Phys. Rev. D 92, 114019 (2015) [arXiv:1510.04299]]
- [R. Oncala, J. Soto, Phys. Rev. D 96, 014004 (2017) [arXiv:1702.03900]]
- Interpretation and implications of resulting spectra less clear than e.g. for \overline{bbud} tetraquarks:
 - No obvious hybrid candidates in experimentally measured meson spectra.
 - Multi-hadron states (e.g. bb + pion(s)) ignored, heavy quark spins neglected.
- Recent ongoing work to include heavy spin and $1/m_Q$ corrections.
 - [N. Brambilla, G. Krein, J. Tarrus Castella, A. Vairo, Phys. Rev. D 97, 016016 (2018) [arXiv:1707.09647]]
 - [N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castella, A. Vairo, Phys. Rev. D 99, 014017 (2019) [arXiv:1805.07713]]
 - [C. Schlosser, M.W., arXiv:2501.08844]

Hybrid flux tubes (1)

• Compute with lattice QCD the space-dependent chromoelectric and chromomagnetic energy densities of the gluons for states, which correspond to hybrid $\bar{b}b$ potentials.

$$\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x}) = \langle 0_{\Lambda^{\epsilon}_{\eta}}(r) | F^2_{\mu\nu}(\mathbf{x}) | 0_{\Lambda^{\epsilon}_{\eta}}(r) \rangle - \langle \Omega | F^2_{\mu\nu} | \Omega \rangle.$$

- $-F_{\mu\nu}^2(\mathbf{x})$, $F_{\mu\nu}^2$: Squared chromoelectric/chromomagnetic field strength.
- $-|0_{\Lambda_n^{\epsilon}}(r)\rangle$: "Hybrid static potential (ground) state" (r denotes the $\bar{Q}Q$ separation).
- $|\Omega\rangle$: Vacuum state.
- \rightarrow Visualize hybrid flux tubes between a quark b and an antiquark \overline{b} .

Hybrid flux tubes (2)

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), mediator plane (*x-y* plane with *b*, \bar{b} at $(0, 0, \pm r/2)$), $r \approx 0.80$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]] $\frac{\Delta E_{x}^{2}}{\Delta B_{y}^{2}} \frac{\Delta E_{z}^{2}}{\Delta B_{z}^{2}}$

Marc Wagner, "Investigation of heavy exotic mesons with lattice QCD", April 24, 2025

Hybrid flux tubes, $r \approx 0.48 \, \mathrm{fm}$

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), separation plane (x-z plane with b, \bar{b} at $(0, 0, \pm r/2)$), $r \approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]] $\frac{\Delta E_{x}^{2}}{\Delta B_{y}^{2}} \frac{\Delta E_{y}^{2}}{\Delta B_{z}^{2}}$

Hybrid flux tubes, $r \approx 0.80 \, \mathrm{fm}$

- $\Delta F^2_{\mu\nu,\Lambda^{\epsilon}_{\eta}}(r;\mathbf{x})$, SU(2), separation plane (x-z plane with b, \bar{b} at $(0,0,\pm r/2)$), $r \approx 0.8$ fm. [L. Müller, O. Philipsen, C. Reisinger, M.W., Phys. Rev. D **100**, 054503 (2019) [arXiv:1907.014820]]]
- For results for $\Lambda_{\eta}^{\epsilon} = \Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{u}$ see also [P. Bicudo, N. Cardoso and M. Cardoso, Phys. Rev. D 98, 114507 (2018) [arXiv:1808.08815]] $\frac{\Delta E_{x}^{2}}{\Delta B_{y}^{2}} \frac{\Delta E_{y}^{2}}{\Delta B_{z}^{2}}$

Marc Wagner, "Investigation of heavy exotic mesons with lattice QCD", April 24, 2025

Summary

- Goal: Start with the fundamental theory of QCD, carry out lattice QCD computations, understand existence/masses/composition of heavy exotic mesons.
- Heavy exotic mesons: Born-Oppenheimer approximation applicable.
 - (1) Lattice QCD computation of $\bar{b}b$ potentials. (treatment of light degrees of freedom in QCD)
 - (2) Solve a Schrödinger equation using potentials from step (1). (treatment of heavy degrees of freedom in quantum mechanics)
- Selected results:
 - Lattice QCD computation of $\bar{b}\bar{b}qq/BB$ potentials and hybrid $\bar{b}b$ potentials.
 - Prediction of a stable $\overline{bb}ud$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$.
 - Investigation of the structure of this tetraquark: $\% BB \approx 60\%$, $\% Dd \approx 40\%$.
 - Lattice QCD computation of gluonic energy densities for hybrid $\bar{b}b$ mesons (visualization of flux tubes).

