# The spectrum of and forces between B mesons from lattice QCD

Seminar, Rheinische Friedrich-Wilhelms-Universität Bonn

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de http://th.physik.uni-frankfurt.de/~mwagner/ May 8, 2012



### Outline

- I will discuss two lattice QCD projects (which are related):
  - (1) Computation of the spectrum of radially/orbitally excited  ${\cal B}$  mesons.
  - (2) Computation of spin/isospin/parity dependent forces between B mesons.

#### Part 1

# Computation of the spectrum of radially/orbitally excited *B* mesons

[K. Jansen, C. Michael, A. Shindler and M.W. [ETM Collaboration], JHEP 0812, 058 (2008)]
 [C. Michael, A. Shindler and M.W. [ETM Collaboration], JHEP 1008, 009 (2010)]

## **QCD** (quantum chromodynamics)

- Quantum field theory of quarks (six flavors *u*, *d*, *s*, *c*, *t*, *b*, which differ in mass) and gluons.
- Part of the standard model explaining the formation of hadrons (mesons =  $q\bar{q}$ , baryons =  $qqq/\bar{q}\bar{q}\bar{q}\bar{q}$ ) and their masses; essential for decays involving hadrons.
- Definition of QCD by means of an action simple:

$$S = \int d^4x \left( \sum_{f \in \{u,d,s,c,t,b\}} \bar{\psi}^{(f)} \left( \gamma_\mu \left( \partial_\mu - iA_\mu \right) + m^{(f)} \right) \psi^{(f)} + \frac{1}{2g^2} \operatorname{Tr} \left( F_{\mu\nu} F_{\mu\nu} \right) \right)$$
  
$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu].$$
  
$$B^+ \text{ meson proton}$$

 However, no analytical solutions for low energy QCD observables, e.g. hadron masses, known, because of the absence of any small parameter (i.e. perturbation theory not applicable).



#### B mesons, static-light mesons

- B meson: a meson made from a heavy b quark ( $m_b \approx 4200 \text{ MeV}$ ) and a light u, d or s quark ( $m_l \leq 100 \text{ MeV}$ ), e.g.  $B = \{\bar{b}u, \bar{b}d\}$ ,  $B_s = \bar{b}s$ .
- Static limit, i.e.  $m_b \rightarrow \infty$ :
  - No interactions involving the static quark spin.
  - Classify states according to parity  $\mathcal{P}$  and half-integer total angular momentum of the light cloud j.
- $m_b$  finite, but heavy:
  - Classify states according to parity  $\mathcal{P}$  and total angular momentum J.

| $j^{\mathcal{P}}$ (static-light) | $J^{\mathcal{P}}$ (finite $m_b$ )                                       |
|----------------------------------|-------------------------------------------------------------------------|
| $(1/2)^- \equiv S$               | $\begin{array}{cccc} 0^- &\equiv & B_{(s)} \\ 1^- &= & D^* \end{array}$ |
|                                  | $1 = B_{(s)}$                                                           |
| $(1/2)^+ \equiv P$               | $0^+ \equiv B^*_{(s)0}$ (not in PDG)                                    |
|                                  | $1^+ \equiv B^*_{(s)1}$ (not in PDG)                                    |
| $(3/2)^+ \equiv P_+$             | $1^+ \equiv B_{(s)1}$                                                   |
|                                  | $2^+ \equiv B^*_{(s)2}$                                                 |
| $(3/2)^{-} \equiv D_{-}$         | $1^-$ (no experiment)                                                   |
|                                  | $2^-$ (no experiment)                                                   |
| $(5/2)^{-} \equiv D_{+}$         | $2^-$ (no experiment)                                                   |
|                                  | $3^-$ (no experiment)                                                   |
| $(5/2)^+ \equiv F$               | $2^+$ (no experiment)                                                   |
|                                  | $3^+$ (no experiment)                                                   |
|                                  |                                                                         |



## How to compute M(static-light meson)? (1)

- Let  $\mathcal{O}(\mathbf{x})$  be a suitable "static-light meson creation operator", i.e. an operator such that  $\mathcal{O}(\mathbf{x})|\Omega\rangle$  is a state containing a static-light meson at position  $\mathbf{x}$  ( $|\Omega\rangle$ : vacuum).
- More precisely: ... an operator such that  $\mathcal{O}(\mathbf{x})|\Omega\rangle$  has the same quantum numbers  $(j^{\mathcal{P}}, \text{flavor})$  as the static-light meson of interest.
- Determine the mass of the ground state of the corresponding static-light meson from the exponential behavior of the corresponding correlation function C at large Euclidean times T:

$$\mathcal{C}(T) = \langle \Omega | \left( \mathcal{O}(\mathbf{x}, T) \right)^{\dagger} \mathcal{O}(\mathbf{x}, 0) | \Omega \rangle = \langle \Omega | e^{+HT} \left( \mathcal{O}(\mathbf{x}, 0) \right)^{\dagger} e^{-HT} \mathcal{O}(\mathbf{x}, 0) | \Omega \rangle = \sum_{n} \left| \langle n | \mathcal{O}(\mathbf{x}, 0) | \Omega \rangle \right|^{2} \exp \left( - (E_{n} - E_{\Omega})T \right) \approx \text{ (for } T \gg 1\text{)}$$

$$\approx \left| \langle 0 | \mathcal{O}(\mathbf{x}, 0) | \Omega \rangle \right|^{2} \exp \left( - \underbrace{(E_{0} - E_{\Omega})}_{M(\text{static-light meson})} T \right).$$

#### How to compute $M(\mbox{static-light}\ \ldots$

• General form of a static-light meson creation operator:

$$\mathcal{O}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \int d\hat{\mathbf{n}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + d\hat{\mathbf{n}}) q(\mathbf{x} + d\hat{\mathbf{n}}).$$

-  $ar{Q}(\mathbf{x})$  creates an infinitely heavy i.e. static antiquark at position  $\mathbf{x}$ .

 $\Gamma(\hat{\mathbf{n}})$ 

 $Q(\mathbf{x})$ 

 $U(\mathbf{x};\mathbf{x}+d\hat{\mathbf{n}})$ 

 $q(\mathbf{x} + d\hat{\mathbf{n}})$ 

- $-q(\mathbf{x} + d\hat{\mathbf{n}})$  creates a light quark at position  $\mathbf{x} + d\hat{\mathbf{n}}$  separated by a distance d from the static antiquark.
- The spatial parallel transporter

$$U(\mathbf{x};\mathbf{x}+d\hat{\mathbf{n}}) = P\left\{\exp\left(+i\int_{\mathbf{x}}^{\mathbf{x}+d\hat{\mathbf{n}}} dz_j A_j(\mathbf{z})\right)\right\}$$

connects the antiquark and the quark in a gauge invariant way via gluons.

- The integration over the unit sphere  $\int d\hat{\mathbf{n}}$  combined with a suitable weight factor  $\Gamma(\hat{\mathbf{n}})$  yields well defined total angular momentum J and parity  $\mathcal{P}(\Gamma(\hat{\mathbf{n}})$  is a combination of spherical harmonics [ $\rightarrow$  angular momentum] and  $\gamma$ -matrices [ $\rightarrow$  spin]; Wigner-Eckart theorem).

#### How to compute $M(\mbox{static-light}\ \ldots$

• General form of a static-light meson creation operator:

$$\mathcal{O}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \int d\hat{\mathbf{n}} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + d\hat{\mathbf{n}}) q(\mathbf{x} + d\hat{\mathbf{n}}).$$

• List of operators (*J*: total angular momentum; *j*: total angular momentum of the light cloud;  $\mathcal{P}$ : parity):

| $\Gamma(\hat{\mathbf{n}})$                                                                             | $J^{\mathcal{P}}$ | $j^{\mathcal{P}}$ | O <sub>h</sub> | lattice $j^{\mathcal{P}}$   | notation  |
|--------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|-----------------------------|-----------|
| $\gamma_5 \;,\; \gamma_5\gamma_j \hat{n}_j$                                                            | $0^{-}$ $[1^{-}]$ | $(1/2)^{-}$       | $A_1$          | $(1/2)^{-}$ , $(7/2)^{-}$ , | S         |
| $1 \;,\; \gamma_j \hat{n}_j$                                                                           | $0^+ [1^+]$       | $(1/2)^+$         |                | $(1/2)^+$ , $(7/2)^+$ ,     | <i>P_</i> |
| $\gamma_1 \hat{n}_1 - \gamma_2 \hat{n}_2$ (and cyclic)                                                 | $2^+ [1^+]$       | $(3/2)^+$         | E              | $(3/2)^+$ , $(5/2)^+$ ,     | $P_+$     |
| $\gamma_5(\gamma_1 \hat{n}_1 - \gamma_2 \hat{n}_2)$ (and cyclic)                                       | $2^{-} [1^{-}]$   | $(3/2)^{-}$       |                | $(3/2)^-$ , $(5/2)^-$ ,     | $D_{\pm}$ |
| $\gamma_1 \hat{n}_2 \hat{n}_3 + \gamma_2 \hat{n}_3 \hat{n}_1 + \gamma_3 \hat{n}_1 \hat{n}_2$           | $3^{-}[2^{-}]$    | $(5/2)^{-}$       | $A_2$          | $(5/2)^-$ , $(7/2)^-$ ,     | $D_+$     |
| $\gamma_5(\gamma_1 \hat{n}_2 \hat{n}_3 + \gamma_2 \hat{n}_3 \hat{n}_1 + \gamma_3 \hat{n}_1 \hat{n}_2)$ | $3^+ [2^+]$       | $(5/2)^+$         |                | $(5/2)^+$ , $(7/2)^+$ ,     | $F_{\pm}$ |



# Lattice QCD (1)

- Goal: compute correlation functions C(T) of the previously discussed static-light meson creation operators (the corresponding meson masses can directly be read off from their exponential decays).
- Use the path integral formulation of QCD,

$$\begin{aligned} \mathcal{C}(T) &= \langle \Omega | \Big( \mathcal{O}(\mathbf{x},T) \Big)^{\dagger} \mathcal{O}(\mathbf{x},0) | \Omega \rangle &= \\ &= \frac{1}{Z} \int \Big( \prod_{f} D\psi^{(f)} D\bar{\psi}^{(f)} \Big) DA_{\mu} \Big( \mathcal{O}(\mathbf{x},T) \Big)^{\dagger} \mathcal{O}(\mathbf{x},0) e^{-S[\psi^{(f)},\bar{\psi}^{(f)},A_{\mu}]}. \end{aligned}$$

- $|\Omega\rangle$ : ground state/vacuum.
- $(\mathcal{O}(\mathbf{x},T))^{\dagger}\mathcal{O}(\mathbf{x},0)$ : function of the quark and gluon fields (cf. previous slides).
- $\int (\prod_f D\psi^{(f)} D\overline{\psi}^{(f)}) DA_{\mu}$ : integral over all possible quark and gluon field configurations  $\psi^{(f)}(\mathbf{x}, t)$  and  $A_{\mu}(\mathbf{x}, t)$ .
- $e^{-S[x]}$ : weight factor containing the QCD action.

# Lattice QCD (2)

- Numerical implementation of the path integral formalism in QCD:
  - Discretize spacetime with sufficiently small lattice spacing  $a\approx 0.05\,{\rm fm}\ldots 0.10\,{\rm fm}$ 
    - $\rightarrow\,$  "continuum physics" .
  - "Make spacetime periodic" with sufficiently large extension  $L \approx 2.0 \text{ fm} \dots 4.0 \text{ fm}$  (4-dimensional torus)
    - $\rightarrow\,$  "no finite size effects" .



# Lattice QCD (3)

- Numerical implementation of the path integral formalism in QCD:
  - After discretization the path integral becomes an ordinary multidimensional integral:

$$\int D\psi \, D\bar{\psi} \, DA \, \dots \quad \rightarrow \quad \prod_{x_{\mu}} \left( \int d\psi(x_{\mu}) \, d\bar{\psi}(x_{\mu}) \, dU(x_{\mu}) \right) \, \dots$$

- Typical present-day dimensionality of a discretized QCD path integral: \*  $x_{\mu}$ :  $32^4 \approx 10^6$  lattice sites.
  - \*  $\psi = \psi_A^{a,(f)}$ : 24 quark degrees of freedom for every flavor (×2 particle/antiparticle, ×3 color, ×4 spin), 2 flavors.
  - \*  $U = U^{ab}_{\mu}$ : 32 gluon degrees of freedom (×8 color, ×4 spin).
  - \* In total:  $32^4 \times (2 \times 24 + 32) \approx 83 \times 10^6$  dimensional integral.
  - $\rightarrow$  standard approaches for numerical integration not applicable
  - $\rightarrow$  sophisticated algorithms mandatory (stochastic integration techniques, so-called Monte-Carlo algorithms).

#### Lattice setup

- Various lattice spacings:  $a \approx 0.051 \text{ fm}$ , 0.064 fm, 0.080 fm (corresponding to  $48^3 \times 96$ ,  $32^3 \times 64$ ,  $24^3 \times 48$  lattice sites).
- Lattice extensions:  $L \approx 2.45 \text{ fm}$ , 2.05 fm, 1.92 fm (periodic boundary conditions).
- Many different pion mass:  $m_{\rm PS} \approx 284 \dots 637 \,{\rm MeV}$ .

#### Masses of B and $B_s$ mesons (1)



- Compute static-light meson masses  $(B/B_s \text{ mesons with } m_b \rightarrow \infty)$  for different light u/d quark masses and different lattice spacings:
  - Different u/d quark masses to extrapolate to the physical u/d quark mass (due to technical reasons  $m_{\rm PS}^{\rm (lattice)}\,{\gtrsim}\,284\,{\rm MeV}$ ,  $m_{\rm PS}^{\rm physical}\approx135\,{\rm MeV}$ ).
  - Different lattice spacings to extrapolate to the continuum.
  - Horizontal axis: pion mass  $(m_{\rm PS}^{\rm (lattice)})^2$ .
  - Vertical axis:  $M(j^{\mathcal{P}}) M((1/2)^{-})$  mass difference between radially and orbitally excited "B mesons" ( $B_0^*$ ,  $B_1^*$ ,  $B_1$ ,  $B_2^*$ , ...) and the "ground state B meson" ( $B/B^* \equiv j^{\mathcal{P}} = (1/2)^{-}$ ) ... analogous for " $B_s$  mesons".



### Masses of B and $B_s$ mesons (2)



• Summary of the computed static-light meson spectrum:

| $j^{\mathcal{P}}$     | alternative<br>notation | $B \text{ mesons } (\bar{b}u \text{ or } \bar{b}d):$<br>$M(j^{\mathcal{P}}) - M((1/2)^{-}) \text{ in MeV}$ | $B_s 	ext{ mesons } (ar{b}s)$<br>$M(j^{\mathcal{P}}) - M((1/2)^-) 	ext{ in MeV}$ |
|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $(1/2)^+$             | $P_{-}$                 | 406(19)                                                                                                    | 413(12)                                                                          |
| $(3/2)^+$             | $P_+$                   | 516(18)                                                                                                    | 504(12)                                                                          |
| $(3/2)^-$ , $(5/2)^-$ | $D_{\pm}$               | 870(27)                                                                                                    | 770(26)                                                                          |
| $(5/2)^{-}$           | $D_+$                   | 930(28)                                                                                                    | 960(24)                                                                          |
| $(5/2)^+$ , $(7/2)^+$ | $F_{\pm}$               | 1196(30)                                                                                                   | 1179(37)                                                                         |
| $(1/2)^{-}$           | $S^*$                   | 755(16)                                                                                                    | 751(26)                                                                          |

- Motivation/achievements:
  - Continuum limit (among the first).
  - Dependence on the light u/d sea quark mass (for the first time).
  - Valuable input for model builders (e.g. no reversal of  $M(P_{-})$  and  $M(P_{+})$ , ...).

#### Masses of B and $B_s$ mesons (3)

- Comparison to experimental results:
  - Extrapolation to the physical (finite) b quark mass  $m_B \approx 4200 \text{ MeV}$ :
    - $\ast\,$  Use rather precise experimental results for c quarks, i.e. D mesons.
    - \* Assume that Heavy Quark Effective Theory (HQET) up to  $O(1/m_Q)$  is "valid" down to the physical charm quark mass.
    - \* Amounts to "reincluding" hyperfine splitting.

|                                                          | M - M(B) in MeV                                                         |                    |                                                    | $M - M(B_s)$ in MeV                                                 |                    |
|----------------------------------------------------------|-------------------------------------------------------------------------|--------------------|----------------------------------------------------|---------------------------------------------------------------------|--------------------|
| name                                                     | lattice                                                                 | experiment         | name                                               | lattice                                                             | experiment         |
| $egin{array}{c} B_0^* \ B_1^* \ B_1 \ B_2^* \end{array}$ | $\begin{array}{c} 443(21) \\ 460(22) \\ 530(12) \\ 543(12) \end{array}$ | $444(2) \\ 464(5)$ | $B_{s0}^{*} \\ B_{s1}^{*} \\ B_{s1} \\ B_{s2}^{*}$ | $\begin{array}{c} 391(8) \\ 440(8) \\ 526(8) \\ 539(8) \end{array}$ | $463(1) \\ 473(1)$ |
| $B_J^*$                                                  |                                                                         | 418(8)             | $B_{sJ}^*$                                         |                                                                     | 487(15)            |

• Difference between lattice and experimental results: scale setting problem?

#### Part 2

# Computation of spin/isospin/parity dependent forces between B mesons.

[M. W. [ETM Collaboration], PoS LATTICE2010, 162 (2010)]

[M. W. [ETM Collaboration], Acta Phys. Pol. B Proceedings Supplement, Vol. 4, No. 4, 2011, page 747]

## **Introduction (1)**

- Goal: compute the potential of (or equivalently the force between) two *B* mesons from first principles by means of lattice QCD:
  - Treat the b quark in the static approximation.
  - Consider only pseudoscalar/vector mesons  $(j^{\mathcal{P}} = (1/2)^{-})$ , denoted by S, PDG: B,  $B^{*}$ ) and scalar/pseudovector mesons  $(j^{\mathcal{P}} = (1/2)^{+})$ , denoted by  $P_{-}$ , PDG:  $B_{0}^{*}$ ,  $B_{1}^{*}$ ), which are among the lightest static-light mesons.
  - Study the dependence of the mesonic potential  $V({\cal R})$  on
    - \* the light quark flavor u and/or d (isospin),
    - \* the light quark spin (the static quark spin is irrelevant),
    - $\ast$  the type of the meson S and/or  $P_{-}.$



## **Introduction (2)**

- Motivation:
  - First principles computation of a hadronic force.
  - Possible application: determine, whether two B mesons may form bound states (tetraquarks).
  - Until now
    - \* it has mainly been studied in the quenched approximation,
    - \* only pseudoscalar (S), but no scalar ( $P_{-}$ ) B mesons have been considered.
    - [C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]
    - [W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]
    - [G. Bali and M. Hetzenegger, PoS LATTICE2010, 142 (2010)]



#### (Pseudo)scalar *B* mesons

• Symmetries and quantum numbers of static-light mesons:

- Isospin: I = 1/2,  $I_z = \pm 1/2$ , i.e.  $B \equiv \bar{Q}u$  or  $B \equiv \bar{Q}d$ .
- Parity:  $\mathcal{P}=\pm$ ,
  - \*  $\mathcal{P} = \equiv S$  (wave),
  - $* \mathcal{P} = + \equiv P_{-}$  (wave).
- Rotations:
  - \* Light cloud angular momentum j=1/2 (for S and  $P_{-}$ ),  $j_{z}=\pm 1/2$ .
  - \* Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
- Examples of static-light meson creation operators:
  - $-\ ar{Q}\gamma_5 q$  (pseudoscalar, i.e. S),  $q\in\{u\,,\,d\}$ ,
  - $\ ar{Q}q$  (scalar, i.e.  $P_{-}$ )

 $(j_z \text{ is not well-defined, when using these operators}).$ 

## BB systems (1)

- Symmetries and quantum numbers of a pair of static-light mesons (separated along the *z*-axis):
  - Isospin:  $I = 0, 1, I_z = -1, 0, +1$ .
  - Rotations around the *z*-axis:
    - \* Angular momentum of the light degrees of freedom  $j_z = -1, 0, +1$ .
    - \* Static quark spin: irrelevant (static quarks can also be treated as spinless color charges).
  - Parity:  $\mathcal{P} = \pm$ .
  - If  $j_z = 0$ , reflection along the *x*-axis:  $\mathcal{P}_x = \pm$ .
  - Instead of using  $j_z = \pm 1$  one can also label states by  $|j_z| = 1$ ,  $\mathcal{P}_x = \pm$ .
  - $\rightarrow$  Label BB states by  $(I, I_z, |j_z|, \mathcal{P}, \mathcal{P}_x)$ .



## BB systems (2)

 To extract the potential(s) of a given sector (characterized by (I, Iz, |jz|, P, Px)), compute the temporal correlation function of the trial state

$$(\mathcal{C}\Gamma)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(1)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(2)}(+R/2) \Big) |\Omega\rangle,$$

where

- $C = \gamma_0 \gamma_2$  (charge conjugation matrix),  $- q^{(1)}q^{(2)} \in \{ud - du , uu, dd, ud + du\}$  (isospin  $I, I_z$ ),
- $-\Gamma$  is an arbitrary combination of  $\gamma$  matrices (spin  $|j_z|$ , parity  $\mathcal{P}$ ,  $\mathcal{P}_x$ ).



## BB systems (3)

• BB creation operators for  $I_z = +1$ : 16 operators of type

$$(\mathcal{C}\Gamma)_{AB}\Big(\bar{Q}_C(-R/2)q_A^{(u)}(-R/2)\Big)\Big(\bar{Q}_C(+R/2)q_B^{(u)}(+R/2)\Big).$$

| Г                                                                                                                 | $ j_z $ , $\mathcal{P}$ , $\mathcal{P}_x$                                           |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\begin{array}{c}1\\\gamma_0\gamma_5\\\gamma_5\\\gamma_0\end{array}$                                              | $\begin{array}{c} 0, \ -, \ -\\ 0, \ +, \ +\\ 0, \ +, \ +\\ 0, \ +, \ -\end{array}$ |
| $egin{array}{c} \gamma_3 \ \gamma_0 \gamma_3 \gamma_5 \ \gamma_3 \gamma_5 \ \gamma_0 \gamma_3 \end{array}$        | $\begin{array}{c} 0, \ -, \ -\\ 0, \ +, \ +\\ 0, \ -, \ +\\ 0, \ -, \ -\end{array}$ |
| $ \begin{array}{c} \gamma_1 \\ \gamma_0 \gamma_1 \gamma_5 \\ \gamma_1 \gamma_5 \\ \gamma_0 \gamma_1 \end{array} $ | $1, -, + \\ 1, +, - \\ 1, -, - \\ 1, -, +$                                          |
|                                                                                                                   |                                                                                     |

## BB systems (4)

• BB creation operators for  $I_z = 0$ : 32 operators of type

$$(\mathcal{C}\Gamma)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(d)}(+R/2) \Big) \pm (u \leftrightarrow d).$$

| Γ, ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ j_z $ , I, P, P                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $egin{array}{cccc} \gamma_5 \ , \ - \ \gamma_0 \ , \ - \ 1 \ , \ - \ \gamma_0\gamma_5, \ - \ \gamma_0\gamma_5, \ - \ \gamma_3\gamma_5 \ , \ - \ \gamma_0\gamma_2 \ - \ \gamma_0$ | $\begin{array}{c} 0, \ 0, \ -, \ +\\ 0, \ 0, \ -, \ -\\ 0, \ 0, \ +, \ -\\ 0, \ 0, \ -, \ +\\ 0, \ 0, \ +, \ +\\ 0, \ 0, \ +, \ +\\ \end{array}$ |
| $\gamma_{0}\gamma_{3}$ , —<br>$\gamma_{3}$ , —<br>$\gamma_{0}\gamma_{3}\gamma_{5}$ , —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0, \ 0, \ +, \ -\\ 0, \ 0, \ +, \ -\\ 0, \ 0, \ -, \ + \end{array}$                                                            |
| $\gamma_{5}$ , +<br>$\gamma_{0}$ , +<br>1 , +<br>$\gamma_{0}\gamma_{5}$ , +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0, \ 1, \ +, \ +\\ 0, \ 1, \ +, \ -\\ 0, \ 1, \ -, \ -\\ 0, \ 1, \ +, \ + \end{array}$                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |

#### Lattice setup

- Lattice spacing:  $a \approx 0.079 \, \text{fm}$ .
- Lattice extension:  $L \approx 1.90 \, \text{fm}$  (periodic boundary conditions).
- Pion mass:  $m_{\rm PS} \approx 340 \, {\rm MeV}$ .

## **Discussion of results (1)**

- Four "types of potentials":
  - Two attractive, two repulsive.
  - Two have asymptotic values, which are larger by  $\approx 400 \text{ MeV}$ .
- There are cases, where two potentials with identical quantum numbers are completely different (i.e. of different type)
  - $\rightarrow$  at least one of the corresponding trial states must have very small ground state overlap
  - $\rightarrow$  physical understanding, i.e. interpretation of trial states needed.



## **Discussion of results (2)**

- Expectation at large meson separation  $R: V(R) \approx 2 \times \text{meson mass.}$ 
  - Potentials with smaller asymptotic value at  $\approx 2 \times m(S)$ .
  - $-m(P_{-})-m(S) \approx 400 \,\text{MeV}$ : approximately the observed difference between different types of potentials.
  - $\rightarrow$  Two types correspond to  $S \leftrightarrow S$  potentials.
  - $\rightarrow$  Two types correspond to  $S \leftrightarrow P_{-}$  potentials.
- Can this be understood in detail on the level of the used BBcreation operators?



## **Discussion of results (3)**

- Express the *BB* creation operators in terms of static-light meson creation operators (use suitable spin and parity projectors for the light quarks).
  - Examples:

\* 
$$uu, \Gamma = 1 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$$
  
 $(\mathcal{C}1)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big) \propto$   
 $\propto S_{\uparrow} P_{\downarrow} - S_{\downarrow} P_{\uparrow} + P_{\uparrow} S_{\downarrow} - P_{\downarrow} S_{\uparrow}.$   
\*  $uu, \Gamma = \gamma_3 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$   
 $(\mathcal{C}\gamma_3)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big) \propto$   
 $\propto S_{\uparrow} S_{\downarrow} + S_{\downarrow} S_{\uparrow} - P_{\uparrow} P_{\downarrow} - P_{\downarrow} P_{\uparrow}.$ 

- $SS/SP_{-}$  content and asymptotic values in agreement for all 64 correlation functions/ potentials
  - $\rightarrow$  asymptotic differences understood.



Marc Wagner, "The spectrum of and forces between B mesons from lattice  $\mathsf{QCD}"$  , May

## **Discussion of results (4)**

- Is there a general rule, about when a potential is repulsive and when attractive?
  - $S \leftrightarrow S$  potentials:
    - \* (I = 0, s = 0) or (I = 1, s = 1), i.e.  $I = s \rightarrow$  attractive (I = 0, s = 1) or (I = 1, s = 0), i.e.  $I \neq s \rightarrow$  repulsive (s: combined angular momentum of the two mesons).
    - \* Example:  $uu, \Gamma = \gamma_3 \rightarrow \mathcal{P} = -, \mathcal{P}_x = -:$   $(\mathcal{C}\gamma_3)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big) \propto$  $\propto S_{\uparrow} S_{\downarrow} + S_{\downarrow} S_{\uparrow} - P_{\uparrow} P_{\downarrow} - P_{\downarrow} P_{\uparrow}.$

i.e. I = 1, s = 1; the numerically obtained potential is attractive, i.e. in agreement with the above stated rule.

- \* All 32  $S \leftrightarrow S$  correlation functions/potentials fulfill the rule.
- \* Agreement with similar quenched lattice studies.

[C. Michael and P. Pennanen [UKQCD Collaboration], Phys. Rev. D 60, 054012 (1999)]

[W. Detmold, K. Orginos and M. J. Savage, Phys. Rev. D 76, 114503 (2007)]



### **Discussion of results (5)**

- $-S \leftrightarrow P_{-}$  potentials:
  - \* Do not obey the above stated rule.
  - meson separation R in fm \* It can, however, easily be generalized by including parity, i.e. symmetry or antisymmetry under exchange of S and  $P_{-}$ : trial state symmetric under meson exchange  $\rightarrow$  attractive trial state antisymmetric under meson exchange  $\rightarrow$  repulsive (meson exchange  $\equiv$  exchange of flavor, spin and parity).
  - \* Example:  $uu, \Gamma = \gamma_0 \longrightarrow \mathcal{P} = +, \mathcal{P}_r = -:$  $(\mathcal{C}\gamma_0)_{AB} \Big( \bar{Q}_C(-R/2) q_A^{(u)}(-R/2) \Big) \Big( \bar{Q}_C(+R/2) q_B^{(u)}(+R/2) \Big)$  $\propto$  $\propto S_{\uparrow}P_{\downarrow} - S_{\downarrow}P_{\uparrow} - P_{\uparrow}S_{\downarrow} + P_{\downarrow}S_{\uparrow},$

i.e. I = 1 (symmetric), s = 0 (antisymmetric), antisymmetric with respect to  $S \leftrightarrow P_{-}$ ; the numerically obtained potential is attractive, i.e. in agreement with the above stated general rule.

\* All 32  $S \leftrightarrow P_{-}$  correlation functions/potentials (and all 32  $S \leftrightarrow S$ correlation functions/potentials) fulfill the generalized rule.



## **Discussion of results (6)**

- Improvements after having understood the extraction and interpretation of BB potentials from single correlation functions:
  - Linearly combine BB operators to either eliminate  $P_-\leftrightarrow P_-$  or  $S\leftrightarrow S$  combinations.
  - Example:

 $ud - du, \ \Gamma = \gamma_5 \longrightarrow -S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} - P_{\uparrow}P_{\downarrow} + P_{\downarrow}P_{\uparrow}$  $ud - du, \ \Gamma = \gamma_0\gamma_5 \longrightarrow -S_{\uparrow}S_{\downarrow} + S_{\downarrow}S_{\uparrow} + P_{\uparrow}P_{\downarrow} - P_{\downarrow}P_{\uparrow}$  $\rightarrow$  use  $\gamma_5 + \gamma_0\gamma_5$  to obtain a better signal for the  $S \leftrightarrow S$  potential

 $\rightarrow$  use  $\gamma_5 - \gamma_0 \gamma_5$  to extract the  $P_- \leftrightarrow P_-$  potential.



## **Discussion of results (7)**

- Improvements after having understood the extraction and interpretation of BB potentials from single correlation functions:
  - Use correlation matrices instead of single correlation functions to avoid mixing with BB states of lower energy, which is present, because
    - $\ast$  although the product of two specific B meson creation operators closely resembles the corresponding BB state, it will still have a non-vanishing overlap to BB states corresponding to B mesons with different isospin, spin and/or parity,
    - \* twisted mass lattice QCD explicitly breaks isospin and parity (the breaking is proportional to the lattice spacing *a*; isospin and parity will be restored in the continuum limit).

#### Summary of *BB* states and degeneracies

- Two B mesons, each can have  $I_z = \pm 1/2$ ,  $j_z = \pm 1/2$ ,  $\mathcal{P} = \pm \rightarrow 8 \times 8 = 64$  states.
- $S \leftrightarrow S$  potentials:

- Attractive: 
$$\underbrace{1}_{I=0,|j_z|=0} \oplus \underbrace{3}_{I=1,|j_z|=0} \oplus \underbrace{6}_{I=1,|j_z|=1}$$
(10 states).  
- Repulsive: 
$$\underbrace{1}_{I=0,|j_z|=0} \oplus \underbrace{3}_{I=1,|j_z|=0} \oplus \underbrace{2}_{I=0,|j_z|=1}$$
(6 states).

•  $S \leftrightarrow P_{-}$  potentials:

- Attractive: 
$$\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{|j_z|=0} \oplus \underbrace{2 \oplus 6}_{|j_z|=1}$$
 (16 states).  
- Repulsive:  $\underbrace{1 \oplus 1 \oplus 3 \oplus 3}_{|j_z|=0} \oplus \underbrace{2 \oplus 6}_{|j_z|=1}$  (16 states).

- $P_- \leftrightarrow P_-$  potentials: identical to  $S \leftrightarrow S$  potentials.
- In total 24 different potentials.

#### Attractive $S \leftrightarrow S$ potentials

 Attractive S ↔ S potentials are relevant, when trying to determine, whether BB may form a bound state.



## Summary, conclusions, future plans (1)

- Computation of BB potentials (arbitrary flavor, spin and parity) with "light" dynamical quarks ( $m_{\rm PS} \approx 340 \, {\rm MeV}$ ).
  - Qualitative agreement with existing quenched results for  $S \leftrightarrow S$  potentials.
  - First lattice computation of  $S \leftrightarrow P_{-}$  and  $P_{-} \leftrightarrow P_{-}$  potentials.
  - Clear statements about whether a potential of a given channel is attractive or repulsive.
- Statistical accuracy problematic (exponentially decaying correlation functions are quickly lost in statistical noise):
  - Reasonable accuracy for attractive  $S \leftrightarrow S$  potentials (interesting, when trying to determine, whether BB may form a bound state).
  - Other (higher) potentials:
    - $\rightarrow BB$  potentials are extracted at rather small temporal separations
    - $\rightarrow$  slight contamination from excited states cannot be excluded.

## Summary, conclusions, future plans (2)

- Further plans and possibilities:
  - Other values of the lattice spacing, the spacetime volume and/or the u/d quark mass.
  - Partially quenched computations, to obtain  $B_sB_s$  and/or  $B_sB$  potentials.
  - Improve lattice meson potentials at small separations (where the suppression of UV fluctuations due to the lattice cutoff yields wrong results) with corresponding perturbative potentials.
  - Use lattice meson potentials to study, whether  $BB\,$  may form a bound state.