$B \to D^{**}$ at infinite heavy mass

Workshop on B decay into D^{**} an related issues, Paris

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

http://th.physik.uni-frankfurt.de/~mwagner/

in collaboration with Benoit Blossier, Olivier Pène

November 27, 2012

Introduction

• Consider semileptonic decays of B mesons (B, B^*) into orbitally excited P wave D mesons (D^{**}) :

$$B^{(*)} \rightarrow D^{**} l \nu.$$

- Precise knowledge of the corresponding branching fractions important, e.g. to reduce the systematic uncertainty in the measurements of the CKM matrix element $|V_{cb}|$.
- There is a persistent conflict ("1/2 versus 3/2 puzzle") between theory and experiment:
 - Experiment favors the decay into "1/2 P wave D^{**} 's".
 - Theory favors the decay into "3/2 P wave D^{**} 's".
 - Lattice calculations can help to resolve this conflict.

Outline

- Heavy-light mesons.
- The 1/2 versus 3/2 puzzle:
 - Experimental side.
 - Theory side.
 - Possible explanations to resolve the puzzle.
- Lattice computation of the Isgur-Wise functions $\tau_{1/2}$ and $\tau_{3/2}$:
 - Simulation setup, static and light quark propagators.
 - Static-light meson creation operators.
 - Static-light meson masses.
 - 2-point functions, ground state norms.
 - 3-point functions, Isgur-Wise functions $au_{1/2}$ and $au_{3/2}$.
 - Extrapolation to the u/d quark mass.
- Conclusions.

Heavy-light mesons

- Heavy-light meson: a meson made from a heavy quark (b, c) and a light quark (u, d), i.e. $B = \{\bar{b}u, \bar{b}d\}$, $D = \{\bar{c}u, \bar{c}d\}$.
- Static limit, i.e. $m_b, m_c \to \infty$:
 - No interactions involving the static quark spin.
 - Classify states according to parity \mathcal{P} and total angular momentum of the light cloud (light quarks and gluons) j.
- m_b, m_c finite, but heavy:
 - Classify states according to parity \mathcal{P} and total angular momentum J.
 - Although j is not a "true quantum number" anymore, it is still an approximate quantum number \rightarrow notation $D^j_{_{\cal I}}$.
 - $-D^{**} = \{D_0^*, D_1', D_1, D_2^*\}.$

$j^{\mathcal{P}}$	$J^{\mathcal{P}}$
$(1/2)^- \equiv S$	$ \begin{array}{ccc} 0^{-} & \equiv & B, D \\ 1^{-} & \equiv & B^{*}, D^{*} \end{array} $
$(1/2)^+ \equiv P$	$0^{+} \equiv D_{0}^{*} \equiv D_{0}^{1/2}$
	$1^+ \equiv D_1' \equiv D_1^{1/2}$
$(3/2)^+ \equiv P_+$	$\begin{vmatrix} 1^+ & \equiv & D_1 & \equiv & D_1^{3/2} \\ 2^+ & \equiv & D_2^* & \equiv & D_2^{3/2} \end{vmatrix}$

1/2 versus 3/2: experimental side (1)

- Consider the semileptonic decay $B \to X_c l \nu$.
- Experiments, which have studied this decay: ALEPH, BaBar, BELLE, CDF, DELPHI, DØ.
- What is X_c ?
 - $\approx 75\%~D$ and D^* , i.e. S wave states (agreement with theory).
 - $-\approx 10\%~D_1^{3/2}$ and $D_2^{3/2}$, i.e. j=3/2~P wave states (agreement with theory).
 - For the remaining $\approx 15\%$ the situation is not clear:
 - * A natural candidate would be $D_0^{1/2}$ and $D_1^{1/2}$, i.e. $j=1/2\ P$ wave states.
 - * This would imply $\Gamma(B \to D_{0,1}^{1/2} \, l \, \nu) > \Gamma(B \to D_{1,2}^{3/2} \, l \, \nu)$, which is in conflict with theory.
 - * This conflict between experiment and theory is called the "1/2 versus 3/2 puzzle".

1/2 versus 3/2: experimental side (2)

- Example plot from BaBar/SLAC:
 - Horizontal axis: $m(D^{(*)}\pi) m(D^{(*)})$ in GeV/c^2 .
 - Vertical axis: events/ $(20 \,\mathrm{MeV}/c^2)$.
 - Simultaneous fit of four probability distribution functions $(D_0^*, D_1', D_1, D_2^*)$ to $m(D^{(*)}\pi) m(D^{(*)})$ data:

a)
$$B^- \to D^{*+} \pi^- l^- \bar{\nu}_l$$
.

b)
$$B^- \to D^+ \pi^- l^- \bar{\nu}_l$$
.

- Two states (D_1 and D_2^* , i.e. the j=3/2 P wave states) have small widths and can "clearly" be identified.
- Two states (D_0^* and D_1' , i.e. the j=1/2 P wave states) have very large widths.

[B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 101, 261802 (2008) [arXiv:0808.0528 [hep-ex]]]

1/2 versus 3/2: theory side (1)

- Static limit, i.e. $m_b, m_c \to \infty$.
- Parameterization of the matrix elements relevant for decays $B \to X_c \, l \, \nu$ by a small set of form factors (Isgur-Wise functions) due to heavy quark symmetry. [N. Isgur and M. B. Wise, Phys. Rev. D 43, 819 (1991)]
- In particular for $B \to D^{**} l \nu$,

$$\langle D_0^{1/2}(v')|\bar{c}\gamma_5\gamma_\mu b|B(v)\rangle \propto \tau_{1/2}(w)(v-v')_\mu$$
$$\langle D_2^{3/2}(v',\epsilon)|\bar{c}\gamma_5\gamma_\mu b|B(v)\rangle \propto \tau_{3/2}(w)\Big((w+1)\epsilon_{\mu\alpha}^*v^\alpha - \epsilon_{\alpha\beta}^*v^\alpha v^\beta v'_\nu\Big).$$

where $w = v'v \ge 1$.

1/2 versus 3/2: theory side (2)

• Relation to decay rates:

$$\frac{d\Gamma(B \to D_J^{1/2} l \nu)}{dw} \propto G_F^2 |V_{cb}|^2 K_J^{1/2}(w) |\tau_{1/2}(w)|^2 , \quad J = 0, 1$$

$$\frac{d\Gamma(B \to D_J^{3/2} l \nu)}{dw} \propto G_F^2 |V_{cb}|^2 K_J^{3/2}(w) |\tau_{3/2}(w)|^2 , \quad J = 1, 2,$$

where K_{J}^{j} are analytically known kinematical factors, e.g.

$$K_0^{1/2}(w) = 4r^3(w^2 - 1)^{3/2}(1 - r)^2$$

$$K_1^{1/2}(w) = 4r^3(w - 1)(w^2 - 1)^{1/2} \Big((w - 1)(1 + r)^2 + 4w(1 + r^2 - 2rw) \Big)$$
...

with
$$r = m(D)/m(B)$$
.

1/2 versus 3/2: theory side (3)

- By means of OPE a couple of sum rules have been derived in the static limit:
 - Most prominent sum rule in this context: Uraltsev sum rule,

$$\sum_{n} \left| \tau_{3/2}^{(n)}(1) \right|^2 - \left| \tau_{1/2}^{(n)}(1) \right|^2 = \frac{1}{4}$$

 $(au_{1/2} \equiv au_{1/2}^{(0)} \text{ and } au_{3/2} \equiv au_{3/2}^{(0)}; \text{ the sum is over all } 1/2 \text{ and } 3/2 \ P \text{ wave meson states respectively}.$

[N. Uraltsev, Phys. Lett. B 501, 86 (2001) [arXiv:hep-ph/0011124]]

 From experience with sum rules one expects approximate saturation from the ground states, i.e.

$$\left|\tau_{3/2}^{(0)}(1)\right|^2 - \left|\tau_{1/2}^{(0)}(1)\right|^2 \approx \frac{1}{4},$$

which implies $| au_{1/2}(1)|<| au_{3/2}(1)|$. This strongly suggests $\Gamma(B\to D_{0,1}^{1/2}\,l\,\nu)<\Gamma(B\to D_{1,2}^{3/2}\,l\,\nu)$, which is in conflict with experiment.

1/2 versus 3/2: theory side (4)

- Phenomenological models:
 - $-| au_{1/2}(1)| < | au_{3/2}(1)|$ and $\Gamma(B \to D_{0,1}^{1/2} \, l \,
 u) < \Gamma(B \to D_{1,2}^{3/2} \, l \,
 u)$, which is in "conflict" with experiment.
 - [V. Morenas, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 56 5668 (1997) [arXiv:hep-ph/9706265]]
 - [D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Lett. B **434**, 365 (1998) [arXiv:hep-ph/9805423]] [...]
 - Same qualitative picture also beyond the static limit, i.e. for finite m_b and m_c .
 - [D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 61, 014016 (2000) [arXiv:hep-ph/9906415]]

1/2 versus 3/2: possible explanations (1)

• Experiment:

(A) The signal for the remaining 15% of X_c is rather vague; therefore, only a small part might be $D_{0.1}^{1/2}$.

• OPE:

- Sum rules might not be saturated by the ground states.
- (B) Sum rules hold in the static limit and might change for finite quark masses.
- (C) Sum rules make statements about $\tau_{1/2}(w=1)$ and $\tau_{3/2}(w=1)$; to obtain decay rates, however, one has to integrate over w.

Phenomenological models:

- Models might give a wrong answer.
- Most probable scenario: a combination of (A), (B) and (C).

1/2 versus 3/2: possible explanations (2)

- A lattice calculation of $\tau_{1/2}$ and $\tau_{3/2}$ could shed some light on this puzzle.
- Exploratory quenched lattice study confirmed the theory side:

```
	au_{1/2}(1) = 0.38(4), 	au_{3/2}(1) = 0.53(8). [D. Becirevic et al., Phys. Lett. B 609, 298 (2005) [arXiv:hep-lat/0406031]]
```

• In the following I will report about the first unquenched lattice calculation of $\tau_{1/2}(1)$ and $\tau_{3/2}(1)$.

```
[B. Blossier, M. Wagner and O. Pene [ETM Collaboration], JHEP 0906, 022 (2009) [arXiv:0903.2298 [hep-lat]]]
```

Lattice calculation of $\tau_{1/2}$ and $\tau_{3/2}$ (1)

• The "Isgur-Wise relations"

$$\langle D_0^{1/2}(v')|\bar{c}\gamma_5\gamma_\mu b|B(v)\rangle \propto \tau_{1/2}(w)(v-v')_\mu$$

$$\langle D_2^{3/2}(v',\epsilon)|\bar{c}\gamma_5\gamma_\mu b|B(v)\rangle \propto \tau_{3/2}(w)\Big((w+1)\epsilon_{\mu\alpha}^*v^\alpha - \epsilon_{\alpha\beta}^*v^\alpha v^\beta v'_\nu\Big).$$

are note directly useful to compute $\tau_{1/2}(1)$ and $\tau_{3/2}(1)$.

 They can be rewritten in the following form, which is directly accessible to a lattice calculation:

$$\langle D_0^{1/2}(v)|\bar{c}\gamma_5\gamma_j D_k b|B(v)\rangle = -ig_{jk}\Big(m(D_0^{1/2}) - m(B)\Big)\tau_{1/2}(1)$$

$$\langle D_2^{3/2}(v,\epsilon)|\bar{c}\gamma_5\gamma_j D_k b|B(v)\rangle = +i\sqrt{3}\epsilon_{jk}\Big(m(D_2^{3/2}) - m(B)\Big)\tau_{3/2}(1).$$

[A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys. Rev. D 57, 308 (1998) [arXiv:hep-ph/9705467]]

Lattice calculation of $\tau_{1/2}$ and $\tau_{3/2}$ (2)

We compute

$$\begin{split} &\langle D_0^{1/2}(v)|\bar{c}\gamma_5\gamma_jD_kb|B(v)\rangle &= -ig_{jk}\Big(m(D_0^{1/2})-m(B)\Big)\tau_{1/2}(1) \\ &\text{via} \\ &\tau_{1/2}(1) &= \lim_{t_0-t_1\to\infty,\,t_1-t_2\to\infty}\tau_{1/2,\text{effective}}(t_0-t_1,t_1-t_2) \\ &\tau_{1/2,\text{effective}}(t_0-t_1,t_1-t_2) &= \\ &= &\frac{1}{Z_{\mathcal{D}}}\Big|\frac{N(P_-)\ N(S)\ \left\langle \left(\mathcal{O}^{(P_-)}(t_0)\right)^\dagger \left(\bar{Q}\gamma_5\gamma_3D_3Q\right)(t_1)\ \mathcal{O}^{(S)}(t_2)\right\rangle}{\left(m(P_-)-m(S)\right)\ \left\langle \left(\mathcal{O}^{(P_-)}(t_0)\right)^\dagger\mathcal{O}^{(P_-)}(t_1)\right\rangle\ \left\langle \left(\mathcal{O}^{(S)}(t_1)\right)^\dagger\mathcal{O}^{(S)}(t_2)\right\rangle}\Big|. \end{split}$$

- We need:
 - Static-light meson creation operators $\mathcal{O}^{(S)}$, $\mathcal{O}^{(P_{-})}$, $\mathcal{O}^{(P_{+})}$.
 - Static-light meson masses m(S), $m(P_{-})$ and $m(P_{+})$.
 - 2-point and 3-point functions (and norms N(S), $N(P_{-})$, $N(P_{+})$).

Simulation setup (1)

- Lattice volume: $L^3 \times T = 24^3 \times 48$.
- Gauge action: tree-level Symanzik improved,

$$S_{G}[U] = \frac{\beta}{6} \left(b_{0} \sum_{x,\mu \neq \nu} \text{Tr} \left(1 - P^{1 \times 1}(x; \mu, \nu) \right) + b_{1} \sum_{x,\mu \neq \nu} \text{Tr} \left(1 - P^{1 \times 2}(x; \mu, \nu) \right) \right),$$

$$b_{0} = 1 - 8b_{1}, b_{1} = -1/12.$$

• Gauge coupling $\beta = 3.9$ corresponds to $a = 0.0855 \, \mathrm{fm}$.

Simulation setup (2)

• Fermionic action: Wilson twisted mass, $N_f = 2$ degenerate flavors,

$$S_{\mathrm{F}}[\chi, \bar{\chi}, U] = a^4 \sum_{x} \bar{\chi}(x) \Big(D_{\mathrm{W}} + i \mu_{\mathrm{q}} \gamma_5 \tau_3 \Big) \chi(x)$$

$$D_{\mathrm{W}} = \frac{1}{2} \Big(\gamma_{\mu} (\nabla_{\mu} + \nabla_{\mu}^*) - a \nabla_{\mu}^* \nabla_{\mu} \Big) + m_0$$

(m_0 : untwisted mass; μ_q : twisted mass; τ_3 : third Pauli matrix acting in flavor space).

• Relation between the physical basis ψ and the twisted basis χ (in the continuum):

$$\psi = \frac{1}{\sqrt{2}} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big) \chi$$

$$\bar{\psi} = \frac{1}{\sqrt{2}} \bar{\chi} \Big(\cos(\omega/2) + i \sin(\omega/2) \gamma_5 \tau_3 \Big)$$

(ω : twist angle; $\omega = \pi/2$: maximal twist).

Simulation setup (3)

- Untwisted mass m_0 , tuned to maximal twist $(\kappa = 1/(8 + 2m_0) = 0.160856)$
 - \rightarrow "automatic $\mathcal{O}(a)$ improvement of physical quantities".

$\mu_{ m q}$	$m_{ m PS}$ in MeV	number of gauge configurations
0.0040	314(2)	1400
0.0064	391(1)	1450
0.0085	448(1)	1350

Static and light quark propagators

Static quark propagators:

$$\left\langle Q(x)\bar{Q}(y)\right\rangle_{Q,\bar{Q}} =$$

$$= \delta^{(3)}(\mathbf{x} - \mathbf{y})U^{(\text{HYP2})}(x;y)\left(\Theta(y_0 - x_0)\frac{1 - \gamma_0}{2} + \Theta(x_0 - y_0)\frac{1 + \gamma_0}{2}\right).$$

- Essentially Wilson lines in time direction.
- HYP2 static action to improve the signal-to-noise ratio.
- Light quark propagators:
 - Stochastic timeslice propagators.

Static-light meson creation operat

• In the continuum, physical basis:

$$\mathcal{O}^{(\Gamma)}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \int d\hat{\mathbf{n}} \, \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + r\hat{\mathbf{n}}) \psi^{(u)}(\mathbf{x} + r\hat{\mathbf{n}}).$$

- $-\bar{Q}(\mathbf{x})$ creates an infinitely heavy i.e. static antiquark at position \mathbf{x} .
- $-\psi^{(u)}(\mathbf{x}+r\hat{\mathbf{n}})$ creates a light quark at position $\mathbf{x}+r\hat{\mathbf{n}}$ separated by a distance d from the static antiquark.
- The spatial parallel transporter

$$U(\mathbf{x}; \mathbf{x} + d\hat{\mathbf{n}}) = P \left\{ \exp \left(+i \int_{\mathbf{x}}^{\mathbf{x} + d\hat{\mathbf{n}}} dz_j A_j(\mathbf{z}) \right) \right\}$$

connects the antiquark and the quark in a gauge invariant way via gluons.

- The integration over the unit sphere $\int d\hat{\mathbf{n}}$ combined with a suitable weight factor $\Gamma(\hat{\mathbf{n}})$ yields well defined total angular momentum J and parity $\mathcal{P}\left(\Gamma(\hat{\mathbf{n}})\right)$ is a combination of spherical harmonics [\rightarrow angular momentum] and γ -matrices [\rightarrow spin]; Wigner-Eckart theorem).

Static-light meson creation operat

• In the continuum, physical basis:

$$\mathcal{O}^{(\Gamma)}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \int d\hat{\mathbf{n}} \, \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + r\hat{\mathbf{n}}) \psi^{(u)}(\mathbf{x} + r\hat{\mathbf{n}}).$$

• List of operators (J: total angular momentum; j: total angular momentum of the light cloud; \mathcal{P} : parity):

$\Gamma(\hat{\mathbf{n}})$	$J^{\mathcal{P}}$	$j^{\mathcal{P}}$	$O_{\rm h}$	lattice $j^{\mathcal{P}}$	notation
γ_5	0-	$(1/2)^{-}$	A_1	$(1/2)^-$, $(7/2)^-$,	S
1	0+	$(1/2)^+$		$(1/2)^+$, $(7/2)^+$,	P_{-}
$\gamma_1 \hat{n}_1 - \gamma_2 \hat{n}_2$ (cyclic)	2+	$(3/2)^+$	E	$(3/2)^+$, $(5/2)^+$,	P_{+}
$\gamma_5(\gamma_1\hat{n}_1-\gamma_2\hat{n}_2)$ (cyclic)	2-	$(3/2)^{-}$		$(3/2)^-$, $(5/2)^-$,	D_{\pm}

• On the lattice, twisted basis:

$$\mathcal{O}^{(\Gamma)}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \sum_{\mathbf{n} = \pm \hat{\mathbf{e}}_1, \pm \hat{\mathbf{e}}_2, \pm \hat{\mathbf{e}}_3} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + r\mathbf{n}) \chi^{(u)}(\mathbf{x} + r\mathbf{n}).$$

Static-light meson creation operators (3)

On the lattice, twisted basis:

$$\mathcal{O}^{(\Gamma)}(\mathbf{x}) = \bar{Q}(\mathbf{x}) \sum_{\mathbf{n} = \pm \hat{\mathbf{e}}_1, \pm \hat{\mathbf{e}}_2, \pm \hat{\mathbf{e}}_3} \Gamma(\hat{\mathbf{n}}) U(\mathbf{x}; \mathbf{x} + r\mathbf{n}) \chi^{(u)}(\mathbf{x} + r\mathbf{n}).$$

- Due to the twisted basis each operator creates both a $\mathcal{P}=+$ part and a $\mathcal{P}=-$ part (e.g. $\bar{Q}\gamma_5\chi\approx(\bar{Q}\gamma_5\psi-i\bar{Q}\psi)/\sqrt{2}$).
- Smearing techniques to optimize the ground state overlaps:
 - * APE smearing for spatial links U.
 - * Gaussian smearing for light quark fields $\chi^{(u)}$.

Static-light meson masses (1)

• Consider 2×2 correlation matrices:

$$\mathcal{C}_{JK}(t) = \left\langle \left(\mathcal{O}^{(\Gamma_J)}(t) \right)^{\dagger} \mathcal{O}^{(\Gamma_K)}(0) \right\rangle.$$

- For S and P_- , $\Gamma_J \in \{\gamma_5, 1\}$.
- For P_+ , $\Gamma_J \in \{ \gamma_1 \hat{n}_1 \gamma_2 \hat{n}_2 , \gamma_5 (\gamma_1 \hat{n}_1 \gamma_2 \hat{n}_2) \}$.
- Solve a generalized eigenvalue problem:

$$C_{JK}(t)v_K^{(n)}(t) = C_{JK}(t_0)v_K^{(n)}(t)\lambda^{(n)}(t,t_0).$$

• Determine static-light meson masses from effective mass plateaus:

$$m_{\text{effective}}^{(n)}(t) = \ln\left(\frac{\lambda^{(n)}(t,t_0)}{\lambda^{(n)}(t+1,t_0)}\right).$$

Static-light meson masses (2)

• The generalized eigenvalue problem,

$$C_{JK}(t)v_K^{(n)}(t) = C_{JK}(t_0)v_K^{(n)}(t)\lambda^{(n)}(t,t_0),$$

also yields appropriate linear combinations of twisted basis meson creation operators with well defined parity:

$$\mathcal{O}^{(S)} = v_{\gamma_{5}}^{(S)}(t)\mathcal{O}^{(\gamma_{5})} + v_{1}^{(S)}(t)\mathcal{O}^{(1)}
\mathcal{O}^{(P_{-})} = v_{\gamma_{5}}^{(P_{-})}(t)\mathcal{O}^{(\gamma_{5})} + v_{1}^{(P_{-})}(t)\mathcal{O}^{(1)}
\mathcal{O}^{(P_{+})} = v_{\gamma_{x}\hat{n}_{x} - \gamma_{y}\hat{n}_{y}}^{(P_{+})}(t)\mathcal{O}^{(\gamma_{x}\hat{n}_{x} - \gamma_{y}\hat{n}_{y})} + v_{\gamma_{5}(\gamma_{x}\hat{n}_{x} - \gamma_{y}\hat{n}_{y})}^{(P_{+})}(t)\mathcal{O}^{(\gamma_{5}(\gamma_{x}\hat{n}_{x} - \gamma_{y}\hat{n}_{y}))}.$$

2-point functions, ground state norms

• 2-point functions are now straightforward to compute:

$$\left\langle \left(\mathcal{O}^{(S)}(t) \right)^{\dagger} \mathcal{O}^{(S)}(0) \right\rangle \quad , \quad \left\langle \left(\mathcal{O}^{(P_{-})}(t) \right)^{\dagger} \mathcal{O}^{(P_{-})}(0) \right\rangle \quad , \quad \left\langle \left(\mathcal{O}^{(P_{+})}(t) \right)^{\dagger} \mathcal{O}^{(P_{+})}(0) \right\rangle.$$

• Ground state norms N(S), $N(P_{-})$ and $N(P_{+})$ by fitting exponentials at large temporal separations, e.g. $N(S)^{2}e^{-mt}$ to $\langle (\mathcal{O}^{(S)}(t))^{\dagger}\mathcal{O}^{(S)}(0)\rangle$.

3-point functions, $au_{1/2}$ and $au_{3/2}$

• Compute the Isgur-Wise function

$$\tau_{1/2}(1) = \left| \frac{\langle P_- | \bar{Q} \gamma_5 \gamma_3 D_3 Q | S \rangle}{m(P_-) - m(S)} \right|$$

via "effective form factors":

$$\tau_{1/2}(1) = \lim_{t_0 - t_1 \to \infty, t_1 - t_2 \to \infty} \tau_{1/2, \text{effective}}(t_0 - t_1, t_1 - t_2)
\tau_{1/2, \text{effective}}(t_0 - t_1, t_1 - t_2) =$$

$$= \frac{1}{Z_D} \left| \frac{N(P_-) \ N(S) \ \left\langle \left(\mathcal{O}^{(P_-)}(t_0) \right)^{\dagger} \ (\bar{Q}\gamma_5 \gamma_3 D_3 Q)(t_1) \ \mathcal{O}^{(S)}(t_2) \right\rangle}{\left(m(P_-) - m(S) \right) \ \left\langle \left(\mathcal{O}^{(P_-)}(t_0) \right)^{\dagger} \mathcal{O}^{(P_-)}(t_1) \right\rangle \ \left\langle \left(\mathcal{O}^{(S)}(t_1) \right)^{\dagger} \mathcal{O}^{(S)}(t_2) \right\rangle} \right|.$$

• $\tau_{3/2}(1)$ analogously: replace

$$P_- \rightarrow P_+ , \quad \gamma_3 D_3 \rightarrow \frac{\gamma_5(\gamma_1 D_1 - \gamma_2 D_2)}{\sqrt{6}}.$$

3-point functions, $au_{1/2}$ and $au_{3/2}$ (2)

 \bullet Z_D in

$$\tau_{1/2,\text{effective}}(t_{0} - t_{1}, t_{1} - t_{2}) = \frac{1}{Z_{\mathcal{D}}} \left| \frac{N(P_{-}) \ N(S) \ \left\langle \left(\mathcal{O}^{(P_{-})}(t_{0})\right)^{\dagger} \ (\bar{Q}\gamma_{5}\gamma_{3}D_{3}Q)(t_{1}) \ \mathcal{O}^{(S)}(t_{2}) \right\rangle}{\left(m(P_{-}) - m(S)\right) \ \left\langle \left(\mathcal{O}^{(P_{-})}(t_{0})\right)^{\dagger} \mathcal{O}^{(P_{-})}(t_{1}) \right\rangle \ \left\langle \left(\mathcal{O}^{(S)}(t_{1})\right)^{\dagger} \mathcal{O}^{(S)}(t_{2}) \right\rangle} \right|.$$

is the renormalization constant of the heavy-heavy current $\bar{Q}\gamma_5\gamma_3D_3Q$, i.e.

$$(\bar{Q}\gamma_5\gamma_3D_3Q)^R = \frac{(\bar{Q}\gamma_5\gamma_3D_3Q)^B}{Z_D},$$

to first order in perturbation theory.

- Analytical formulae long and "complicated".
- Tree-level Symanzik improved gauge action, HYP2 static action: $Z_D=0.976$.

3-point functions, $au_{1/2}$ and

• Results for various light quark masses:

	$t_0 - t_2 = 10$					
$\mu_{ m q}$	$ au_{1/2}(1)$	$ au_{3/2}(1)$	$(\tau_{3/2})^2 - (\tau_{1/2})^2$			
0.0040	0.299(14)		0.180(16)			
0.0064	0.312(10)	0.538(13)	0.193(13)			
0.0085	0.308(12)	0.522(8)	0.177(9)			

• The Uraltsev sum rule,

$$\sum_{n} \left| \tau_{3/2}^{(n)}(1) \right|^2 - \left| \tau_{1/2}^{(n)}(1) \right|^2 = \frac{1}{4},$$

is almost fulfilled by the ground state contributions $au_{1/2}^{(0)}(1) \equiv au_{1/2}(1)$ and $au_{3/2}^{(0)}(1) \equiv au_{3/2}(1)$.

Extrapolation to the u/d quark mass

• Linear extrapolation in $(m_{PS})^2$ to the u/d quark mass $m_{PS} = 135 \,\mathrm{MeV}$:

$$-\tau_{1/2} = 0.296(26).$$

$$-\tau_{3/2}=0.526(23).$$

Conclusions

- First dynamical lattice computation of the Isgur-Wise functions $au_{1/2}(1)$ and $au_{3/2}(1)$:
 - $-\tau_{1/2}(1) = 0.296(26), \ \tau_{3/2}(1) = 0.526(23).$
 - This indicates $\Gamma(B \to D_{0.1}^{1/2} \, l \, \nu) < \Gamma(B \to D_{1.2}^{3/2} \, l \, \nu)$ in the static limit.
 - Expectation from sum rules confirmed:
 - * Uraltsev sum rule is approximately fulfilled by the ground states.
 - * $\tau_{1/2}(1) \ll \tau_{3/2}(1)$.
 - * Numerical values in agreement with sum rule expectation.
 - Phenomenological models qualitatively and quantitatively confirmed.
 - Experiment:
 - * Fair agreement with the experimentally measured $\tau_{3/2}(1) \approx 0.75$.
 - * No agreement with the experimentally measured $au_{1/2}(1) pprox 1.28$.
 - [D. Liventsev et al. [Belle Collaboration], Phys. Rev. D 77, 091503 (2008)
 [arXiv:0711.3252 [hep-ex]]]