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We present the first determination of the energy dependence of the B-D̄ and B∗-D̄ isospin-0,
S-wave scattering amplitudes both below and above the thresholds using lattice QCD, which allows
us to investigate rigorously whether mixed bottom-charm b̄c̄ud tetraquarks exist as bound states or
resonances. The scattering phase shifts are obtained using Lüscher’s method from the energy spectra
in two different volumes. To ensure that no relevant energy level is missed, we use large, symmetric
7×7 and 8×8 correlation matrices that include, at both source and sink, B(∗)-D̄ scattering operators
with the lowest three or four possible back-to-back momenta in addition to local b̄c̄ud operators. We
fit the energy dependence of the extracted scattering phase shifts using effective-range expansions.
We observe sharp peaks in the B(∗)-D̄ scattering rates close to the thresholds, which are associated
with shallow bound states, either genuine or virtual, a few MeV or less below the B(∗)-D̄ thresholds.
In addition, we find hints for resonances with masses of order 100 MeV above the thresholds and
decay widths of order 200 MeV.

The majority of experimentally observed mesons can
be understood in the quark model as quark-antiquark
pairs. However, mesons, which are hadrons with in-
teger spin, can in principle also be composed of two
quarks and two antiquarks. The existence of these so-
called tetraquarks had already been proposed in the early
history of the quark model and QCD [1–3], but clear
experimental confirmation was obtained only around a
decade ago, for example in form of the observation of
the charged Zc and Zb states as reviewed in Refs. [4, 5].
While the masses and decays of the latter strongly in-
dicate the presence of a c̄c pair or a b̄b pair, their
non-vanishing electric charge implies additionally a light
quark-antiquark pair. Recently, there was another exper-
imental breakthrough in the field, namely the detection
of the Tcc tetraquark with quark flavors c̄c̄ud by LHCb
[6, 7]. In contrast to previously observed tetraquarks
and tetraquark candidates, its mass is slightly below
the lowest meson-meson threshold, making it by far the
longest-lived experimentally confirmed tetraquark. Fol-
lowing the observation of this doubly-charm tetraquark,
possible next targets for experimental searches could
be mixed bottom-charm tetraquarks with flavor content
b̄c̄ud. Their production cross section at the LHC is es-
timated to be about 40 times larger compared to the
doubly-bottom b̄b̄ud tetraquark [8]. The experimental
signatures of a tetraquark are completely different de-
pending on whether its mass is above or below the lowest

strong-decay threshold. Thus, reliable theoretical predic-
tions concerning b̄c̄ud tetraquarks are very important and
also urgent.

On the theoretical side, for the lightest b̄b̄ud tetraquark
with I(JP ) = 0(1+) (which is the bottom-quark partner
of the previously mentioned Tcc), there is a consensus
from recent lattice-QCD calculations that it is deeply
bound [9–15] and will decay through the weak interac-
tion only (see Refs. [8, 16, 17] for discussions of possible
decay modes). For the case of b̄c̄ud, there is no such
consensus. After finding initial hints for a possible QCD-
stable b̄c̄ud bound state with I(JP ) = 0(1+) from lattice
QCD [18], the same authors refined their calculation with
larger lattice sizes and other improvements, and the hints
disappeared [19]. In Ref. [13], some of us also performed
lattice-QCD calculations of the b̄c̄ud energy spectra for
both I(JP ) = 0(1+) and I(JP ) = 0(0+), and we likewise
did not find any evidence for QCD-stable bound states
(although we could not rule out a shallow bound state).
In contrast, another independent group very recently re-
ported an I(JP ) = 0(1+), b̄c̄ud bound state 43

(
+7
−6

) (
+24
−14

)
MeV below the B∗-D̄ threshold based on their lattice-
QCD study [20], in which the B∗-D̄ scattering length was
determined using the Lüscher method [21–24] applied to
the ground state. Non-lattice approaches also do not
show a consistent picture. While Refs. [25–36] predict a
QCD-stable b̄c̄ud tetraquark, Refs. [37–42] reached the
opposite conclusion.
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In the following, we present a new lattice-QCD study
of the b̄c̄ud systems with both I(JP ) = 0(1+) and
I(JP ) = 0(0+). This study uses a different lattice setup
and substantially more advanced methods compared to
previous work, allowing us to apply the Lüscher method
to multiple excited states in addition to the ground state
and hence to reliably determine the detailed energy de-
pendence of the B-D̄ and B∗-D̄ isospin-0, S-wave scat-
tering amplitudes.

In lattice QCD, the low-lying finite-volume energy lev-
els with a given set of quantum numbers (the total spatial
momentum, the quark flavor content, and the irreducible
representation of the full octahedral group) are extracted
from numerical results for imaginary-time two-point cor-
relation functions Cij(t) = ⟨Oi(t)O†

j(0)⟩. The operators
Oi are constructed out of quark and gluon fields such
that they excite states with the desired quantum num-
bers, which resemble the low-lying energy eigenstates of
interest. For an infinite (in practice, large) time ex-
tent of the lattice, the two-point function is equal to
Cij(t) =

∑
n⟨Ω|Oi(0)|n⟩⟨n|O†

j(0)|Ω⟩ e−Ent, where |Ω⟩
is the vacuum state and the sum is over all eigenstates
|n⟩ of the finite-volume QCD Hamiltonian for which the
product of overlap matrix elements is nonzero. By ana-
lyzing the time dependence of the numerical results for
Cij(t), the energies En can be extracted. Because lat-
tice QCD uses a Monte-Carlo sampling of the Euclidean
path integral, the numerical results have statistical un-
certainties. Moreover, these uncertainties typically grow
exponentially with t.

For multi-quark systems, experience has shown that
the simplest possible operator choices in which the quark
fields are combined at the same spacetime point (“lo-
cal” operators) are often insufficient to reliably extract
even just the ground state [43]. The reason is that all
or most of the energy levels resemble multi-hadron states
with specific relative momenta, and the spectrum of such
states in the case of heavy-quark systems is particularly
dense. Among the previous lattice studies of b̄c̄ud sys-
tems, Refs. [18–20] used only local four-quark operators
with various types of smearing (local, wall, box) applied
to each quark. Reference [13] improved upon this by
including also two-meson (B-D̄ and B∗-D̄) “scattering”
operators, that is, operators with each meson individ-
ually projected to a specific momentum (equal to zero
only, in this case). These operators were included at the
sink only, to avoid having to generate expensive all-to-
all light-quark propagators. The work presented in the
following no longer makes this restriction and is the first
lattice-QCD calculation of b̄c̄ud correlation matrices with
B(∗)-D̄ scattering operators at both source and sink, and
also the first to include B(∗)-D̄ scattering operators with
nonzero back-to-back momenta.

Specifically, to study the b̄c̄ud system with I(JP ) =

0(0+), we use seven operators OA+
1

1...7, of which OA+
1

1

Ensemble N3
s ×Nt a [fm] m

(sea)
π [MeV] m

(val)
π [MeV]

a12m220S 243 × 64 0.1202(12) 218.1(4) 225.0(2.3)
a12m220 323 × 64 0.1184(10) 216.9(2) 227.9(1.9)

TABLE I. The main properties of the two gauge-link ensem-
bles used in this work. Here, Ns and Nt are the numbers of
lattice sites in spatial and temporal directions, a is the lat-

tice spacing from the r1 scale [44], m
(sea)
π is the mass of the

lightest pion formed by the HISQ sea quarks (scale set using

fp4s) [44], and m
(val)
π is the mass of the pion constructed with

the clover-Wilson valence quarks [45, 46]. Because the bare
action parameters of both ensembles are identical, we use the
weighted average lattice spacing a = 0.11887(80) fm for both
ensembles.

through OA+
1

3 are operators with all four quarks at the
same spacetime point (but with Gaussian smearing of
the quark fields) and jointly projected to zero total spa-

tial momentum, and OA+
1

4 through OA+
1

7 are B-D̄ scatter-
ing operators with zero total spatial momentum in which
the B and D̄ operators have back-to-back momenta of
magnitudes 0, 2π/L,

√
2 · 2π/L, and

√
3 · 2π/L (L is

the spatial lattice size). Similarly, for the b̄c̄ud system

with I(JP ) = 0(1+), we use eight operators OT+
1

1...8, of

which OT+
1

1 through OT+
1

4 are local four-quark operators

and OT+
1

5 through OT+
1

8 are B∗-D̄ scattering operators in
which the B∗ and D̄ have back-to-back momenta of mag-

nitudes 0, 2π/L (for both OT+
1

6 and OT+
1

7 ), and
√
2 ·2π/L.

Two different operators are used for the case with one
unit of back-to-back momentum to account for the mix-
ing of S and D partial waves [47]. The labels A+

1 and
T+
1 refer to the octahedral-group irreps of positive par-

ity that contain the angular momenta J = 0, 4, ... and
J = 1, 3, ..., respectively. The explicit definitions of all
operators are given in the supplemental material. We
compute the symmetric 7 × 7 and 8 × 8 correlation ma-
trices of these operators, using combinations of (Gaus-
sian smeared) point-to-all and stochastic timeslice-to-all
propagators [48].

Our calculation uses the mixed-action setup that
was tested and used successfully by the PNDME col-
laboration for nucleon-structure computations [45, 46].
This setup employs gauge configurations generated with
2+1+1 flavors of highly improved staggered (HISQ) sea
quarks by the MILC collaboration [44], but uses the
clover-improved Wilson action with HYP-smeared gauge
links for the valence light quarks. Here we include two
ensembles that differ only in the spatial lattice extent;
their main properties are given in Table I. We set the
bare valence light-quark mass to aml = −0.075 and the
clover coefficient to cSW = 1.05091 [45, 46]. We imple-
ment the valence charm quarks with the same form of
clover-Wilson action and same value of cSW, but with
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mass parameter tuned according to the Fermilab method
to eliminate the main heavy-quark discretization errors
[49]. That is, the bare mass is tuned such that the

spin-averaged kinetic D̄-meson mass mspinav

D̄,kin
= (mD̄,kin+

3mD̄∗,kin)/4 matches its experimental value [50]; this con-
dition is satisfied for our final choice amc = 0.6835775 at
the 3% level. For the valence bottom quarks, we use
order-v4 lattice NRQCD with tadpole improvement and
order-αs corrections to the matching coefficients for the
kinetic terms; all parameters are given in Ref. [51]. The
resulting spin-averaged kinetic B-meson mass is within
4% of the experimental value [50] (see the supplemental
material for details).

We computed the b̄c̄ud correlation matrices for 1020
and 1000 gauge configurations of ensemble a12m220S
and a12m220, respectively, with 30 source locations per
configuration for the elements computed using (Gaus-
sian smeared) point-source propagators, and 3 random
Z2 × Z2 sources on 4 timeslices per configuration for the
elements computed with (Gaussian smeared) stochastic
propagators; we also use color and spin dilution and the
one-end trick [48]. To extract the b̄c̄ud finite-volume
energy levels from these correlation matrices, we follow
the well-established approach of solving the generalized
eigenvalue problem (GEVP) [22, 52]∑

j

Cij(t)vj,n(t, t0) = λn(t, t0)
∑
j

Cij(t0)vj,n(t, t0), (1)

where we set t0/a = 3 and verified that the results do
not significantly depend on this choice. We then perform
single-exponential fits of the form λn(t, t0) = Ane

−Ent to
obtain the energy levels En; see the supplemental mate-
rial for further details.

Our results for the lowest five energy levels of each
b̄c̄ud system are shown as a function of the spatial lattice
size Ns = L/a in Fig. 1. Also shown are the lowest
four noninteracting B(∗)-D̄ energy levels, calculated as
E = EB(∗)(p2) +ED̄(p2) with momenta p satisfying the
periodic boundary conditions [each component an integer
multiple of 2π/L], and with the single-meson energies
calculated on the lattice and described by the dispersion
relations

EB(∗)(p2) =EB(∗)(0) +
√

m2
B(∗),kin

+ p2 −mB(∗),kin,

ED(p2) =ED̄(0) + p2/(2mD̄,kin)− p4/(8m3
D̄,4). (2)

The values of EB(∗)(0), mB(∗),kin, ED̄(0), mD̄,kin, and
mD̄,4 are provided in the supplemental material. In Fig. 1

we see that the actual b̄c̄ud energy levels are shifted sig-
nificantly relative to the noninteracting levels due to the
meson-meson interactions in the finite volume, except for
the third level in the case of J = 1 (we discuss the rea-
son for this behavior farther below). Moreover, for both
J = 0 and J = 1, the number of observed levels in the

FIG. 1. Left: The finite-volume energies of the b̄c̄ud sys-
tem with I(JP ) = 0(0+) as a function of the spatial lattice
size. The data points with error bars show the actual finite-
volume energy levels; points plotted with a lighter shade of
gray are excluded from the Lüscher analysis. The solid blue
curves correspond to what would be the noninteracting B-D̄
energy levels, the lowest of which coincides with the strong-
decay threshold. The dashed green line shows the B∗-D̄∗

threshold. Right: The corresponding plot for I(JP ) = 0(1+).
Here, the solid blue curves correspond to what would be the
noninteracting B∗-D̄ energy levels, and the dashed green line
corresponds to the B-D̄∗ threshold. In this case, the sec-
ond noninteracting energy level (as well as higher levels not
shown) is degenerate since both S and D waves contribute to
the quantum numbers JP = 1+ for pseudoscalar-vector scat-
tering; the label {2} shows the multiplicity.

energy range considered here is larger than in the nonin-
teracting case by one, which is a first hint for the exis-
tence of a pole in the scattering amplitude. The observed
ground-state energies are only a few MeV below thresh-
old, but the first excited-state energies are far below the
|p| = 2π/L noninteracting two-meson levels and will ul-
timately be identified as the |p| = 0 levels for large L if
there are shallow bound states.

To rigorously investigate whether bound states or res-
onances exist, we map the observed finite-volume energy
levels En to infinite-volume S-wave B(∗)-D̄ scattering
phase shifts δ0(kn) using the Lüscher quantization con-
dition

cot δ0(kn) =
2Z00(1; (knL/2π)

2)

π1/2knL
, (3)

where Z00 is the generalized zeta function [23] and kn is
the scattering momentum associated with energy level
En, calculated from En = EB(∗)(k2n) + ED̄(k2n) with
the dispersion relations (2). To ensure that the single-
channel, single-partial-wave approximation is applicable,
we only extract the phase shifts for the energy levels be-
low the B∗-D̄∗ (J = 0) and B-D̄∗ (J = 1) thresholds.
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∆mBS [MeV] ∆mR [MeV] ΓR [MeV]
J=0 −0.5(0.9) 138(13) 229(35)
J=1 −2.4(2.9) 67(24) 132(32)

TABLE II. Our results for the b̄c̄ud bound-state (BS) and
resonance (R) pole locations, where ∆mBS = mBS −mB(∗) −
mD̄, ∆mR = Re(

√
sR)−mB(∗) −mD̄, and ΓR = −2Im(

√
sR).

Only the statistical uncertainties are given.

Furthermore, for J = 1, we observe that the third finite-
volume energy level is consistent with the noninteracting
|p| = 2π/L energy level that has multiplicity 2 once in-
cluding both S-wave and D-wave structures, as we did
in our operator basis. Because finite-volume interactions
for higher partial waves are suppressed, we conclude that
this energy level is dominantly D-wave, and we there-
fore exclude it from the Lüscher analysis. This is fur-
ther corroborated by the eigenvectors from the GEVP,
which show that this state has a non-negligible overlap

only with the operator OT+
1

7 that was subduced from a
D-wave structure.

Our results for the scattering phase shifts, along with
effective-range expansion (ERE) fits of the form

k cot δ0(k) =
1

a0
+

1

2
r0k

2 + b0k
4, (4)

are shown in Fig. 2 (Left). The numerical values of the
fitted ERE parameters are given in the supplemental ma-
terial. The scattering phase shift is related to the S-wave
scattering amplitude and cross section by

T0(k) =
1

cot δ0(k)− i
, σ(k) =

4π

k2
|T0(k)|2. (5)

Poles of T0(k) at purely imaginary k correspond to gen-
uine or virtual bound states for Im(k) > 0 or Im(k) < 0,
respectively, while poles with Re(k) ̸= 0 and Im(k) < 0
correspond to resonances. Using our ERE fits, we find
genuine bound-state poles as well as resonance poles for
both J = 0 and J = 1 at the values of

√
s − √

sth =√
m2

B(∗) + k2 +
√

m2
D̄
+ k2 − mB(∗) − mD̄ given in Ta-

ble II (s denotes the Mandelstam variable equal to the
square of the center-of-momentum energy). We used our
lattice results for the kinetic B(∗) and D̄ masses to eval-
uate this expression; to obtain predictions for absolute
tetraquark bound state or resonance masses, one simply
needs to add the experimental value of the threshold en-
ergy, mexp

B(∗) +mexp
D̄

.
The resonances have masses of order 100 MeV above

the B(∗)-D̄ thresholds and decay widths of order 200
MeV. We caution that the resonance poles lie outside
the radius of convergence of the ERE, which is limited
by the presence of a left-hand cut associated with two-
pion t-channel exchange in the scattering process (single-
pion exchange would require a D∗ in the initial or final

state, and is therefore not relevant here). The center-of-
momentum energy at which the left-hand cut starts is ob-
tained from the kinematic relations for the Mandelstam
variables by expressing s in terms of t and the scattering
angle θ∗, and then setting t = (2mπ)

2 and θ∗ = π [54];
this gives

√
scut −

√
sth ≈ −18 MeV for both J = 0 and

J = 1, corresponding to (ak)2cut ≈ −0.019, as indicated
with the magenta lines in Fig. 2. While our ERE fit is
seen to describe the data very well for real (ak)2 in the
full momentum range, the prediction of resonance poles
away from the real axis may be less reliable. To test the
stability, we also performed ERE fits through order k6.
The coefficients of k6 are found to be consistent with zero
within the statistical uncertainties, and the other param-
eters remain consistent with those from the order-k4 fit.
For J = 0, the resonance pole obtained from the order-
k6 fit is at a similar location. For J = 1, where we have
fewer data points, the uncertainties from the k6 fit are
too large to determine the pole locations.

The bound-state poles are extremely close to thresh-
old and therefore well within the region of validity of the
ERE. However, their nature could change through sta-
tistical fluctuations, as can be seen from the ±

√
−(ak)2

parabolas in Fig. 2 (Left). For both J = 0 and J = 1,
an upward fluctuation of our k cot δ0(k) curve would
turn the genuine bound state into a virtual bound state,
which is not an asymptotic state in QCD but would still
strongly affect the B(∗)-D̄ scattering rates near threshold
[55]. For J = 0, a downward fluctuation by ≲ 3σ would
still preserve the genuine bound state, while for J = 1
already a ∼ 1σ downward fluctuation would lead to the
disappearance of the pole. To further test our prediction
of shallow bound states, we performed additional ERE
fits of order k0 and order k2 using only the three data
points closest to threshold, which are within the strict
radius of convergence of the ERE. These fits give consis-
tent results for the bound-state masses, and the order-k0

fits yield even higher statistical significance for the ex-
istence of the (genuine or virtual) shallow bound states.
The details of these fits are shown in the supplemental
material.

Returning to the discussion of our main fits as shown
in Fig. 2, we note that, in addition to the shallow-bound-
state and the broad-resonance poles, we find poles with
purely imaginary k far below threshold (and on the left-
hand cut) that violate the bound-state consistency con-
dition discussed in Ref. [56] and therefore do not cor-
respond to physical states (bound states this far below
threshold are also ruled out by the absence of correspond-
ing finite-volume energy levels).

The scattering rate (probability per time) is equal to
the product of flux and cross section, and hence propor-
tional to k σ(k) for nonrelativistic k. These products are
shown in Fig. 2 (Right) as a function of the center-of-
momentum energy. We emphasize that the scattering
rates only depend on our fit functions for real-valued k2
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FIG. 2. Left: Our results for the functions ak cot δ0(k) for S-wave B-D̄ scattering (top) and S-wave B∗-D̄ scattering (bottom),
where k is the scattering momentum, δ0(k) is the scattering phase shift, and a = 0.11887(80) fm is the lattice spacing. The
data points were obtained directly from the lattice energy levels, and the curves correspond to ERE fits through order k4. Also
shown are the functions −

√
−(ak)2 (solid red parabolas) whose intersections with ak cot δ0(k) just below threshold correspond

to the shallow b̄c̄ud bound states we predict, and +
√

−(ak)2 (dashed red parabolas) whose intersections with ak cot δ0(k) would
correspond to virtual b̄c̄ud bound states. The vertical magenta lines show the positions of two-pion-exchange left-hand branch
points. Right: Our results for the product of scattering momentum and B(∗)-D̄ scattering cross section, which is proportional
to the scattering rate, as a function of center-of-momentum energy.

that interpolate our data very well, so these predictions
are also expected to be very reliable. We observe sharp
enhancements in the scattering rates close to the thresh-
olds, related to the shallow bound states or virtual bound
states. At higher energies, the scattering rates continue
to be enhanced, likely by the broad resonances. The scat-
tering rates are very close to the largest possible value
allowed by unitarity, given by |T0|2 = 1, up to several
tens of MeV above threshold.

In summary, the substantial improvements made here
in determining the b̄c̄ud finite-volume energy levels al-
lowed us to determine the detailed energy dependence
of the B-D̄ and B∗-D̄ S-wave scattering amplitudes for
the first time using lattice QCD, revealing very interest-
ing strong-interaction phenomena. We found poles for
both J = 0 and J = 1 corresponding to shallow bound
states, as well as hints for poles corresponding to broad
resonances. While further lattice-QCD computations at
additional lattice spacings and pion masses will be needed
to pin down the exact location and nature of each pole
at the physical point, we expect our prediction of shal-
low bound states, either genuine or virtual, to be quite
robust. The possible resonances above threshold are very

broad and are therefore presumably difficult to observe
at the LHC and future experiments. On the other hand,
if the J = 0 pole just below the B-D̄ threshold is con-
firmed as a genuine bound state, this isoscalar, scalar
b̄c̄ud tetraquark will decay through the weak interaction
only and could become the first tetraquark to be observed
at the LHC with this feature. If the J = 1 pole just be-
low the B∗-D̄ threshold is confirmed as a genuine bound
state, it will decay electromagnetically into BD̄γ (and
also into the J = 0 tetraquark plus a photon, if that
tetraquark is confirmed as a genuine bound state).
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SUPPLEMENTAL MATERIAL

I. Operators

For the b̄c̄ud system with I(JP ) = 0(0+), we use the seven operators

OA+
1

1 =
1√
VS

∑
x

b̄(x)γ5u(x) c̄(x)γ5d(x)− (d ↔ u), (6)

OA+
1

2 =
1√
VS

∑
x

b̄(x)γju(x) c̄(x)γjd(x)− (d ↔ u), (7)

OA+
1

3 =
1√
VS

∑
x

b̄a(x)γ5Cc̄b,T (x)ua,T (x)Cγ5d
b(x)− (d ↔ u), (8)

OA+
1

4 = B+(0)D−(0)− (d ↔ u), (9)

OA+
1

5 =
∑

q=±ei=x,y,z

B+(q)D−(−q)− (d ↔ u), (10)

OA+
1

6 =
∑

q=±ei±ej , i<j

B+(q)D−(−q)− (d ↔ u), (11)

OA+
1

7 =
∑

q=±ex±ey±ez

B+(q)D−(−q)− (d ↔ u), (12)

where the repeated index j is summed over the spatial directions, the repeated color indices a and b are summed over
the three colors, VS = L3 is the spatial lattice volume, and

B+(q) =
1√
VS

∑
x

b̄(x)γ5u(x) e
i 2π

L q·x, (13)

D−(q) =
1√
VS

∑
x

c̄(x)γ5d(x) e
i 2π

L q·x. (14)

The operators OA+
1

1 and OA+
1

2 are constructed as products of color-singlet B, D̄ and B∗, D̄∗ operators at the same
spacetime point that are then jointly projected to zero momentum by summing over the spatial coordinates. The

operator OA+
1

3 is constructed as a color-singlet contraction of two color-nonsinglet diquarks at the same spacetime

point that is then jointly projected to zero momentum. The operators OA+
1

4 through OA+
1

7 are B-D̄ “scattering”
operators in which the B and D̄ operators are individually momentum-projected and have back-to-back momenta
of magnitudes 0, 2π/L,

√
2 · 2π/L, and

√
3 · 2π/L (L is the spatial lattice size). For the scattering operators, the

summations over the back-to-back momentum directions ensure that the operators transform in the A+
1 irrep of the

octahedral group that contains J = 0.

All quark fields in the above expressions are smeared using gauge-covariant Gaussian smearing (see e.g. Eq. (8) in
Ref. [11]), with (σGauss, NGauss) = (4.47, 35), (1.195, 5), (1.0, 10) for the light, charm, and bottom quarks, respectively.
The gauge links used for the Gaussian smearing are APE smeared (see e.g. Eq. (23) in Ref. [57]) with parameters
NAPE = 50 and αAPE = 0.5. The smearing parameters are identical at source and sink, leading to symmetric
correlation matrices.
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For the b̄c̄ud system with I(JP ) = 0(1+), we use the eight operators

OT+
1

1,k =
1√
VS

∑
x

b̄(x)γku(x) c̄(x)γ5d(x)− (d ↔ u), (15)

OT+
1

2,k =
1√
VS

∑
x

b̄(x)γ5u(x) c̄(x)γkd(x)− (d ↔ u), (16)

OT+
1

3,k =
1√
VS

ϵkjl
∑
x

b̄(x)γju(x) c̄(x)γld(x)− (d ↔ u), (17)

OT+
1

4,k =
1√
VS

∑
x

b̄a(x)γkCc̄b,T (x)ua,T (x)Cγ5d
b(x)− (d ↔ u), (18)

OT+
1

5,k = B∗+
k (0)D−(0)− (d ↔ u), (19)

OT+
1

6,k =
∑

q=±ei=x,y,z

B∗+
k (q)D−(−q)− (d ↔ u), (20)

OT+
1

7,z =
∑

q=±ei=x,y

B∗+
z (q)D−(−q)− 2

∑
q′=±ez

B∗+
z (q′)D−(−q′)− (d ↔ u), (21)

OT+
1

8,k =
∑

q=±ei±ej ,i<j

B∗+
k (q)D−(−q)− (d ↔ u), (22)

where D−(q) was defined in Eq. (14),

B∗+
k (q) =

1√
VS

∑
x

b̄(x)γku(x) e
i 2π

L q·x, (23)

and k = x, y, z denotes the spatial polarization direction (the operator OT+
1

7 is shown for k = z only). These operators

transform in the T+
1 irrep of the octahedral group that contains J = 1. The operators OT+

1
1 , OT+

1
2 , and OT+

1
3 are

constructed as products of color-singlet B(∗) and D̄(∗) operators at the same spacetime point that are then jointly

projected to zero momentum by summing over the spatial coordinates. The operator OT+
1

4 is constructed as a color-
singlet contraction of two color-nonsinglet diquarks at the same spacetime point that is then jointly projected to
zero momentum. Here, the two heavy quarks are combined to a flavor-symmetric spin-1 diquark and the two light

quarks are combined to a flavor-antisymmetric spin-0 diquark. The operators OT+
1

5 through OT+
1

8 are B∗-D̄ scattering

operators in which the B∗ and D̄ have back-to-back momenta of magnitudes 0, 2π/L (for both OT+
1

6 and OT+
1

7 ), and√
2 · 2π/L. Two different operators are used for the case with one unit of back-to-back momentum to account for

the mixing of S and D partial waves [47]. Again, all quark fields are smeared, with the same parameters as used for
J = 0.

II. D̄(∗) and B(∗) dispersion relations

Our results for the D̄ and D̄∗ meson energies as a function of spatial momentum squared are shown in Fig. 3. We
performed fits to the combined data from the two ensembles using the three-parameter form

ED̄(∗)(p2) = ED̄(∗)(0) +
p2

2mD̄(∗),kin

− p4

8m3
D̄(∗),4

(24)

to allow for different values of mD̄(∗),kin, and mD̄(∗),4 due to discretization errors. Higher powers of p are expected
to be negligible for the momentum range we use. The fit results are given in Table III. The spin-averaged kinetic
mass agrees with the experimental value [50] within 3%, confirming the successful tuning of the charm-quark mass
according to the Fermilab method [49]. We also find that the results for mD̄(∗),4 are actually consistent with mD̄(∗),kin

within the statistical uncertainties.
For the B and B∗ mesons, we did not expect a significant difference between mB(∗),kin, and mB(∗),4 due to the high

level of improvement of the lattice NRQCD action [51], and we therefore performed two-parameter fits of the form

EB(∗)(p2) = EB(∗)(0) +
√
m2

B(∗),kin
+ p2 −mB(∗),kin. (25)



10

FIG. 3. Results for aED̄(p2) and aED̄∗(p2) for 0 ≤ p2 ≤ 4(2π/L)2 from the two ensembles, along with fits of the form (24).

aED̄(0) aED̄∗(0) amD̄,kin amD̄∗,kin amD̄,4 amD̄∗,4

1.01718(38) 1.09434(60) 1.172(14) 1.294(25) 1.09(9) 1.18(16)

TABLE III. D̄ and D̄∗ meson dispersion-relation parameters in lattice units, obtained from combined fits to the data from the
a12m220S and a12m220 ensembles.

aEB(0) aEB∗(0) amB,kin amB∗,kin

0.4823(12) 0.5077(13) 3.121(84) 3.091(89)

TABLE IV. B and B∗ meson dispersion-relation parameters in lattice units, obtained from combined fits to the data from the
a12m220S, a12m220, and a12m220L ensembles [58].

These fits included also a third ensemble of gauge configurations, a12m220L, with the same bare parameters and an
even larger volume, and are discussed in more detail in Ref. [58]. The data from all three ensembles are well-described
jointly by Eq. (25) with the parameters given in Table IV. The spin-averaged kinetic B-meson mass is within 4% of
the experimental value [50].

III. b̄c̄ud energies and B(∗)-D̄ scattering phase shifts

Plots of the effective energies of the five lowest eigenvalues obtained from the GEVP for the b̄c̄ud correlation
matrices are shown in Fig. 4. We determine the energy levels En by carrying out correlated least-χ2 fits of the
form λn(t, t0) = Ane

−Ent. We perform fits for multiple different ranges tmin ≤ t ≤ tmax with sufficiently large tmin

to ensure single-exponential behavior and obtain the final estimate for En from a weighted average that takes into
account correlations and lowers the weights of fits with χ2/d.o.f. > 1, following the FLAG averaging procedure [53]
(see also our discussion in Appendix B of Ref. [13]). The statistical uncertainties are calculated and propagated to
the further analysis using jackknife.

Our results for the b̄c̄ud finite-volume energies, their values relative to the threshold, the corresponding scattering
momenta squared, and the corresponding products of scattering momentum and cotangent of S-wave scattering phase
shifts are listed in Tables V (for the A+

1 irrep relevant for JP = 0+) and VI (for the T+
1 irrep relevant for JP = 1+). As

discussed in the main article, some high-lying energy levels are excluded from the phase-shift determination because
they lie above inelastic thresholds, and the third energy level in the T+

1 irrep is excluded because it corresponds to a
state dominated by a D wave; these cases are labeled “N/A” in the tables.
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FIG. 4. Left: Effective energies aEeff,n(t) = ln(λn(t, t0)/λn(t+ a, t0)) of the five lowest eigenvalues λ0(t, t0), ..., λ4(t, t0) of the
b̄c̄ud system with I(JP ) = 0(0+) on the a12m220S lattice, obtained by solving the GEVP for the 7× 7 correlation matrix. For
sufficiently large t, these effective energies correspond to the five lowest finite-volume energy levels with the given quantum
numbers. Also shown are the strong-decay-threshold energies computed on the same lattice. Note that all absolute energies
contain an overall constant shift due to the use of NRQCD and of the Fermilab method. Right: The corresponding plot for the
b̄c̄ud system with I(JP ) = 0(1+), using the 8× 8 correlation matrix.

Ensemble aE a∆E (ak)2 ak cot δ0
a12m220S 1.4937(27) −0.0065(23) −0.0100(35) −0.057(42)

1.5217(16) 0.0215(17) 0.0378(24) 0.046(23)
1.5568(17) 0.0566(18) 0.0987(26) −0.001(42)
1.5975(25) 0.0973(28) 0.1706(46) −0.181(87)
1.6172(36) 0.1170(34) N/A N/A

a12m220 1.4975(17) −0.0014(17) −0.0035(25) 0.008(90)
1.5102(11) 0.0112(13) 0.0182(17) −0.001(17)
1.5318(11) 0.0329(13) 0.0554(17) −0.004(35)
1.5574(12) 0.0585(14) 0.0999(19) −0.037(48)
1.5750(29) 0.0760(28) 0.1307(43) −0.13(11)

TABLE V. The b̄c̄ud finite-volume energies in the A+
1 irrep, their values relative to the B-D̄ threshold, the corresponding B-D̄

scattering momenta squared, and the corresponding products of scattering momentum and cotangent of scattering phase shift
(all in lattice units). Note that the absolute energies contain an overall constant offset due to the use of NRQCD and of the
Fermilab method; this offset cancels in the differences to the threshold.

Ensemble aE a∆E (ak)2 ak cot δ0
a12m220S 1.5176(40) −0.0080(31) −0.0122(49) −0.080(44)

1.5443(24) 0.0187(22) 0.0333(37) 0.007(29)
1.5661(46) 0.0404(31) N/A N/A
1.5783(30) 0.0526(26) N/A N/A
1.6101(45) 0.0844(41) N/A N/A

a12m220 1.5217(19) −0.0029(19) −0.0053(28) −0.037(48)
1.5339(13) 0.0093(14) 0.0155(19) −0.027(18)
1.5456(16) 0.0210(18) N/A N/A
1.5553(13) 0.0307(15) 0.0522(19) −0.074(43)
1.5776(27) 0.0530(26) N/A N/A

TABLE VI. The b̄c̄ud finite-volume energies in the T+
1 irrep, their values relative to the B∗-D̄ threshold, the corresponding

B∗-D̄ scattering momenta squared, and the corresponding products of scattering momentum and cotangent of scattering phase
shift (all in lattice units). Note that the absolute energies contain an overall constant offset due to the use of NRQCD and of
the Fermilab method; this offset cancels in the differences to the threshold.
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IV. ERE fit parameters using the full momentum range

This section contains our results for the ERE fit parameters for the main fits that use all available scattering
momenta and phase shifts from Tables V and VI. The fits were performed in lattice units,

ak cot δ0 =
a

a0
+

r0
2a

(ak)2 +
b0
a3

(ak)4, (26)

where a is the lattice spacing. We used the coefficients of (ak)0, (ak)2, and (ak)4 as the fit parameters. Our results
for these parameters, along with their correlation matrices, are given in Tables VII and VIII. In addition, we provide
the values of 1/a0, r0, and b0 in physical units in Table IX.

Parameter Value Correlation Matrix
a/a0 −0.022(18) 1 −0.715 0.621

r0/(2a) 1.92(69) −0.715 1 −0.889
b0/a

3 −18.4(5.0) 0.621 −0.889 1

TABLE VII. Fit results for the J = 0 ERE parameters and their correlation matrix.

Parameter Value Correlation Matrix
a/a0 −0.044(20) 1 −0.725 0.594

r0/(2a) 2.4(1.3) −0.725 1 −0.869
b0/a

3 −48(24) 0.594 −0.869 1

TABLE VIII. Fit results for the J = 1 ERE parameters and their correlation matrix.

1/a0 [fm−1] r0 [fm] b0 [fm3]
J=0 −0.19(16) 0.46(16) −0.031(8)
J=1 −0.37(17) 0.56(30) −0.080(41)

TABLE IX. The ERE parameters in physical units.

V. ERE fits and bound-state poles using only the low-momentum region

Our ERE fits to only the three data points closest to the thresholds are shown in Fig. 5. In this momentum region,
0th-order fits already describe the data well; for comparison, we also show fits through order k2. The resulting ERE
parameters and bound-state pole masses are given in Tables X and XI.

1/a0 [fm−1] ∆mBS [MeV]
J=0 −0.07(13) −0.07(25)
J=1 −0.28(14) −1.0(1.0)

TABLE X. Results for the inverse scattering lengths and bound-state masses (relative to the B(∗)-D̄ thresholds) from the
order-k0 ERE fits to the three data points closest to the threshold.

1/a0 [fm−1] r0 [fm] ∆mBS [MeV]
J=0 −0.28(23) 0.37(34) −1.2(2.2)
J=1 −0.43(14) 0.32(30) −2.9(3.2)

TABLE XI. Results for the ERE parameters and bound-state masses (relative to the B(∗)-D̄ thresholds) from the order-k2

ERE fits to the three data points closest to the threshold.
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FIG. 5. ERE fits using only the three data points closest to the thresholds for S-wave B-D̄ scattering (left) and S-wave

B∗-D̄ scattering (right); here, a is the lattice spacing. Also shown are the functions −
√

−(ak)2 (solid red parabolas) whose

intersections with ak cot δ0(k) just below threshold correspond to the shallow b̄c̄ud bound states we predict, and +
√

−(ak)2

(dashed red parabolas) whose intersections with ak cot δ0(k) would correspond to virtual b̄c̄ud bound states. The vertical
magenta lines show the positions of two-pion-exchange left-hand branch points.
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