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Abstract

We compute gluelump masses and mass differences using SU(3) lattice gauge theory. We study
states with total angular momentum up to J = 3, parity P = +,− and charge conjugation
C = +,−. Computations on four ensembles with rather fine lattice spacings in the range
0.040 fm . . . 0.093 fm allow continuum extrapolations of gluelump mass differences. We com-
plement existing results on hybrid static potentials with the obtained gluelump masses, which
represent the limit of vanishing quark-antiquark separation. We also discuss the conversion
of lattice gluelump masses to the Renormalon Subtracted scheme, which is e.g. important for
studies of heavy hybrid mesons in the Born-Oppenheimer approximation.
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1 Introduction

Gluelumps are color-neutral states composed of a static adjoint color charge and gluons. Even
though they do not seem to exist in nature, they are conceptually interesting and relevant in the
context of certain QCD-calculations. An example of the latter is the Born-Oppenheimer effec-
tive field for heavy hybrid mesons, where gluelump masses are the non-perturbative matching
coefficients for hybrid static potentials. Gluelump masses have to be provided as input, when
computing the spectrum of heavy hybrid mesons (see e.g. Ref. [1]). Beyond the Standard Model,
gluelumps are candidates for additional bound states, which contain gluinos, the counterparts
of gluons in supersymmetric models. Because of this, gluelump masses help to investigate the
spectrum of states in supersymmetric theories (see e.g. Ref. [2]).

Gluelumps were studied within models or using simplifying approximations of QCD, e.g. the
bag model, potential models and Coulomb gauge QCD via the variational approach (see e.g.
Refs. [3–7]). The resulting spectra, however, exhibit sizable discrepancies. Lattice gauge theory,
on the other hand, is a first-principles approach, where the underlying quantum field theory,
typically SU(3) gauge theory, is solved numerically on a hypercubic periodic spacetime lattice.
The finite lattice spacing can be varied and the functional dependence of physical observables
like gluelump masses or mass splittings is known, which allows trustworthy extrapolations to the
continuum. Thus, lattice gauge theory is the ideal tool to compute the spectrum of gluelumps
in a rigorous and reliable way.

At the moment only few lattice computations of gluelump spectra exist in the literature. In
Ref. [8] masses of 10 gluelump states were computed in SU(3) gauge theory and 5 gluelump
mass splittings were extrapolated to the continuum. While gluelump mass splittings are scheme
independent, gluelump masses depend on the regularization scheme and the value of the regu-
lator, e.g. in lattice gauge theory they diverge in the continuum limit. In Ref. [9] the lightest
gluelump mass, which is conventionally taken as reference mass, was, thus, converted to the
Renormalon Subtracted (RS) scheme, which is common in perturbative calculations. The re-
sults of Refs. [8,9] are frequently used, for example to compare with model predictions or when
computing heavy hybrid meson spectra in Born-Oppenheimer effective field theory. However,
the precision of such applications is not only limited by perturbative systematics, but also by
the somewhat outdated lattice data from Ref. [8], which was generated around 25 years ago. In
a more recent lattice study [10] of the gluelump spectrum, masses of 20 gluelump states in the
color octet representation were determined (and an even larger number in higher color represen-
tations). In that work, however, full QCD was used, not SU(3) gauge theory without dynamical
quarks as in Refs. [8,9]. As a consequence, mixings with static adjoint mesons, which are states
composed of a static adjoint color charge and a light quark-antiquark pair, are possible. Even
though such mixings could be small, sea quarks are expected to have non-negligible effects on
gluelump masses. Thus, even though technically more advanced, Ref. [10] cannot be compared
quantitatively to Ref. [8], nor can it replace Ref. [8].

The aim of this work is to carry out an up-to-date precision computation of the gluelump
spectrum in SU(3) lattice gauge theory, i.e. without dynamical quarks. We use four different
small lattice spacings, compute for each of them 20 gluelump masses and are able to extrapolate
19 gluelump mass splittings to the continuum. In addition to statistical errors, we also estimate
systematic errors associated with extracting the asymptotic exponential behaviors of correlation
functions as well as with the continuum extrapolations. We also repeat the conversion of the

1



lowest lattice gluelump mass to the RS scheme following conceptually Ref. [9], but using our
new lattice data instead of the results from Ref. [8]. While this leads to higher precision, we
show that the error of the RS gluelump mass is currently dominated by uncertainties on the
perturbative side.

This paper is structured in the following way. In Section 2 theoretical basics are discussed
including gluelump quantum numbers, operators and correlation functions. Section 3 is devoted
to the lattice setup and other computational details. In Section 4, which is the main section
of this work, we present and discuss our results, in particular gluelump masses and gluelump
mass splittings. For the latter we carry out continuum extrapolations. We also discuss in
detail the assignment of continuum total angular momentum J , which is not obvious, because
rotational symmetry is broken by the hypercubic lattice and there are cases of competing states
with different J in the same cubic representation. Moreover, we compare to existing lattice
results [8,10] and we complement our previous lattice results [11,12] on hybrid static potentials,
since gluelump masses can be interpreted as the limit of vanishing quark-antiquark separation
of such potentials. Finally, we convert the lightest gluelump mass from the lattice to the RS
scheme, as outlined in the previous paragraph. We conclude in Section 5.
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2 Gluelump quantum numbers, operators, and correlation func-
tions

In the continuum, gluelumps are characterized by quantum numbers JPC . J is the total angular
momentum of the gluons with respect to the position of the static adjoint quark and P and C
denote parity and charge conjugation.

A cubic lattice breaks rotational symmetry. The remaining symmetry group is the full cubic
group Oh. The elements of this group are combinations of discrete 90◦ rotations and spatial
reflection. Lattice gluelumps can, thus, be classified according to the four 1-dimensional ir-
reducible representations RPC = A±

1 , A
±
2 ,the two 2-dimensional irreducible representations,

RPC = E±, and the four 3-dimensional irreducible representations, RPC = T±
1 , T±

2 . Since each
representation of the full cubic group corresponds to an infinite number of representations of
the continuous rotation group, the identification and assignment of total angular momentum J
to gluelump states obtained by a lattice computation is a non-trivial task (see Section 4.2.3 for
a detailed discussion).

We compute gluelump masses from temporal correlation functions

CRPC (t2 − t1) = Ha
RPC (rQ; t1)G

ab(rQ; t1, t2)H
b†
RPC (rQ; t2). (1)

rQ denotes the spatial position of the static quark. Due to translational invariance, the correla-
tion function does not depend on rQ. Numerically, we can, thus, average the right hand side of
Eq. (1) over all possible quark positions to increase statistical precision. To keep the notation
simple, we omit the spatial coordinate rQ from now on.

G denotes the static quark propagator in the adjoint representation. It is given by a product of
adjoint temporal gauge links (represented in SU(3) gauge theory by 8× 8 matrices, where rows
and columns are labeled by upper indices a, b, c, . . . = 1, . . . , 8) connecting time t1 and time t2,

Gab(t1, t2) = U
(8),ac
t (t1)U

(8),cd
t (t1 + a)U

(8),de
t (t1 + 2a) . . . U

(8),fb
t (t2). (2)

Adjoint gauge links are related to ordinary gauge links in the fundamental representation via

U
(8),ab
t = Tr[T aUtT

bU †
t ], where T a = λa/

√
2 are the SU(3) generators with the Gell-Mann

matrices λa.

The operatorsHRPC at time t1 and time t2 contain gauge links in the fundamental representation
generating gluons with definite lattice quantum numbers, i.e. excite the gluon field according to
one of the irreducible representations of Oh (see above). We employ operators HRPC constructed
and discussed in detail in Ref. [10].

The operators are suitable linear combinations of closed gauge link paths. There are 24 basic
building blocks Ln, n = 1, . . . , 24, which have a chair-like shape, i.e. are 1 × 2 rectangles bent
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by π/2:

L1 = UN
+xU

N
+yU

N
+zU

N
−xU

N
−zU

N
−y , L2 = UN

−yU
N
+xU

N
+zU

N
+yU

N
−zU

N
−x ,

L3 = UN
−xU

N
−yU

N
+zU

N
+xU

N
−zU

N
+y , L4 = UN

+yU
N
−xU

N
+zU

N
−yU

N
−zU

N
+x ,

L5 = UN
+yU

N
+zU

N
+xU

N
−yU

N
−xU

N
−z , L6 = UN

+xU
N
+zU

N
−yU

N
−xU

N
+yU

N
−z ,

L7 = UN
−yU

N
+zU

N
−xU

N
+yU

N
−xU

N
−z , L8 = UN

−xU
N
+zU

N
+yU

N
+xU

N
−yU

N
−z ,

L9 = UN
+zU

N
+xU

N
+yU

N
−zU

N
−yU

N
−x , L10 = UN

+zU
N
−yU

N
+xU

N
−zU

N
−xU

N
+y ,

L11 = UN
+zU

N
−xU

N
−yU

N
−zU

N
+yU

N
+x , L12 = UN

+zU
N
+yU

N
−xU

N
−zU

N
+xU

N
−y ,

L13 = UN
−yU

N
−xU

N
−zU

N
+yU

N
+zU

N
+x , L14 = UN

−xU
N
+yU

N
−zU

N
+xU

N
+zU

N
−y ,

L15 = UN
+yU

N
+xU

N
−zU

N
−yU

N
+zU

N
−x , L16 = UN

+xU
N
−yU

N
−zU

N
−xU

N
+zU

N
+y ,

L17 = UN
−zU

N
−yU

N
−xU

N
+zU

N
+xU

N
+y , L18 = UN

−zU
N
−xU

N
+yU

N
+zU

N
−yU

N
+x ,

L19 = UN
−zU

N
+yU

N
+xU

N
+zU

N
−xU

N
−y , L20 = UN

−zU
N
+xU

N
−yU

N
+zU

N
+yU

N
−x ,

L21 = UN
−xU

N
−zU

N
−yU

N
+xU

N
+yU

N
+z , L22 = UN

+yU
N
−zU

N
−xU

N
−yU

N
+xU

N
+z ,

L23 = UN
+xU

N
−zU

N
+yU

N
−xU

N
−yU

N
+z , L24 = UN

−yU
N
−zU

N
+xU

N
+yU

N
−xU

N
+z , (3)

with UN
±j denoting a product of N gauge links in the fundamental representation in ±j-direction.

All 24 chair-like building blocks are also defined in a graphical way in Figure 1 of Ref. [10] (the
red chair-shaped paths). Applying parity P (i.e. spatial reflections) and/or charge conjugation
C (i.e. Hermitian conjugation) to these 24 building blocks leads to a total of 96 building blocks.

Linear combinations of Ln that correspond to the five representations, A1, A2, T1, T2 and E,
have been worked out in Ref. [10] and are given by

Ha
A1

=
(
H̃A1

)
αβ

T a
αβ =

( 24∑
n=1

Ln

)
αβ

T a
αβ, (4)

Ha
A2

=
(
H̃A2

)
αβ

T a
αβ =

( 12∑
n=1

(−1)aLn −
24∑

n=13

(−1)aLn

)
αβ

T a
αβ (5)

Ha
Tx
1
=
(
H̃Tx

1

)
αβ

T a
αβ = (L6 + L20 + L21 + L11 − L18 − L8 − L9 − L23)αβ T

a
αβ (6)

Ha
T y
1
=
(
H̃T y

1

)
αβ

T a
αβ = (L5 + L19 + L24 + L10 − L17 − L7 − L12 − L22)αβ T

a
αβ (7)

Ha
T z
1
=
(
H̃T z

1

)
αβ

T a
αβ = (L1 + L2 + L3 + L4 − L13 − L14 − L15 − L16)αβ T

a
αβ (8)

Ha
Tx
2
=
(
H̃Tx

2

)
αβ

T a
αβ = (L6 − L20 + L21 − L11 + L18 − L8 + L9 − L23)αβ T

a
αβ (9)

Ha
T y
2
=
(
H̃T y

2

)
αβ

T a
αβ = (L5 − L19 + L24 − L10 + L17 − L7 + L12 − L22)αβ T

a
αβ (10)

Ha
T z
2
=
(
H̃T z

2

)
αβ

T a
αβ = (L1 − L2 + L3 − L4 + L13 − L14 + L15 − L16)αβ T

a
αβ (11)

Ha
E1

=
(
H̃E1

)
αβ

T a
αβ = (vx − vy)αβ T

a
αβ (12)

Ha
E2

=
(
H̃E2

)
αβ

T a
αβ = (vx + vy − 2vz)αβ T

a
αβ (13)
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with

vx = L6 + L20 + L21 + L11 + L18 + L8 + L9 + L23 (14)

vy = L5 + L19 + L24 + L10 + L17 + L7 + L12 + L22 (15)

vz = L1 + L2 + L3 + L4 + L13 + L14 + L15 + L16, (16)

where lower indices α, β = 1, . . . , 3 refer to the rows and columns of the 3×3 matrices Ln, which
are defined in Eq. (3). An operator generating a state, which has also definite parity and charge
conjugation, is given by

Ha
RPC = Ha

R±± =
1

4

((
Ha

R±(PHa
R)
)
± C

(
Ha

R±(PHa
R)
))

. (17)

The correlation function (1) can be simplified analytically,

CRPC (t2 − t1) =

= Tr
[
H̃RPC (t1)Q(t1, t2)H̃

†
RPC (t2)(Q(t1, t2))

†
]
− 1

3
Tr
[
H̃RPC (t1)

]
Tr
[
H̃†

RPC (t2)
]
, (18)

by exploiting T a
αβT

a
γδ = δαδδβγ − δαβδγδ/3. Q(t1, t2) denotes a product of temporal gauge links

in the fundamental representation connecting time t1 and time t2.

To optimize the groundstate overlaps, we chose N = 2 (see Eq. (3)) and apply APE smearing to
the spatial gauge links appearing in the operators H̃RPC (see e.g. Ref. [13] for detailed equations).
The number of smearing steps was optimized on ensemble B (see Table 1) in Ref. [14]. The
APE step numbers NAPE applied for computations on the other three ensembles were chosen
according to a similar optimization carried out in Ref. [12] (see Table 6 in Appendix A in that
reference). In summary, we use NAPE = 33, 82, 115 and 164 for ensembles A, B, C and D,
respectively.
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3 Computational setup and details

The gluelump correlation functions (18) were computed on four ensembles of SU(3) gauge link
configurations with gauge couplings β = 6.594, 6.451, 6.284, 6.000. The configurations were
generated with the CL2QCD software package [15] in the context of a previous project [12].
Physical units are introduced by setting r0 = 0.5 fm, which is a simple and common choice in
pure gauge theory. Details concerning these gauge link ensembles, which we label by A, B, C
and D, can be found in Table 1 and in Section 3 of Ref. [12].

ensemble β a in fm [16] (L/a)3 × T/a Nsim Ntotal Nor Ntherm Nsep Nmeas

A 6.000 0.093 123 × 26 4 60000 4 20000 50 3200

B 6.284 0.060 203 × 40 4 60000 12 20000 100 1600

C 6.451 0.048 263 × 50 4 80000 15 40000 200 800

D 6.594 0.040 303 × 60 4 80000 15 40000 200 800

Table 1: Gauge link ensembles.

We used the multilevel algorithm [17] to reduce statistical errors in the gluelump correlation
functions. Since we applied the multilevel algorithm already in previous projects, we refer for
technical details to the corresponding references [12,18]. We employed a single level of time-slice
partitioning, a regular pattern with time-slice thickness p1 = p2 = · · · = pnts = a and nm = 10
sublattice configurations, which are separated by nu = 30 standard heatbath sweeps. These
parameters were optimized specifically for gluelump computations in Ref. [14].

We carried out two computations of gluelump correlation functions, one with unsmeared tem-
poral links and the other with HYP2 smeared temporal links [19–21]. HYP2 smearing leads to
a reduced self-energy of the static adjoint quark and, consequently, to smaller statistical errors.
However, the computation without HYP2 smearing is equally important, because it allows to
complement our previous results for hybrid static potentials from Ref. [12], which were computed
with unsmeared temporal links (see Sec 4.3). Moreover, the conversion of gluelump masses from
the lattice scheme to the RS scheme as in Ref. [9] requires results with unsmeared temporal
links (see Sec 4.4).

Statistical errors of results corresponding to individual ensembles were determined using the
jackknife method. For continuum extrapolations (see Section 4.2), where we had to combine
data from several ensembles, the bootstrap method was applied. This procedure is equivalent to
the one used and explained in Ref. [12]. Here we use NA = 640, NB = 320 and NC = ND = 160
reduced jackknife bins and K = 10000 bootstrap samples.
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4 Numerical results

In the following we determine lattice gluelump masses and gluelump mass splittings. The meth-
ods we use are based on the asymptotic exponential falloff in t of correlation functions CRPC (t)
defined in Eq. (18).

Numerically, the asymptotic t region is approximated by large values of t. We assume in the
following that the numerically extracted asymptotic exponential falloff corresponds to a single
state with mass mRPC , the ground state in the RPC representation. In other words, we assume
that the data points of each correlation function CRPC (t) in the numerically accessible large-t
region are proportional to e−mRPC t. For certain RPC representations one can expect that this
assumption is fulfilled, but for other RPC representations this is questionable. In the latter
situation there might be two gluelump states with similar masses, which have the same lattice
quantum numbers RPC , but different continuum total angular momenta J . Then one might
extract a mass somewhere between the masses of the two states. In Section 4.2.3, where we try
to assign continuum total angular momenta J to the extracted lattice gluelump mass splittings,
we discuss in detail, which of our results are solid and trustworthy and which of them should be
treated with caution.

4.1 Gluelump masses at finite values of the lattice spacing

A straightforward approach to determine gluelump masses is to compute effective masses

me,s
eff;RPC (t) =

1

a
ln

(
Ce,s
RPC (t)

Ce,s
RPC (t+ a)

)
. (19)

The large-t limit

me,s
RPC = lim

t→∞
me,s

eff;RPC (t) (20)

is obtained numerically from a fit of a constant to me,s
eff;RPC (t) in the range t′min ≤ t ≤ t′max, where

me,s
eff;RPC (t) exhibits a plateau within statistical errors. This provides a gluelump mass me,s

RPC

for each representation RPC ∈ {A±±
1 , A±±

2 , E±±, T±±
1 , T±±

2 }, each ensemble e ∈ {A,B,C,D}
and both unsmeared and HYP2 smeared temporal links indicated by labels s ∈ {none,HYP2}.

The fitting range is chosen individually for each gluelump mass me,s
RPC by an algorithm already

used in previous related work [11,12]:

• tmin is defined as the minimal t, where the values of me,s
eff;RPC (t)a and me,s

eff;RPC (t + a)a
differ by less than 2σ.

• tmax is the maximal t, where Ce,s
RPC (t+a) has been computed, i.e. tmax = 11a, 19a, 19a, 19a

for ensembles A, B, C, D, respectively.

• Fits to me,s
eff;RPC (t)a are performed for all ranges t′min ≤ t ≤ t′max with tmin ≤ t′min,

t′max ≤ tmax and t′max − t′min ≥ 3a.
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Figure 1: Exemplary plots of effective masses mC,s
eff;RPC (t)a and corresponding plateau fits

mC,s
RPCa. (Left) RPC = T+−

1 , (right) RPC = E++.

• The result of the fit with the longest plateau and χ2
red ≤ 1 is taken as result for me,s

RPCa,
where

χ2
red =

a

t′max − t′min

∑
t=t′min,t

′
min+a,...,t′max

(
me,s

eff;RPC (t)a−me,s
RPCa

)2
(
σ[me,s

eff;RPC ](t)a
)2 (21)

with σ[me,s
eff;RPC ](t)a denoting the statistical error of me,s

eff;RPC (t)a.

For around ten percent of the fits the fitting range was adjusted manually to correct for non-
ideal or unreasonable fitting ranges. As a cross-check, we compared the resulting masses to
masses obtained by analogous fits in the range t′min + a ≤ t ≤ t′max and found agreement within
statistical errors. For RPC = A−−

2 and unsmeared temporal links (s = none) statistical errors
are rather large and the identification of effective mass plateaus is not possible. Therefore, we do
not quote gluelump masses for that particular case. Moreover, we do not use the corresponding
correlator data for the remainder of this work.

The quality of our lattice data is exemplified by Figure 1, where we present two typical effective
mass plots and the corresponding plateau fits for representations RPC = T+−

1 (left plot) and
RPC = E++ (right plot), e = C and both s = none and s = HYP2.

The complete set of resulting gluelump masses me,s
RPCa (i.e. for all 20 RPC representations, the

four ensembles from Table 1 and computations with unsmeared und with smeared temporal
links) are collected in Appendix A.1, Table 9.

Lattice gluelump masses contain an a-dependent self-energy, which originates from the static
adjoint quark and diverges in the continuum limit. This self-energy is reduced, when using
HYP2 smeared temporal links, which correspond to a less localized static charge. Because of the
divergent self-energy, one cannot carry out meaningful continuum extrapolations. Nevertheless,
such lattice gluelump masses at several finite values of the lattice spacing are important. They
can, for example, be converted into the renormalon subtracted (RS) scheme (see Section 4.4
and Ref. [9]) and then be used to fix the energy scale in Born-Oppenheimer effective field
theory determinations of the spectra of heavy hybrid mesons (see e.g. Ref. [1]). Moreover, they
complement lattice results on hybrid static potentials computed within the same lattice setup
(see Section 4.3 and Ref. [11, 12]).
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4.2 Continuum extrapolated gluelump mass splittings

As discussed in the previous subsection, the a-dependent divergent self-energy is a consequence
of the static adjoint quark. It is, thus, independent of RPC and the same for all gluelumps.
Consequently, for gluelump mass splittings

∆mRPC = mRPC −mT+−
1

(22)

the self-energy cancels and a continuum extrapolation is possible and should lead to a finite
mass difference. As previously done by other authors (see e.g. Refs. [8, 10]), we use the mass of
the lightest gluelump, which has JPC = 1+− corresponding to RPC = T+−

1 , as reference mass.

4.2.1 Method 1: continuum extrapolated gluelump mass splittings from gluelump
masses

A straightforward approach to compute gluelump mass splittings ∆me,s
RPC for each e, s is to

use the gluelump masses from Section 4.1 extracted from effective mass plateaus. There are
correlations between me,s

RPC and me,s

T+−
1

, because both quantities are evaluated on the same set

of gauge link configurations, but these correlations are taken into account by a proper error
analysis as stated in Section 3.

The complete set of resulting gluelump mass splittings ∆me,s
RPCa (i.e. for all 19 RPC represen-

tations, the four ensembles from Table 1 and computations with unsmeared und with smeared
temporal links) are collected in Appendix A.2, Table 10. Results from the computations with
and without HYP2 smeared temporal links are mostly consistent within statistical errors. More-
over, the gluelump mass splittings obtained for different lattice spacings, i.e. ensembles A, B, C
and D are very similar, when not expressed in units of a, but in physical units, e.g. in GeV. This
supports the above statement that there is no divergent self-energy in gluelump mass splittings
and that continuum extrapolations are possible and should lead to finite mass differences.

In Figure 2 we show the gluelump mass splittings ∆me,s
RPC as functions of a2 obtained from

computations with HYP2 smeared temporal links (plots for computations with unsmeared tem-
poral links are quite similar, but exhibit somewhat larger statistical errors). The observed
a-dependencies for the three smaller lattice spacings (e ∈ {B,C,D}) are consistent with linear
behaviors in a2. This is expected for the Wilson plaquette action. Thus, to extrapolate to a = 0,
we use the function

∆mfit,s
RPC (a) = ∆ms

RPC ,cont + csRPCa
2 (23)

and carry out a χ2-minimizing fit for each representation RPC to the corresponding three data
points (see the dashed lines in Figure 2). The fit parameters are csRPC and ∆ms

RPC ,cont
, where

the latter represents the continuum limit of the gluelump mass splitting. Most of the χ2
red values

are of O(1), which indicate reasonable fits. We do not use data points from ensemble A for the
fits, because this ensemble has the largest lattice spacing and Figure 2 indicates that non-linear
contributions in a2 are already sizable.

The complete set of continuum extrapolated gluelump mass splittings ∆ms
RPC ,cont

(i.e. for all

19 RPC representations and computations with unsmeared und with smeared temporal links)
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Figure 2: Continuum extrapolations of gluelump mass splittings ∆mRPC for HYP2 smeared
temporal links.

are collected in Table 2. For the majority of RPC representations the resulting continuum
extrapolations ∆mnone

RPC ,cont
and ∆mHYP2

RPC ,cont
obtained with unsmeared and with HYP2 smeared

temporal links are consistent within statistical errors (the statistical error is the first of the two
errors provided in Table 2).

We also checked the validity and stability of our continuum extrapolations by extending the
fit function (23) by a term proportional to a4 and at the same time including the data points
from ensemble A with the coarsest lattice spacing in the fits. Again the resulting continuum
extrapolated gluelump mass splittings are mostly consistent with those listed in Table 2 within
statistical errors. We use the differences as an estimate of the systematic error (the second of
the two errors provided in Table 2).
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RPC ∆mnone
RPC ,cont

[GeV] ∆mHYP2
RPC ,cont

[GeV]

T++
1 0.386(14)(17) 0.394(9)(8)

T+−
1 0 0

T−+
1 0.282(7)(8) 0.250(15)(1)

T−−
1 0.066(4)(6) 0.066(4)(7)

T++
2 0.363(10)(7) 0.362(10)(7)

T+−
2 0.185(7)(2) 0.186(6)(1)

T−+
2 0.345(12)(9) 0.331(11)(8)

T−−
2 0.105(7)(0) 0.111(7)(7)

A++
1 0.196(7)(1) 0.197(7)(1)

A+−
1 0.439(8)(3) 0.394(16)(21)

A−+
1 0.467(12)(25) 0.477(15)(6)

A−−
1 0.381(31)(63) 0.292(9)(2)

A++
2 0.437(15)(5) 0.438(14)(6)

A+−
2 0.327(25)(22) 0.273(24)(15)

A−+
2 0.278(12)(16) 0.289(13)(9)

A−−
2 - 0.457(16)(20)

E++ 0.253(5)(3) 0.253(5)(2)
E+− 0.174(5)(3) 0.174(5)(3)
E−+ 0.317(10)(11) 0.314(10)(9)
E−− 0.118(5)(6) 0.122(8)(8)

Table 2: Continuum extrapolated gluelump mass splittings ∆ms
RPC ,cont

obtained by using the

gluelump masses from Table 9 and a fit function linear in a2 (see Eq. (23)). The first error is the
statistical error, while the second error is a systematic error representing the difference between
an a2 and an a4 ansatz for the continuum extrapolation (see text for details).

4.2.2 Method 2: continuum extrapolated gluelump mass splittings from simulta-
neous fits to correlator data from several ensembles

Each of the continuum extrapolations carried out in the previous subsection is based on just
three data points, where some have rather large statistical errors. Moreover, the data points are
differences of gluelump masses, where each gluelump mass is the result of a fit to a few effective
mass values consistent with a plateau. Some of these effective mass values also exhibit large
statistical errors and there are cases, where clear plateau identifications are difficult. Because of
these problems, we present and employ another method in the following. The method is based
on simultaneous fits to several correlation functions (18) computed on different ensembles both
with unsmeared and with HYP2 smeared temporal links. As one might expect, we find that
this method is more stable than that of the previous Section 4.2.1 and we consider our results
for continuum extrapolated gluelump mass splittings presented in this section (Table 3) to be
superior to those presented in the previous section (Table 2). Within statistical errors they are,
however, identical.

The basic idea is that the gluelump mass splitting ∆me,s
RPC can be extracted from the asymptotic
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behavior of

C̃e,s
RPC (t) =

Ce,s
RPC (t)

Ce,s

T+−
1

(t)
∼t→∞ Ae,s

RPC exp
(
−∆me,s

RPC t
)
, (24)

which is a ratio of temporal correlation functions Ce,s
RPC (t) defined in Eq. (18). As discussed in

Section 4.2.1 the dependence of ∆me
RPC on the lattice spacing is expected to be linear in a2 at

leading order (see Eq. (23)). For each representation RPC we, thus, carry out a simultaneous
9-parameter fit of

C̃fit,e,s
RPC (t) = Ae,s

RPC exp
(
− (∆mRPC ,cont + csRPCa

2)t
)

(25)

to the correlator data from ensembles B, C and D for unsmeared and HYP2 smeared temporal
links. Numerically, we find Ae,none

RPC = Ae,HYP2
RPC and cnoneRPC = cHYP2

RPC within statistical errors. Thus
we reduce the number of fit parameters from 9 to 5 and repeat all fits using the fit function

C̃fit,e,s
RPC (t) = Ae

RPC exp
(
− (∆mRPC ,cont + cRPCa2)t

)
. (26)

The fitting range tmin ≤ t ≤ tmax is chosen individually for each representation RPC in the
following way:

• For each e, s we define te,smin = t̃ − a/2 with t̃ denoting the smallest value of t, where the
effective mass

m̃e,s
eff,RPC (t) =

1

a
ln

(
C̃e,s
RPC (t)

C̃e,s
RPC (t+ a)

)
(27)

satisfies |m̃e,s
eff,RPC (t)a− m̃e,s

eff,RPC (t+ a)a| < 2σ.

• tmin is the largest te,smin from the previous item, i.e. we start the fit for all ensembles at the
same temporal separation in physical units.

• tmax is the largest t, where the correlation functions Ce,s
RPC (t) have been computed, i.e.

tmax = 20a(β = 6.284) = 1.20 fm.

Note that this procedure to select the fit range resembles that used previously in Section 4.1.

For RPC = A−−
2 we only include correlator data obtained with smeared temporal links

(s = HYP2) in the fit since we already saw in Section 4.1 that a clear plateau identification in
the corresponding effective masses obtained with unsmeared temporal links (s = none) is not
possible and statistical errors are large.

The complete set of continuum extrapolated gluelump mass splittings ∆mRPC ,cont (i.e. for all

19 RPC representations), which are the main results of this subsection, are collected in Table 3.
The corresponding χ2

red values are O(1) indicating reasonable fits.

To check the stability of the resulting continuum extrapolated gluelump mass splittings with
respect to a variation of the fitting range, we repeat all fits using the range t′min ≤ t ≤ tmax.
t′min is defined in a similar way as tmin with the difference that the condition below Eq. (27) is

12



RPC ∆mRPC ,cont [GeV] χ2
red

T++
1 1.793(94)(35)(42) 0.88

T−+
1 1.213(59)(3)(24) 1.05

T−−
1 0.342(19)(22)(21) 0.43

T++
2 1.771(85)(60)(35) 0.39

T+−
2 0.966(29)(2)(13) 0.64

T−+
2 1.638(73)(78)(30) 1.38

T−−
2 0.503(12)(5)(5) 1.34

A++
1 0.979(26)(21)(14) 1.00

A+−
1 2.088(51)(123)(36) 0.82

A−+
1 2.354(53)(27)(106) 0.92

A−−
1 1.433(31)(31)(16) 0.91

A++
2 2.210(66)(57)(38) 0.75

A+−
2 1.376(128)(155)(60) 0.92

A−+
2 1.496(32)(109)(21) 0.48

A−−
2

⋆
2.149(340)(7)(133) 1.34

E++ 1.258(19)(2)(15) 0.83
E+− 0.858(21)(23)(18) 0.50
E−+ 1.511(162)(44)(81) 1.18
E−− 0.559(12)(44)(11) 0.87

⋆ For RPC = A−−
2 we exclude correlator data obtained with unsmeared temporal links (s = none) from the fit (see the

discussion in Section 4.1).

Table 3: Continuum extrapolated gluelump mass splittings ∆mRPC ,cont obtained from 5-param-
eter fits of the fit function (26) to correlator data from ensembles B, C and D. The first error
is the statistical error, while the second error is a systematic error representing the difference
between an a2 and an a4 ansatz for the continuum extrapolation, respectively, and the third
error represents the systematic error coming from the choice of fitting range (see text for details).

replaced by |m̃e,s
eff,RPC (t − a)a − m̃e,s

eff,RPC (t)a| < 2σ, i.e. a more restrictive condition shifted by

a. This leads to a more conservative fitting range with t′min > tmin. When using t′min instead of
tmin, statistical errors are increased by around 50%. Such an increase, is expected, because the
signal-to-noise ratio of correlation functions becomes worse with increasing t. Most importantly,
mass splittings obtained with tmin (i.e. those collected in Table 3) and with t′min are consistent
within statistical errors. There is also no clear systematic trend, i.e. t′min mass splittings are not
generally smaller, but in several cases also larger than tmin mass splittings. We interpret this as
indication that excited states are strongly suppressed and that their effect is small compared to
statistical errors. We quote the differences between those two sets of results as systematic errors
(the third of the three errors provided in Table 3).

As in Section 4.2.1 we also checked the validity and stability of our continuum extrapolation by
extending the fit function (26) by a term proportional to a4,

C̃fit,e,s
RPC (t) = Ae

RPC exp
(
− (∆mRPC ,cont + cRPCa2 + dRPCa4)t

)
, (28)

and at the same time including correlator data from ensemble A with the coarsest lattice spacing
in the fits. All 19 resulting continuum extrapolated gluelump mass splittings obtained from
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such 7-parameter fits are consistent with those listed in Table 3 (obtained from 5-parameter
fits) within statistical errors. We quote the differences between those two sets of results as
systematic errors (the second of the three errors provided in Table 3).

In Figure 3 to Figure 5 we summarize our results on gluelump mass splittings from Section 4.2.1
and from this subsection.

• The black curves and data points represent results from Section 4.2.1.

– The black data points show the gluelump mass splittings, ∆me,s
RPC corresponding to

finite lattice spacing (see Table 10 in App. A.2), as well as the continuum extrapola-
tions ∆ms

RPC ,cont
(see Table 2).

– The black dashed curves correspond to the fit function (23), ∆mfit,s
RPC (a) (see Sec-

tion 4.2.1).

• The blue curves and data points represent fit results obtained with the 5-parameter fit
function (26):

– The error bands show

∆mRPC ,cont + cRPCa2 (29)

appearing in the exponent of the fit function (26) and its statistical uncertainty.

– The data points at a2 = 0 correspond to ∆mRPC ,cont and their statistical error (see
Table 3).

• The orange curves and data points represent fit results obtained with the 7-parameter fit
function (28):

– The error bands show

∆mRPC ,cont + cRPCa2 + dRPCa4 (30)

appearing in the exponent of the fit function (28) with its statistical uncertainty.

– The data points at a2 = 0 correspond to ∆mRPC ,cont and its statistical error.

• The red data points represent the main results of this work, continuum extrapolated
gluelump mass splittings ∆mRPC ,cont obtained with the 5-parameter fit function (26).
Uncertainties include both the statistical and the two systematic errors, as quoted in
Table 3, added quadratically.

4.2.3 Assigning continuum total angular momentum

In the following we try to assign the correct continuum total angular momenta J to the lattice
gluelump masses computed in the previous sections. We start by repeating our cautionary
remarks made at the beginning of Section 4. On a cubic spatial lattice each of the five irreducible
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Figure 3: Summary of the results on gluelump mass splittings from Section 4.2.1 and Sec-
tion 4.2.2 for representations TPC

1 and TPC
2 (see text for details). The final result for each

representation is represented by the red data point at a2 = 0 (also provided in Table 3).
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Figure 4: Summary of the results on gluelump mass splittings from Section 4.2.1 and Sec-
tion 4.2.2 for representations APC

1 and APC
2 (see text for details). The final result for each

representation is represented by the red data point at a2 = 0 (also provided in Table 3).
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Figure 5: Summary of the results on gluelump mass splittings from Section 4.2.1 and Sec-
tion 4.2.2 for representations EPC (see text for details). The final result for each representation
is represented by the red data point at a2 = 0 (also provided in Table 3).
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representations of the cubic group, denoted by R, contains an infinite number of continuum total
angular momenta J ,

A1 ↔ 0, 4, 6, 8, . . .
T1 ↔ 1, 3, 4, 5, . . .
T2 ↔ 2, 3, 4, 5, . . .
E ↔ 2, 4, 5, 6, . . .
A2 ↔ 3, 6, 7, 9, . . .

(31)

(see e.g. Ref. [22]). Moreover, there are cases in the gluelump spectra, where states with the
same lattice quantum numbers RPC , but different continuum J could have similar masses. In
such cases it is not obvious, which is the correct J for such a state. Two competing states with
similar masses may also generate a fake effective mass plateau within statistical errors and one
might extract an energy somewhere between the masses of the two states.

A simple strategy to assign continuum total angular momenta J , which was used e.g. in Ref. [10],
is to assume that the lowest state in a cubic representation R has the smallest allowed J value,
i.e. J = 0 for A1, J = 1 for T1, J = 2 for T2 and E and J = 3 for A2. It is possible to check
this assumption to some extent, because the majority of J values appear in more than one cubic
representation and one should observe a corresponding pattern in the extracted lattice spectra.
In particular, J = 2 is the lowest continuum total angular momentum in both T2 and E and,
thus, one expects a degeneracy of the lowest energy levels in these cubic representations within
uncertainties. There is no obvious contradiction to this assumption in our numerical results,
which are collected in Table 3 and summarized graphically in Figure 6. On the other hand,
there are other possible J assignments, which are also plausible or might in some cases even be
more likely. In the following we discuss this individually for all RPC representations.

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3

∆
m

 R
PC
,c
on
t 
[G
eV
]

J

T1
++

T1
−+

T1
−−

T2
++

T2
+−

T2
−+

T2
−−

A1
++

A1
+−

A1
−+

A1
−−

A2
++

A2
+−

A2
−+

A2
−−

E++

E+−

E−+

E−−

Figure 6: Summary of continuum extrapolated gluelump mass splittings. The horizontal axis
indicates the lowest continuum total angular momentum J appearing in the corresponding rep-
resentation of the cubic group. The error bars denote statistical and systematic errors.

• A1 states:
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– APC
1 → probably J = 0:

The two lowest J values contained in A1 are J = 0 and J = 4. Since significantly
larger angular momenta are typically associated with larger energies, it seems natural
to assign J = 0 to the A1 energy levels. In particular, for the lighter A1 states, A++

1

and A−−
1 , J = 0 seems to be the only plausible assignment.

• T1 states:

– T+−
1 → J = 1:

Besides J = 1 the next-lowest J value contained in T1 is J = 3, which is also part of
A2. The corresponding energy level for A+−

2 is, however, significantly larger than its
T1 counterpart, which is a clear sign that T+−

1 has J = 1.

– T−−
1 → J = 1:

Explanation as for T+−
1 (see previous item).

– T−+
1 → could be J = 1, but also J = 3:

The energy level for T−+
1 is consistent with the energy level for A−+

2 , which might be
a sign that they correspond to the same J = 3 state. On the other hand, the T−+

1

energy level has a rather large error and it could also be that T−+
1 has J = 1 and and

A−+
2 has J = 3, where both states are in the same energy region, 1.0GeV . . . 1.5GeV

above the lightest 1−+ gluelump.

– T++
1 → could be J = 1, but also J = 3:

Explanation as for T−+
1 (see previous item).

• T2 and E states:

– T−−
2 , E−− → J = 2:

Both T2 and E contain J = 2. The energy levels for T−−
2 and E−− are degenerate

within errors, which provides some indication that they correspond to the same state,
which has J = 2. In principle, a state appearing in both T2 and E could also have
J = 4, but this seems unlikely, because the J = 3 state is already quite heavy, as
indicated by the energy level for A−−

2 , and the energy level for A−−
1 , which can be

considered as a lower bound for the J = 4 energy, is significantly above the T−−
2 and

E−− energies. Thus, J = 2 seems to be the only plausible assignment.

– T+−
2 , E+− → J = 2:

Explanation as for T−−
2 , E−− (see previous item).

– E++ → J = 2 (discard T++
2 ):

The T++
2 energy level is around 3σ above the E++ energy level. This is surprising,

because there is no small J value in E++, which is not as well part of T++
2 . It could be

that this discrepancy is just a statistical fluctuation. Another possible explanation is
that the overlaps generated by the T++

2 operator are not favorable for an extraction of
the lowest state in this sector. For example, there could be a large overlap to a rather
heavy J = 3 state (the A++

2 energy level indicates that 3++ is quite heavy), which
generates a fake effective mass plateau within errors. In any case, the assignment of
J = 2 to the E++ energy level seems to be plausible, while the interpretation of the
T++
2 energy level is less clear and, thus, should be discarded.

– T−+
2 , E−+ → not inconsistent with J = 2:

Both T2 and E contain J = 2. The energy levels for T−+
2 and E−+ are degenerate
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JPC ∆mJPC in GeV RPC JPC ∆mJPC in GeV RPC

0++ 0.979(36) A++
1 2++ 1.258(24) E++

0+− 2.088(138) A+−
1 2+− 0.925(24)(2)(34) T+−

2 &E+− combined fit

0−+ 2.354(122) A−+
1 2−+ 1.664(107)(126)(195) T−+

2 &E−+ combined fit

0−− 1.433(47) A−−
1 2−− 0.523(9)(7)(1) T−−

2 &E−− combined fit

1++ 1.793(108) T++
1 3++ 2.210(95) A++

2

1+− 0 − 3+− 1.376(210) A+−
2

1−+ 1.213(64) T−+
1 3−+ 1.496(116) A−+

2

1−− 0.342(36) T−−
1 3−− 2.149(340) A−−

2
⋆

Table 4: Final results for gluelump mass splittings with quantum numbers JPC . The errors
include statistical as well as systematic errors (added in quadrature). The columnRPC indicates,
from which cubic representation the result was taken. For J = 2 and PC = +−,−+,−− we
generate the final results by carrying out additional combined fits (see text for details). Energy
levels, where the assignment of continuum total angular momentum J is a plausible scenario,
but not fully established, are shaded in gray.

within errors, indicating that they could correspond to the same state, probably with
J = 2. However, their errors, in particular that of E−+ is very large, such that other
J assignments cannot be ruled out.

• A2 states:

– APC
2 → probably J = 3:

The two lowest J values contained in A2 are J = 3 and J = 6. Following the same
argument as previously for the A1 states, J = 3 seems rather plausible and J = 6
rather unlikely. For A−+

2 and A++
2 this is supported by our discussion of the T−+

1 ,
and T++

1 states above, where we have presented scenarios, which imply J = 3 for
A−+

2 and A++
2 .

We generate final results for JPC = 2+−, JPC = 2−+ and JPC = 2−− by carrying out additional
combined fits for the representations T+−

2 and E+−, T−+
2 and E−+ and T−−

2 and E−−, respec-
tively. In detail, these are χ2-minimizing 9-parameter fits of Eq. (26) with a single fit parameter
∆mRPC ,cont linking the two representations EPC and TPC

2 , i.e. we set
∆mEPC ,cont = ∆mTPC

2 ,cont = ∆mJPC=2PC ,cont. The resulting χ2
red values are of O(1) indicating

consistency for these combined fits.

We summarize our final results for gluelump mass splittings with quantum numbers JPC in
Table 4. Energy levels, where the assignment of continuum total angular momentum J is a
plausible scenario, but not fully established, are shaded in gray.

There are possibilities to check, whether there are close-by competing states in certain RPC

representations with continuum quantum numbers J1 ̸= J2, and to resolve and determine the
masses of both states reliably. For example one could design not just one but several operators
generating RPC trial states. If some of these trial states are similar to continuum states with
J1 and others to continuum states with J2, the corresponding correlation matrix should allow
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to determine both energy levels. If this is done e.g. by solving a generalized eigenvalue problem,
the eigenvector components should provide information concerning the continuum total angular
momenta of the extracted states. While this seems to be non-trivial for gluelumps and has not
been attempted previously in the literature, it might be an interesting direction for future work.

4.2.4 Comparison of gluelump mass splittings to existing lattice results

In Figure 7 we compare our results for gluelump mass splittings ∆mRPC to results from similar
computations from Refs. [8, 10]. We show plots for the cubic representations
RPC = T−−

1 , T−−
2 , A++

1 , A+−
2 , E+−, for which continuum extrapolations were carried out in

Ref. [8].

• The orange data points represent our results, generated by evaluating ∆mRPC ,cont+cRPCa2

at a = 0 and at our three smallest lattice spacings a = 0.040 fm, 0.048 fm, 0.060 fm (see
Section 4.2.2, in particular Table 3).

• The blue data points are the results from Ref. [8] for three lattice spacings
a = 0.068 fm, 0.095 fm, 0.170 fm and a corresponding continuum extrapolation linear in
a2, which is similar to the method we used in Section 4.2.1. Ref. [8] is as well a compu-
tation in pure SU(3) gauge theory, i.e. without dynamical quarks. Thus the continuum
extrapolated gluelump mass splittings should be directly comparable to our work. While
there is qualitative agreement for the five shown representations, one can observe quanti-
tative discrepancies of up to ≈ 30%. Since we extract the continuum mass splittings from
a combined fit to a large number of correlator data points (see Section 4.2.2) instead of
extrapolating to a = 0 with just a three data points as done in Ref. [8], and since our lat-
tice spacings are significantly smaller than those from Ref. [8], we consider our continuum
extrapolations superior and more trustworthy than those from Ref. [8].

• The green data points are the results from Ref. [10] for two lattice spacings
a = 0.0685 fm, 0.0982 fm. A continuum extrapolation was not carried out in Ref. [10].
Since the computations in Ref. [10] were done in full QCD, i.e. with dynamical quarks (the
corresponding pion mass is around 3.5 times heavier than its physical value), a quantitative
comparison might exhibit certain discrepancies. Still, one can expect qualitative agree-
ment, because gluelumps are extracted from purely gluonic correlation functions. This
expectation is reflected by the plots in Figure 7.

4.3 Gluelumps as the r → 0 limit of hybrid static potentials

Hybrid static potentials in the continuum are typically characterized by quantum numbers Λϵ
η,

where Λ = 0, 1, 2, . . . ≡ Σ,Π,∆, . . . is the absolute value of total angular momentum with respect
to the axis of separation of the static charges, η corresponds to P ◦C and ϵ denotes the behavior
under reflection with respect to an axis perpendicular to the separation axis (for details see e.g.
Ref. [11]). Because of the separation of the static charges, a particular axis is singled out and,
consequently, the symmetry group is different from that of gluelumps. In the limit of vanishing
charge separation r, rotational symmetry is, however, restored. Since the static quark-antiquark
pair in the fundamental representation (for hybrid static potentials) is then equivalent to a
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Figure 7: Comparison of our results for gluelump mass splittings to results from Refs. [8, 10].
Error bars represent exclusively statistical errors.
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static quark in the adjoint representation (needed for gluelumps), gluelumps can be interpreted
as the r → 0 limit of hybrid static potentials. The correspondence between gluelump quantum
numbers JPC and hybrid static potential quantum numbers Λϵ

η in the limit r → 0 is discussed
e.g. in Ref. [1] and summarized in Table 5.

JPC Λϵ
η

1+− Πu, Σ
−
u

1−− Πg, Σ
+′
g

2−− Π′
g, Σ

−
g , ∆g

2+− Π′
u, Σ

+
u , ∆u

Table 5: Correspondence between gluelump quantum numbers JPC and hybrid static potential
quantum numbers Λϵ

η in the limit r → 0.

In Refs. [11, 12] we have computed hybrid static potentials using the same lattice setup as for
this work (see Section 3). We complement our lattice results from Refs. [12] in Table 6, where
we quote T+−

1 gluelump masses from Table 9 with s = none as r → 0 limits of Πu and Σ−
u

hybrid static potentials. We also provide previously unpublished results for r = a computed as
discussed in Ref. [12]. In Figure 8 we plot these Πu and Σ−

u hybrid static potentials for each of
our four lattice spacings, i.e. e ∈ {A,B,C,D}, together with the T+−

1 gluelump masses at r = 0.

ensemble r/a V e,none

Σ+
g

a V e,none

Πu
a V e,none

Σ−
u

a

A
0 - 1.3319(22) 1.3319(22)
1 0.411038(27) 1.2697(139) 1.2841(48)

B
0 - 1.0777(20) 1.0777(20)
1 0.365472(9) 1.0222(63) 1.0253(64)

C
0 - 0.9710(15) 0.9710(15)
1 0.345081(4) 0.9245(28) 0.9248(29)

D
0 - 0.8978(17) 0.8978(17)
1 0.329925(2) 0.8556(24) 0.8557(24)

Table 6: Addendum to Table 6 from Ref [12]. Πu and Σ−
u hybrid static potentials for r = 0

(equivalent to T+−
1 gluelump masses) and Σ+

g , Πu and Σ−
u (hybrid) static potentials for r = a.

In Figure 9 we show even higher hybrid static potentials from our previous work [11] computed
with a lattice spacing equal to the one of ensemble A with HYP2-smeared temporal links together
with the corresponding gluelump masses obtained from ensemble A with s = HYP2. In both
Figure 8 and Figure 9 hybrid static potential and gluelump data points are consistent with
smooth curves, which is a valuable cross-check of this work as well as of our previous work [11,12]
on hybrid static potentials.
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4.4 Conversion of 1+− gluelump masses from the lattice to the RS scheme

In this subsection we convert our lattice results for the 1+− gluelump mass obtained at several
values of a into the renormalon subtracted (RS) scheme at a specific scale 2.5/r0 ≈ 1GeV.
The result is an essential input for Born-Oppenheimer effective field theory predictions of heavy
hybrid meson masses [1, 23] (the scale νf = 1GeV was chosen, because it can be interpreted as
a cut-off scale fitting in the hierachy of scales of this effective field theory [24]). The accuracy
of such predictions is currently limited by the precision of this 1+− gluelump mass in the RS
scheme. We follow the same procedure discussed and employed in Ref. [9] using our up-to-date
precision lattice data on gluelump masses as input. Our aim is to clarify the impact of this more
accurate lattice data on the current uncertainty of the 1+− gluelump mass in the RS scheme.

4.4.1 Method

We start by summarizing the method of conversion of gluelump masses from the lattice to the
RS scheme proposed and used in Ref. [9]. The key equation is

ΛRS
B (νf ) = ΛL

B(a)−
(
δΛL

B(a) + δΛRS
B (νf )

)
. (32)

ΛL
B(a) ≡ me,none

T+−
1

is the lattice result for the T+−
1 gluelump mass obtained with unsmeared

temporal links at one of our four lattice spacings, i.e. e = A,B,C,D (see Table 1). Numerical
values are listed in Table 9. ΛRS

B (νf ) is the corresponding scale dependent gluelump mass in the
RS scheme. The remaining two terms are perturbative expressions, which are discussed below.
a and νf are independent, but in practice it is advantageous to choose νf ≈ 1/a, to avoid large
logarithms.

The lattice self-energy δΛL(a) is given by

δΛL
B(a) =

1

a

∞∑
n=0

c(8,0)n (αL(a))
n+1, (33)

where αL(a) is the lattice coupling (see below). The coefficients c
(8,0)
n were computed in Refs. [25,

26] up to n = 19 (the label (8, 0) indicates a static charge in the adjoint representation and refers
to the standard Wilson plaquette action and a static propagator with unsmeared temporal links;

we use the improved determinations of c
(8,0)
n from Ref. [26]).

δΛRS
B (νf ) is given by

δΛRS
B (νf ) =

∞∑
n=1

νf

(
Ṽ RS
s,n − Ṽ RS

o,n

)
(αMS(νf ))

n+1 (34)

(see Ref. [9]), where αMS(νf ) is the MS coupling. The coefficients Ṽ RS
s,n and Ṽ RS

o,n are known
exactly for n = 0, 1, 2 and were estimated for n = 3, 4 (see Table 2 in Ref. [9] and references
therein).
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The lattice coupling αL and the MS coupling αMS can be related perturbatively. For that we
use

αL(a) = αMS(1/a)
(
1− d1αMS(1/a) + (2d21 − d2)(αMS(1/a))

2
)

(35)

with d1 = 5.883 . . . and d2 = 43.407 . . . (see Refs. [9, 25] and references therein), which was also
used in Ref. [9] for the conversion of the gluelump mass. We note that in Ref. [25] an alternative
relation between αL and αMS is discussed (identical in the leading orders in αMS but different in
higher orders), denoted as MSa, which turned out to be superior in the context of that reference.
Moreover, in Ref. [25] the estimate d3 = 352 is provided such that Eq. (35) can be extended by
another order in αMS,

αL(a) = αMS(1/a)
(
1− d1αMS(1/a) + (2d21 − d2)(αMS(1/a))

2

+(−5d31 + 3d1d2 − d3)(αMS(1/a))
3
)
. (36)

In Figure 10 we compare several truncations of the perturbative expansion of αL in terms of
αMS. As expected, there is almost perfect agreement for small αMS

<∼ 0.05. For larger values of
αMS, however, there are sizable discrepancies. This concerns in particular the region
0.15<∼αMS(1/a)

<∼ 0.20, which corresponds to typical lattice spacings 0.040 fm . . . 0.093 fm as used
in this work (the region shaded in gray in Figure 10). This paragraph and Figure 10 is intended
as a cautionary remark that systematic errors in the conversion of a gluelump mass due to the
perturbative relation between αL and αMS might be large. We leave a future more detailed
investigation and discussion of these systematics to experts in the field of perturbation theory.
Our aim in the following is to use exactly the same method as in Ref. [9], i.e. Eq. (35), but
with our updated and more accurate lattice gluelump masses, to clarify how this improved data
affects the final uncertainty of ΛRS

B (νf ≈ 1GeV) quoted in Ref. [9].

Numerical values for αMS are generated via the five-loop running coupling from Ref. [27] using

r0Λ
(0)

MS
= 0.624(36) [28] and r0 = 0.5 fm. In Table 7 we list both αMS(1/a) and αL(a) for

a = 0.040 fm , 0.048 fm , 0.060 fm , 0.093 fm, i.e. the four lattice spacings used in our simulations.

β a in fm 1/a in GeV αMS(1/a) αL(a) (Eq. (35))

6.000 0.093 2.118 0.200 0.172
6.284 0.060 3.285 0.170 0.127
6.451 0.048 4.108 0.158 0.113
6.594 0.040 4.932 0.150 0.104

Table 7: αMS(1/a) from the five-loop running coupling from Ref. [27] and αL(a) according to
Eq. (35) for the four lattice spacings used in our simulations.

4.4.2 Numerical results

To convert the T+−
1 ≡ 1+− lattice gluelump mass obtained with unsmeared temporal links

at lattice spacing a into the RS scheme at scale νf = 1/a we use Eq. (32), where we insert
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Similarly, the data points represent a polynomial expansion of αMS in terms of αL, i.e.

αMS = αL(1 +
∑n

j=0 djα
j
L) up to n = 1, 2, 3, respectively (see Ref. [26] and references therein).

The dashed line represents the MSa conversion scheme (see Eq. (99) of Ref. [26]). The shaded
region shows the range of αMS(1/a) corresponding to the lattice spacings 0.040 fm . . . 0.093 fm
used in this work.

Eq. (33) and Eq. (34) and eliminate αL(a) in favor of αMS(1/a) via Eq. (35). The expression
δΛL

B(a) + δΛRS
B (1/a) on the right hand side of Eq. (33) is then a power series in αMS(1/a). We

truncate this power series, i.e. keep all terms proportional to αMS(1/a)
n with n ≤ nmax and

discard all remaining terms corresponding to n > nmax. For nmax = 3, for example, Eq. (32)
becomes

ΛRS
B (νf ) = ΛL

B(a)−
1

a
c
(8,0)
0 αMS(νf )

+

(
1

a
c
(8,0)
1 +

1

a
c
(8,0)
0

[
−d1 +

2β0
4π

ln(νfa)

]
+ νf

(
Ṽ RS
s,1 − Ṽ RS

o,1

))
(αMS(νf ))

2

+

(
1

a
c
(8,0)
2 +

2

a
c
(8,0)
1

[
−d1 +

2β0
4π

ln(νfa)

]
+

1

a
c
(8,0)
0

[
−d2 +

2β1
(4π)2

ln(νfa) + d21

]
+

2

a
c
(8,0)
0

[
−d1 +

2β0
4π

ln(νfa)

]2
+ νf

(
Ṽ RS
s,2 − Ṽ RS

o,2

))
(αMS(νf ))

3. (37)

For nmax = 2 this equation is identical to Eq. (70) in Ref. [9].

As in Ref. [9] we use nmax = 0, 1, 2, 3 denoted as LO, NLO, NNLO and NNNLO. In Ref. [9]

the coefficient c
(8,0)
2 appearing in the nmax = 3 expression was estimated, c

(8,0)
2 = 193.8(2.8).

Meanwhile, it is now known quite accurately, c
(8,0)
2 = 193.2(3) [26]. We use this more accurate

value, but since the difference between the two values is almost negligible, we do not expect a
significant impact on the final result for the gluelump mass in the RS scheme. Moreover, as
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noted above, we use the five-loop running coupling to generate numerical values for αMS(1/a),
which is an improvement compared to Ref. [9], where the four-loop running coupling was used.

In Figure 11 we show ΛRS
B (1/a) for our four lattice spacings at LO, NLO, NNLO and NNNLO

(colored data points; note that at LO ΛRS
B (1/a) = ΛL

B(a), i.e. lattice and RS masses are identical).
The corresponding numerical values are collected in Table 8. For comparison we also show results
from Ref. [9] (gray data points), where lattice data from Ref. [8] at coarser lattice spacings was
used. Our converted results show the same convergence behavior as the results from Ref. [9]
and the two sets of data points seem to be consistent with each other.
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Figure 11: ΛRS
B (1/a) for our four lattice spacings at LO, NLO, NNLO and NNNLO.

a in fm
ΛRS
B (1/a) = ΛL

B(a)
LO

ΛRS
B (1/a)
NLO

ΛRS
B (1/a)
NNLO

ΛRS
B (1/a)
NNNLO

0.093 2.821(5) 0.798(5) 1.298(5) 1.167(5)
0.060 3.541(7) 0.883(7) 1.440(7) 1.316(7)
0.048 3.990(6) 0.902(6) 1.502(6) 1.378(6)
0.040 4.429(8) 0.923(8) 1.568(8) 1.442(8)

Table 8: ΛRS
B (1/a) in GeV for our four lattice spacings at LO, NLO, NNLO and NNNLO. The

errors are purely statistical.

To obtain ΛRS
B at the scale νf = 2.5/r0 ≈ 1GeV, we continue following Ref. [9]. In a first step,

we fit the NNNLO expression (37) with νf = 1/amin = 1/0.040 fm to our four lattice data points
ΛL
B(a), where the only fit parameter is ΛRS

B (νf = 1/0.040 fm). Since νf ̸= 1/a for the data points
from ensembles A, B and C, there are now non-vanishing logarithms in Eq. (37). We obtain

ΛRS
B (νf = 1/0.040 fm = 12.5/r0) = 1.463(3)GeV. (38)

χ2
red = 4.36 indicates that our four lattice spacings together with the perturbative conversion

procedure do not lead to four fully consistent results for ΛRS
B (νf = 1/0.040 fm) within our rather
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small statistical errors. The discrepancies could originate either in the sizable separation of
scales νf ̸= 1/a and the corresponding large logarithms, the truncation of the perturbative
series or in lattice discretization errors, which are expected to be proportional to a2. To account
for this tension we use the difference to the result from an analogous fit excluding the lattice
gluelump mass ΛL

B(a = 0.093 fm), which gives ΛRS
B (νf = 1/0.040 fm) = 1.460(4)GeV with

χ2
red = 5.89, as part of the final systematic error (see the discussion at the end of this section).

Moreover, we consider an additional a2-term in Eq. (37) and carry out another fit including all
four lattice gluelump masses, which yields ΛRS

B (νf = 1/0.040 fm) = 1.454(6)GeV with χ2
red =

4.94. Again we include the difference to the result (38) in the final systematic error. We note
that a straightforward conversion of the lattice data point at our smallest lattice spacing, as
done for Figure 11 and Table 8 , gives ΛRS

B (νf = 1/0.040 fm) = 1.442(8)GeV, which is slightly
lower.

In a second step, the result at νf = 1/0.040 fm = 12.5/r0 is propagated to the scale
ν ′f = 2.5/r0 ≈ 1GeV using

ΛRS
B (ν ′f = 2.5/r0) = ΛRS

B (νf = 12.5/r0) +
(
δΛRS,PV

B (νf )− δΛRS,PV
B (ν ′f )

)
. (39)

To avoid errors from widely separated scales ν ′f and νf the Principal Value (PV) prescription in

the RS scheme is used to compute δΛRS,PV
B . The key equation is Eq. (61) in Ref. [9], where we

replace Nm by NΛ using NΛ = −1.37(9) from Ref. [26]. We obtain

ΛRS
B (νf = 2.5/r0 ≈ 1GeV) = 0.857(3)GeV. (40)

This result is lower than the result of Ref. [9], ΛRS
B (νf = 2.5/r0 ≈ 1GeV) = 0.912(12)GeV,

which is based on lattice gluelump masses from Ref. [8]. The error quoted in Eq. (40) is a
statistical bootstrap error, which does not include systematic uncertainties. As expected it is
much smaller than its counterpart from Ref. [9], roughly by a factor of 4, because we provide
more accurate lattice gluelump masses as input.

Finally, we discuss systematic errors and compare them to Ref. [9]. We use the five-loop run-
ning coupling instead of the four-loop running coupling with a more precise ΛMS value [28],
which reduces the systematic error associated with the uncertainty of ΛMS from 0.04GeV to
0.03GeV. Systematic errors already discussed in the context of our result (38) above translate
to ≈ 0.003GeV (separation of scales and large logarithms) and ≈ 0.01GeV (discretization er-
rors), respectively. The perturbative error, which Ref. [9] estimates as the difference between
the NNLO and NNNLO result, is in our case ≈ 0.03GeV. Additionally, there is a perturbative
error coming from the 10% uncertainty in NVs −NVo , i.e. a contribution of ≈ 0.07GeV [9]. All
these systematic errors, which are estimated in exactly the same way as in Ref. [9], add up to
0.143GeV compared to 0.205GeV quoted in Ref. [9]. Our final result is

ΛRS
B (νf = 2.5/r0 ≈ 1GeV) = 0.857(3)(143)GeV, (41)

where the first error is statistical and the second error is systematic. Clearly, the systematic
error is much larger than the statistical error associated with the lattice gluelump masses. Con-
sequently, improvements on the perturbative side seem to be necessary to increase the precision
of the 1+− gluelump mass in the RS scheme.

For completeness we note that Ref. [9] also includes a determination of ΛRS
B (νf = 2.5/r0 ≈ 1GeV)

via the (hybrid) static potentials Σ+
g ,Πu and Σ−

u resulting in
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ΛRS
B (νf = 2.5/r0 ≈ 1GeV) = [0.888 ± 0.039(latt.) ± 0.083(th.) ± 0.032(ΛMS)]GeV, which is

consistent with our result (41).
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5 Summary and outlook

We have carried out a comprehensive up-to-date lattice gauge theory computation of the gluelump
spectrum in pure SU(3) gauge theory. We have considered ground states for 20 RPC represen-
tations and provide both the corresponding masses and mass splittings. For the latter we have
studied the continuum limits using extrapolations based on lattice data from four ensembles
with rather fine lattice spacings. Our computations complement and improve on existing work,
in particular on Ref. [8]:

• We use lattice spacings as small as a = 0.040 fm, which is significantly smaller than the
smallest lattice spacing from Ref. [8], a = 0.068 fm.

• Our continuum extrapolations of gluelump mass splittings are based on fits to lattice data
from ensembles with four different lattice spacings, where on each ensemble computations
with unsmeared and with HYP2 temporal links were performed.

• We have computed gluelump masses for 20 RPC representations and have studied the
continuum limits of the corresponding 19 gluelump mass splittings with the T+−

1 gluelump
mass as reference, whereas previously only 10 ground state masses and continuum limits
of 5 mass splittings were provided.

• The assignment of continuum total angular momentum J to the lattice results on gluelump
masses is extensively discussed.

Our results on gluelump masses also complement and extend our recent results on hybrid static
potentials [11, 12], since gluelump masses can be interpreted as the r → 0 limit of hybrid static
potentials.

Moreover, we have repeated a perturbative analysis and determination of the 1+− gluelump mass
in the RS scheme from Ref. [9] using our improved lattice gluelump data as input. From this
analysis it is obvious that the remaining error of this RS gluelump mass is currently dominated
by perturbation theory and not by the accuracy of lattice gluelump masses. We expect that
this will motivate experts from the field of perturbation theory to improve the perturbative
equations entering RS gluelump mass determinations. Such an improvement might be within
reach, in particular in view of closely related perturbative advances reported in the literature,

e.g. the determination of the coefficients c
(8,0)
n , n = 0, . . . , 19 (see Refs. [25,26]) appearing in Eq.

(33) up to order α20
L .

A remaining problem on the lattice gauge theory side concerns several of the higher gluelump
states, where the assignment of the correct continuum total angular momentum J is not clear,
or where states with similar mass, but different J appear in the same cubic representation and
might mix (see the detailed discussion in Section 4.2.3). We plan to continue our work in this
direction, by implementing several operators for each RPC representation, which resemble possi-
bly competing continuum angular momenta J . After diagonalizing the corresponding correlation
matrices, e.g. by solving generalized eigenvalue problems, we expect that a clear assignment of
continuum J values is possible.
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A Summary of lattice field theory results

A.1 Lattice gluelump masses for all ensembles and unsmeared and HYP2
smeared temporal links

RPC mA,none

RPC a mB,none

RPC a mC,none

RPC a mD,none

RPC a mA,HYP2

RPC a mB,HYP2

RPC a mC,HYP2

RPC a mD,HYP2

RPC a

T++
1 2.144(44) 1.633(17) 1.451(3) 1.279(6) 1.598(39) 1.155(7) 0.980(3) 0.828(6)

T+−
1 1.332(2) 1.078(2) 0.971(2) 0.898(2) 0.771(2) 0.580(2) 0.500(1) 0.448(2)

T−+
1 1.936(7) 1.464(9) 1.292(5) 1.173(3) 1.378(6) 0.966(9) 0.813(8) 0.699(12)

T−−
1 1.474(9) 1.195(3) 1.062(3) 0.970(2) 0.907(16) 0.698(3) 0.592(3) 0.520(2)

T++
2 2.071(9) 1.560(14) 1.382(3) 1.248(4) 1.513(9) 1.064(13) 0.912(3) 0.798(4)

T+−
2 1.735(9) 1.360(5) 1.198(5) 1.087(4) 1.181(8) 0.860(5) 0.726(4) 0.637(4)

T−+
2 2.030(8) 1.489(26) 1.351(6) 1.222(4) 1.470(8) 1.029(11) 0.880(6) 0.768(6)

T−−
2 1.576(2) 1.211(14) 1.096(3) 1.001(2) 1.019(2) 0.717(12) 0.617(6) 0.551(2)

A++
1 1.753(8) 1.371(5) 1.201(6) 1.099(3) 1.194(7) 0.873(5) 0.730(6) 0.648(3)

A+−
1 2.276(27) 1.748(6) 1.486(8) 1.351(4) 1.718(26) 1.251(6) 1.017(7) 0.875(16)

A−+
1 2.159(108) 1.794(6) 1.551(7) 1.370(9) 1.776(24) 1.275(14) 1.082(7) 0.919(9)

A−−
1 1.966(10) 1.416(27) 1.314(4) 1.211(38) 1.407(10) 0.964(14) 0.844(4) 0.731(3)

A++
2 2.351(6) 1.700(15) 1.500(8) 1.328(8) 1.793(6) 1.202(14) 1.029(8) 0.878(7)

A+−
2 1.887(8) 1.371(23) 1.288(6) 1.133(17) 1.306(20) 0.881(20) 0.795(12) 0.676(16)

A−+
2 2.069(13) 1.580(4) 1.351(8) 1.205(9) 1.512(12) 1.069(8) 0.879(8) 0.757(9)

A−−
2 - - - - 1.546(91) 1.266(15) 1.059(8) 0.910(8)

E++ 1.917(9) 1.477(3) 1.255(11) 1.162(3) 1.359(8) 0.978(3) 0.785(11) 0.711(3)
E+− 1.726(12) 1.356(3) 1.181(6) 1.081(2) 1.165(11) 0.858(3) 0.710(6) 0.631(2)
E−+ 2.014(10) 1.521(15) 1.255(25) 1.209(3) 1.460(9) 1.027(15) 0.785(24) 0.759(3)
E−− 1.563(6) 1.227(7) 1.089(9) 1.010(2) 1.006(6) 0.727(6) 0.619(8) 0.563(5)

Table 9: Lattice gluelump masses me,s
RPC a in units of the lattice spacing obtained from fits to

effective mass plateaus (see Section 4.1). The row corresponding to the lightest gluelump with
RPC = T+−

1 is shaded in gray.

A.2 Gluelump mass splittings for all ensembles and unsmeared and HYP2
smeared temporal links
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RPC ∆mA,none

RPC a ∆mB,none

RPC a ∆mC,none

RPC a ∆mD,none

RPC a

T++
1 0.812(44) 0.555(17) 0.480(3) 0.381(6)

T+−
1 0 0 0 0

T−+
1 0.604(7) 0.386(9) 0.321(5) 0.276(3)

T−−
1 0.142(9) 0.118(3) 0.091(3) 0.072(2)

T++
2 0.739(9) 0.482(14) 0.411(3) 0.350(4)

T+−
2 0.403(9) 0.282(5) 0.227(4) 0.189(4)

T−+
2 0.698(8) 0.411(26) 0.380(6) 0.325(4)

T−−
2 0.244(3) 0.133(14) 0.125(2) 0.103(2)

A++
1 0.421(8) 0.293(5) 0.230(5) 0.201(4)

A+−
1 0.944(27) 0.670(6) 0.515(8) 0.453(4)

A−+
1 0.828(108) 0.716(6) 0.580(7) 0.472(9)

A−−
1 0.634(10) 0.338(27) 0.343(4) 0.313(38)

A++
2 1.019(6) 0.622(15) 0.529(8) 0.430(8)

A+−
2 0.555(8) 0.294(22) 0.317(6) 0.235(17)

A−+
2 0.737(13) 0.502(4) 0.380(8) 0.308(9)

A−−
2 - - - -

E++ 0.585(9) 0.399(3) 0.284(11) 0.264(3)
E+− 0.394(12) 0.279(4) 0.210(6) 0.183(3)
E−+ 0.682(10) 0.443(15) 0.284(25) 0.311(4)
E−− 0.231(6) 0.149(6) 0.118(9) 0.112(2)

RPC ∆mA,HYP2

RPC a ∆mB,HYP2

RPC a ∆mC,HYP2

RPC a ∆mD,HYP2

RPC a

T++
1 0.827(39) 0.575(7) 0.480(3) 0.381(6)

T+−
1 0 0 0 0

T−+
1 0.607(6) 0.387(9) 0.313(8) 0.251(12)

T−−
1 0.136(16) 0.119(3) 0.092(3) 0.072(2)

T++
2 0.743(9) 0.484(13) 0.412(3) 0.350(4)

T+−
2 0.410(8) 0.281(5) 0.227(4) 0.189(4)

T−+
2 0.699(8) 0.449(11) 0.380(6) 0.321(6)

T−−
2 0.249(2) 0.138(12) 0.117(5) 0.104(2)

A++
1 0.424(7) 0.293(5) 0.231(5) 0.201(4)

A+−
1 0.948(26) 0.671(6) 0.518(7) 0.428(16)

A−+
1 1.005(24) 0.695(14) 0.582(7) 0.471(9)

A−−
1 0.636(9) 0.384(14) 0.344(4) 0.283(3)

A++
2 1.022(6) 0.622(14) 0.529(8) 0.430(7)

A+−
2 0.536(20) 0.302(20) 0.296(11) 0.229(15)

A−+
2 0.741(11) 0.489(8) 0.379(8) 0.309(9)

A−−
2 0.776(91) 0.687(14) 0.559(8) 0.462(9)

E++ 0.589(9) 0.398(3) 0.285(11) 0.264(3)
E+− 0.394(11) 0.279(4) 0.210(6) 0.183(3)
E−+ 0.690(9) 0.448(15) 0.286(24) 0.311(4)
E−− 0.235(6) 0.148(6) 0.119(8) 0.115(4)

Table 10: Gluelump mass splittings ∆me,s
RPC a in units of the lattice spacing obtained by sub-

tracting the lattice gluelump masses from Table 9 (see Section 4.2.1). ∆me,s

T+−
1

= 0 by definition

(see Eq. (22)), because we use me,s

T+−
1

as reference mass.
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