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Abstract: We studied the pi-p145-T phase diagram of the 2 4 1-dimensional Gross-Neveu model, where
u denotes the ordinary chemical potential, yi45 the chiral chemical potential and T the temperature. We
use the mean-field approximation and two different lattice regularizations with naive chiral fermions.
An inhomogeneous phase at finite lattice spacing was found for one of the two regularizations. Our
results suggest that there is no inhomogeneous phase in the continuum limit. We showed that a chiral
chemical potential is equivalent to an isospin chemical potential. Thus, all results presented in this
work can also be interpreted in the context of isospin imbalance.

Keywords: inhomogeneous phases; chiral imbalance; isospin imbalance; 2+1-dimensional field theories;
Gross-Neveu model; mean-field

1. Introduction

The Gross-Neveu (GN) model describes a theory of N fermion flavors with a quartic
interaction. It is a rather simple model commonly used to explore and describe the spon-
taneous breaking of chiral symmetry [1] in the p-T plane, where u denotes the chemical
potential and T the temperature. In the limit Ny — oo (corresponding to the mean-
field approximation or, equivalently, the neglect of bosonic quantum fluctuations) the
1 + 1-dimensional GN model exhibits three phases: a symmetric phase (with a vanishing
chiral condensate), a homogeneous symmetry-broken phase (with a non-zero, but spatially
constant condensate) and an inhomogeneous phase, where the chiral condensate is an
oscillating function of space [2-4]. The phase diagrams of the GN model and related theo-
ries were also investigated at finite Ny, i.e., with bosonic quantum fluctuations included,
using lattice Monte-Carlo simulations [5-11] and the functional renormalization group
(FRG) [12].

Inhomogeneous phases are not limited to the GN model, but were found in several
models in the mean-field approximation in 1 + 1 dimensions [13-16] and in 3 + 1 dimen-
sions [17-23]. For a review, we refer to Ref. [24]. In recent works [25-28] it has been
discussed that inhomogeneous phases might be related to so-called moat regimes, where
the bosonic wave function renormalization Z is negative. Such a regime has been found in
an FRG study of the phase diagram of quantum chromodynamics (QCD) [29]. A similar
regime has been observed in the 1 4 1-dimensional GN model (see Figure 9 of Ref. [30]
, where the wave function renormalization Z is plotted in the y-T plane). One finds that
a negative Z accompanies the instability of a homogeneous condensate with respect to
inhomogeneous perturbations as a necessary, but not a sufficient condition. The possible
existence of a moat regime in the QCD phase diagram encourages us to improve our
understanding of inhomogeneous condensation and related phenomena in QCD-inspired
models.
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Recently, the existence of inhomogeneous phases was also explored in the 2 + 1-
dimensional GN model in the mean-field approximation [31-33]. Such 2 + 1-dimensional
four-fermion theories are of interest both in high energy physics [34-38] and in condensed
matter physics [39—-46], but also to study conceptual questions, e.g., renormalizability in
the 1/ N expansion or in a perturbative approach [47-50]. Hence, confirming the existence
of an inhomogeneous phase in such a model could have a significant impact. Early seminal
studies of the y-T phase diagram of the 2 + 1-dimensional GN model [51,52] reported a
second-order phase transition between the symmetric and the homogeneous symmetry-
broken phase at finite T and p and a first-order phase transition at T = 0. However,
in these studies only a homogeneous order parameter was considered. In our recent
publication Ref. [33] we studied the existence of an inhomogeneous phase in the 2 + 1-
dimensional GN model within the mean-field approximation. Our main findings were
that an inhomogeneous phase is present at finite regulator and for certain regularization
schemes (a Pauli-Villars cutoff and a specific lattice discretization), but it disappears when
the regulator is removed, as previously observed in Ref. [38].

In this work we continue our investigations from Ref. [33] by extending the 2 + 1-
dimensional GN model with a chiral chemical potential. We studied its phase diagram,
where our main focus was on possibly existing inhomogeneous phases. While the GN
model might be too simple to realistically describe the effect of chiral imbalance on QCD, it
might still improve our conceptual understanding of inhomogeneous condensation in the
presence of chiral imbalance, which is an important problem. A difference in the densities
of left- and right-handed quarks is relevant in physical systems such as heavy-ion collisions
[53,54] or compact stars [55,56]. The impact of chiral imbalance on chiral symmetry breaking
has been studied (e.g., in 1 + 1-dimensional models) [14], where it had no influence on
the existence of the inhomogeneous chiral spiral, and in 3 + 1-dimensional models [57-
59], where only homogeneous order parameters were considered. A chirally imbalanced
2 4 1-dimensional GN model, extended by a quartic difermion interaction, was explored
in Refs. [60,61] with the aim to clarify the competition of homogeneous fermion—fermion
condensation and homogeneous chiral condensation. In recent two-color and three-color
QCD studies [62,63] a chiral chemical potential was investigated and found to increase
the chiral transition temperature. This result is supported by a Nambu-Jona-Lasinio (NJL)
model study [64].

This paper is structured as follows. We start in Section 2 by discussing the theoretical
basics of the GN model in 2 4+ 1 dimensions including details on the underlying chiral
symmetry. We also add a chiral chemical potential to the model and show the equivalence
of chiral imbalance and isospin imbalance. In Section 3 we discretize the effective action of
the model using lattice field theory. Section 4 is the main part of our paper, where numerical
results are presented and discussed. Finally, we conclude in Section 5. Preliminary results
from this project were presented at a recent conference [65].

2. Theoretical Basics
2.1. Action and Partition Function

The action of the GN model in 2 + 1 dimensions with N ¢ fermion flavors is

Sl 1 = [ &x ( X (120 20 ) i - ( )3 wnlpnf), M

where ¢, represents Ny massless fermion fields; y is the chemical potential; and ¢ is the

coupling of the four-fermion interaction. [ d®x = 1/ T dxg Jg2 dx with d?x = dxy dx, and
T denoting the temperature given by the inverse extent of the periodic temporal direction
of Euclidean space-time.
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The action (1) is equivalent to

N
- : N .
S[¢, ¢, 0] = /d3x (2)’:02 +) %Q[%U]t,bn), @)
n=1
where ¢ is a scalar boson field; A = N¢ ¢? is the rescaled coupling; and

Qu, 0] = 10y +yop +0 3)

is the Dirac operator. Integration over the fermion fields leads to the so-called effective
action and the corresponding partition function

Sest0] = Ny (21)\ /d3x(72 — InDet Q[p, a}), Z= /Dae_seff[‘f]. 4)
One can show that ((x)) is related to the condensate (¢, (x)¢,(x)) according to
{o(x)) = =57 (@ () (x))- ®)
f

As in previous studies of chiral inhomogeneous phases, we restricted the dependence
of ¢ to the spatial coordinates, i.e., ¢ = o(x). With this restriction Det Q is real, which is
shown in the Appendix of Ref. [33]. For even Ny, the effective action Seg[c] is then real.
(Our numerical calculations of the determinant showed that Det Q is exclusively positive,
i.e., the effective action Seg[c] is real for all values of Ny).

Since Seg[0] o Ny, the limit Ny — oo reduces the relevant configurations in the
partition function (4) to the global minima of Seg[c]. Thus, the computation of a path
integral is reduced to an optimization problem. In the case of degenerate global minima,
spontaneous symmetry breaking selects one of these minima. Consequently, an expectation
value (O(0)) is identical to the value of O evaluated at the corresponding global minimum,
ie., (O(0)) = O(0). In particular, (o) — o. For the remainder of this paper we exclusively
consider the limit Ny — oo.

2.2. Representation of the Dirac Matrices and Chiral Symmetry

Typically one uses either an irreducible 2 x 2 representation or a reducible 4 x 4
representation of the Dirac algebra for the v matrices appearing in the Dirac operator (3)
(for details see, e.g., Refs. [33,36,37,66]). In the case of an irreducible 2 x 2 representation,
there is no symmetry, which can be interpreted as chiral symmetry, because it is impossible
to define a matrix s, which anticommutes with g, y1 and 7;. Therefore, a reducible 4 x 4
representation is more appropriate in our context, e.g.:

+1T 0 +T3 0
YN =BT = ; N1 =BOT = ,

0 -n 0 -
+7 0
’Yz=T3®T1=< >, (6)
0 —T

where 7; denote the Pauli matrices. The three matrices +71, +7 and +73 as well as
the three matrices —7, —T» and —13 form irreducible 2 x 2 representations, which are
inequivalent. The corresponding upper two and lower two entries of the fermion fields 1,
can be interpreted as left-handed and right-handed components, respectively.
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The Dirac operator (3) is then block-diagonal,

@[y, 0
Qlu o] = QW[p, 0] = ( Qe i ) @)
0 Q@[u, 0]
where
Q@[u,0] = 4+12(9 + pt) + 1301 + 12 + 0, (8)
Q(z) (1,0] = —1(d0 + 1) — 1301 — 202 + 0 9)

represent Dirac operators for left-handed and right-handed fermion fields ¢/ ® (see also

Equations (14) and (15) in Ref. [33]). One can show that Det Q®)[y, 7] and Det Q®) [, 0]
are invariant under both 4 — —p and ¢ — —0c. Using the latter one can show

Det Q) [y, 0] = Det @ [u, 0]. (10)

The action with Q = Q) [y, ¢] is invariant under the discrete chiral transformations.
(For free fermions one can define continuous axial chiral symmetry transformations with
both 74 and 5. The four-fermion interaction in Equation (1) breaks the corresponding
symmetries explicitly, see, e.g., Ref. [33]).

Yn = Yalu, P — —Puvs, (11)
Uy — Ys5Pu, 1,’_711 — _lpn')’S (12)

with

0 +1, 0 +illy
Ya=1®1 = , =Rl = . (13)
t1, 0 i1, 0

Both 74 and 5 anticommute with 7y, 1 and 7y, thus fulfilling the necessary properties
for generating an axial chiral transformation. The symmetries (11) and (12) are also present
for the action (2), where the corresponding transformation of ¢ is in both cases o — —o.
Thus, ¢ is an order parameter for chiral symmetry breaking. (When using an irreducible
2 x 2 fermion representation, there is no chiral symmetry; however, o can still be interpreted
as an order parameter for parity breaking).

In addition to the transformations (11) and (12) the action is also invariant under the
continuous vector chiral transformations

Py — eirx”T“ Pu, lpn — lpneimaw, (14)
lpi’l — ei'BaTa’Y451/Jn/ lpn — lpneiiﬁaTﬂ’hﬁ/ (15)

where T* denotes the generators of U(Ny) flavor rotations and

. +1, 0

Y45 =175 = 3O 1) = (16)

0 -1,

(see also Refs. [36,66]).

The transformations (11), (12) and (15) are not independent. For example, (11) can be

written as combination of (12) and (15) with T* = —nt/2,

Py — ei(fn/2)74575¢,n = Y4Pn, J’n — _¢n75e7i(7n/2)745 = _1/_)11’)/4- (17)
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Thus, there is only one independent Z, symmetry, i.e., the structure of chiral symmetry
is Ug (Nf> X U745 (Nf) X Zz.

A chiral chemical potential j45 can be introduced in a straightforward way by extend-
ing and replacing the Dirac operator in (3) or equivalently (7) according to

Qlp, o] = QWn, o] — Qlu, pas, 0] = QW [, s, 0] = 1Ay + Yop + vasyohas + o =
_ ( QP [+ s, 0] 0 )

_ (18)
0 Q@ [u — pus, 0]

U5 contributes to the chemical potentials of the left-handed (upper two) components and
the right-handed (lower two) components with opposite sign, thus causing chiral imbalance.
We note that there are other possibilities to define chirality and chiral imbalance (see, e.g.,
Refs. [60,61] and Section 5) differing from our definition, where left- and right-handed
fermion fields pL/R are projected from the fermion fields as

lIJ?IZ/R — PL/Rq)Yl = %(]14 :‘:’)’45)1,[)711 (19)

with PL/R denoting the corresponding projectors.
As done for j45 = 0 in appendix A of Ref. [33], one can show that Det Q) [y, jiy5, 0] is
invariant under both (y, py5) — (—y, —p45) and ¢ — —o. Since

Det Q(4) [l’l/ Has, 0'} = Det Q(z) [# + W45, U] Det Q(Z) [V — M5, U]/ (20)

Det Q%) [i, Has, 0] is also invariant under the exchange of the ordinary and the chiral
chemical potential, yt <> 5. Clearly, Seg[o] as well as the phase diagram share this
invariance. In Section 4 we use this property to cross-check our numerical results.

We note that the effective action can be written as the sum of a left-handed and a
right-handed part,

1
Sett[0] = Nf(Z)\ /d3x i lnDetQ(4) (1, tas, U]> = ngf[a] + ngf[a] =

N/

1 .
Ne( L [ Pro? — 1nDet 0@ [y, ) o
X=LR f(z(Z)\) / xoo—inbe [ux, ]

:Sg(ff (o]

with pp = u + pus and pr = p — pgs. Of course, the two parts are not independent but
coupled via o. Moreover, both parts are equivalent to the chirally balanced effective action
(see Section IT C. of Ref. [33]), i.e.,

1 1
Selo] = iseff[a] . S&lo] = Eseff[g ] : (22)
H=pr,Ha5=0 H=MHR,Ha5=0

This property will be useful when we discuss our numerical results in Section 4.

2.3. Equivalence of Isospin and Chiral Imbalance

In this subsection we consider an even number of fermion flavors Ny, again in the
4-component reducible representation, and assign half of them (the “u flavors”) a chemical
potential y + yj, the other half (the “d flavors”) a chemical potential  — yj. Clearly, yg
generates an imbalance between the 1 and the d flavors and, thus, can be interpreted as
isospin chemical potential.
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The corresponding effective action is

1 7 1
Sefi 0] = Ny (2/\ / Pxo? - 5 InDet QI[%MI,U]), (23)
where the Dirac operator is an 8 x 8 matrix in spin and isospin space,

QI[#,HL U] = 70y + You + Yo +0 =

@y + p, 0, 0
_ ( QW[+ p,0,0] ) 24
0 QW [u — 1, 0,0]
Using Equation (20) one can show
InDet Qi[p, i1, 0] = 21n Det Q¥ [u, uy, 0]. (25)

Consequently, the effective action for the GN model with isospin imbalance, Equation
(23), is identical to the the effective action for the GN model with chiral imbalance, Equa-
tion (21), when identifying y; = p4s. Thus, all numerical results presented in Equation (4)
can either be interpreted in the context of chiral imbalance or of isospin imbalance. We note
that this equivalence of isospin and chiral imbalance is specific to the GN model in 2 + 1
dimensions.

3. Lattice Discretization

We used a lattice discretization of the effective action (21), which was similar to the
discretization discussed in Section IV of our previous work [33] . The key difference is
that we use the naive fermion discretization also in temporal and not only in the spatial
directions.

We considered a 3-dimensional space-time volume SV, where f = 1/T was the inverse
temperature and V = L? the quadratic spatial volume. The boundary conditions were
periodic in the 2 spatial directions and periodic and antiperiodic in temporal direction for
the fields o and ¢, §,,, respectively. We used a cubic lattice with N x NS2 lattice sites and
lattice spacing a4, i.e., = aN; and L = aN;. In the following, all dimensionful quantities
are expressed in units of the lattice spacing, e.g.,, a = 1, B = B/a. Because of the finite
space-time volume, the 3-dimensional momenta were quantized,

ko+n k
= =2 = 2
p = (po,p) n( N, ’Ns) (26)
with
Nt Nt Nt Ns Ns NS
kOE{—Z,—2+1,,2—1} and kle{—z,—2+1,,2—1}

and 7 = 0,1/2, corresponding to periodic and antiperiodic boundary conditions in the
temporal direction.

In our numerical implementation, the effective action and fields were treated in
momentum space,

Sefflo] ~ NiNZ .o, 1 ~(4)
N, oo Xp:ff (p) — 5 InDet QW [, pas, o], 27)

where

7(p) = 3 Lot 28)
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are the Fourier coefficients of the field ¢(x).
54 -
Qpalp, pas, 0] = NeNZ (i‘sp,q Y- yusin (pu — b0 (s + Yaspas) ) +
v=0
+8p,q0Wa (P — Q)7 (p — q)> (29)

is the Dirac operator in momentum space. On the lattice, this operator is a matrix with
columns and rows labeled by the momenta p and g, respectively. The sin for v = 0 contains
the matrix 45 but can be simplified according to

sin (Po —i(p+ 745#45)) = sin(po — ip) cos(ipty5) — vas5 cos(po —iu) sin(ipys).  (30)

The Dirac operator Q](f,; has eight regions of soft modes, where the dispersion relation
is approximately linear, in the first Brioullin zone and where each region describes a fermion
flavor. In the continuum limit, these fermion flavors do not interact with each other but
with the scalar field ¢ in the same manner (for details see Ref. [5] and the Appendix of
Ref. [7]). Thus, in order to study Ny fermion fields on the lattice, where Ny is restricted
to a multiple of 8, one has to use N ¢ /8 naive fermions in the discretization of the fermion
bilinear in Equation (2) resulting in the factor 1/8 in Equation (27) (compare Section IV
A. in Ref. [33]). An appropriately chosen weight function W(p) was necessary to ensure
the correct continuum limit (see Refs. [5,7,33] for details). We investigated and compared
two possible choices,

Wap) = Wa(p) = TT Wi(p), Wi(py) = <5108, @
Wop) = W (p) = TT W (), () = ©(e/2~ ) @)

with © denoting the Heaviside function.

Because of the restriction of ¢ to the spatial coordinates, i.e., ¢ = o(x), the Dirac
operator (29) was block-diagonal with respect to pg and gg. This simplified the computation
of Det Q™ [y, juys, 0] to the computation of N; determinants of smaller matrices of size
4N? x 4N2.

4. Numerical Results

Using lattice field theory the phase diagram of the 2 + 1-dimensional GN model with
nas = 0 was extensively explored in Refs. [31-33]. There is a symmetric phase with o = 0
at large u or large T and a homogeneous symmetry-broken phase with a constant o = 7 at
small # and small T. Moreover, at finite lattice spacing and for certain discretizations (e.g.,
W, = WJ) there is additionally an inhomogeneous phase, where ¢(x) is a varying function
of the spatial coordinates. However, this inhomogeneous phase shrinks, when decreasing
the lattice spacing, and seems to vanish in the continuum limit.

The main focus of this paper is to investigate in particular the phase structure for p45 #
0 to clarify whether inhomogeneous phases exist. At first, we recalled that the effective
action Seg[0] can be written as the sum of a left-handed part SL[0] and a right-handed
part ngf[a] with chemical potentials y; and g, respectively (see Equation (21)). Moreover,
each of the two parts was equivalent to the action of the chirally balanced GN model,
which was investigated in detail in our previous work [33]. Thus, for |pr| > pc(T) and
\ur| > pe(T) both Sk [o] and SR [0] had their respective minima at ¢ = 0 (y¢(T), denoting
the location of the phase boundary of the symmetric phase at p45 = 0 and temperature T).
(We ignored the existence of an “inhomogeneous island” or “inhomogeneous continent” at
large chemical potentials where cutoff effects were particularly strong [33].). Consequently,
the minimum of S.g[c] also corresponded to ¢ = 0. In other words, from numerical
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results obtained in Ref. [33] at y45 = 0 we could conclude that chiral symmetry was
restored in the chirally imbalanced GN model for |y | > pc(T) and |ugr| > pc(T). In the
remaining regions of the (y, jus5, T) space, SL;[o] and SK[0] compete and the behavior of
the condensate needed to be investigated numerically. We started doing that in Section 4.1
by restricting our computations to a homogeneous condensate. After that, in Section 4.2, we
carried out a stability analysis of the favored value of the homogeneous condensate with
respect to inhomogeneous perturbations. Finally, in Section 4.3, we performed numerical
minimizations of the effective action, allowing arbitrary inhomogeneous modulations.

The lattice spacing a was a function of the coupling A. As explained in our previous
work [33] we tuned A such that the temporal extent N;.a corresponded to the inverse
critical temperature f. = 1/T., which separated at 4 = u45 = 0, the symmetric and
homogeneous symmetry-broken phase. Then, at fixed A, the temperature T = 1/ Na could
be changed in discrete steps by increasing or decreasing N;. A summary of the lattice
parameters used to generate all following numerical results is given in Table 1. We note
that throughout this section dimensionful quantities are expressed in units of the vacuum
expectation value of o,

00 = 0 4=0,j145=0,T=0- (33)

Table 1. Lattice parameters (N .: number of lattice sites in temporal direction corresponding to the
critical temperature T;; A: coupling; a: lattice spacing; Ns: number of lattice sites in each of the two
spatial directions).

Nt Ala aoy Ny
4 2.6040 0.3649 28,40, 60, 80
6 2.3355 0.2327 60, 100, 120

4.1. Restriction to a Homogeneous Condensate

In the case of a homogeneous condensate, i.e., ¢ = & or equivalently &(p) = 76p 0, the
two lattice discretizations with W} and W} (Equations (31) and (32)) were identical. The
Dirac operator corresponded to a block-diagonal matrix with N;NZ blocks of size 4 x 4.
Thus, the In Det Q(4) (1, py5, 0] term in the effective action (27) could be computed quite
efficiently by summing over N;NZ determinants of 4 x 4 matrices. Moreover, the effective
action at given y, 45 and T is a function of just a single variable 7; hence, it could be
minimized numerically in a straightforward and rather cheap way to obtain the physically
preferred value of the homogeneous condensate.

Figure 1 shows the phase diagram in (y, ji45, T) space for acy = 0.2327 and Loy =
120 acy = 27.92. For py5 = 0.0 the phase boundary is quite similar to the analytically ob-
tained continuum result [51] with slight deviations due to discretization and finite volume
effects. At high temperature T/0y 2 0.4 the phase boundary exhibited an approximate rota-
tional symmetry in the j-j45 plane, i.e., it was crudely described by 12 + u3s &~ (uc(T))>.
In contrast to that, at low temperature, the phase boundary approached a square-like shape
in the p-py45 plane.

The left plot of Figure 2 shows sectional views of the phase diagram at fixed lat-
tice spacing acp = 0.2327 for two different spatial extents, Loy = 6040y = 13.95 and
Loy = 120a0y = 27.92. At low temperature the phase boundary exhibits an oscilla-
tory behavior, which was more pronounced for the smaller lattice volume. We expected
that the oscillations would disappear in the infinite volume limit. The right plot of
Figure 2 shows sectional views of the phase diagram for two different lattice spacings,
acy = 0.3649 and acp = 0.2327, at fixed ratio N;/ N = 20 implying similar spatial extents
Loy = 80a0y = 29.19 and Loy = 120 a0y = 27.92. There were visible discrepancies due to
discretization effects, in particular when both T is small and y ~ p45. Continuum results at
uas = 0 from Ref. [51] as well as our lattice results at various small temperatures, lattice
spacings and spatial volumes point towards T = 0 phase boundaries at y/0p = 1 for
0 < pss/09 < land at pgs/09 = 1for 0 < u/op < 11in the continuum limit.
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Figure 1. Phase diagram of the chirally imbalanced 2 + 1-dimensional GN model with the restriction
to a homogeneous condensate o = 7 in (4, pys, T) space for agy = 0.2327 and Loy = 120 a0y = 27.92.
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~ 13.96
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T
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u/op
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/oo
Figure 2. Phase diagram of the chirally imbalanced 2 + 1-dimensional GN model with the restriction
to a homogeneous condensate o = & in the yi-j45 plane for several temperatures. Since the phase
diagram is invariant with respect to yt <> 45, each octant in the p-j145 plane contains full information
and one can compare the two lattice extents Loy (left plot) or two lattice spacings aop (right plot) in a

convenient way within the same plot. (left) acy = 0.2327. (right) N;/N; . = 20, i.e., similar spatial
lattice extents Loy = 80 a0y = 29.19 and Loy = 120 a0y = 27.92.

We also studied the behavior of & at small temperature T /oy = 0.0716, acy = 0.2327
and Log = 120 acp = 27.92. & is shown as function of y and pi45 in the left plot of Figure 3
and as function of y; = p + g5 and ugr = p — pgs in the right plot of Figure 3. To explain
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these results, we noted that the effective action (21) was the sum of a left-handed part
SL.[o] and a right-handed part S&[0] with chemical potentials y; and jg, respectively.
At the beginning of Section 4, we had already concluded that & = 0, if || > u.(T) and
|ur| > uc(T). Similarly, we argue now that both parts favor & ~ o0y, if || < puc(T) and
lr| < pc(T). The numerical results from Figure 3 are consistent with that expectation. In
particular, the yellow regions, where & ~ 0y, corresponds to |y | < pc(T) and |pg| < pe(T).
In the remaining regions of the -5 plane, or equivalently the p;-ug plane, S gff[a] and
Sf;ff[a] compete, leading to a continuous transition of the condensate from ¢ ~ oy to & = 0.
This continuous behavior was consistent with the fact that the lattice GN model with
the effective action SL[c]|,, - or equivalently SK.[¢],,—y, restricted to a homogeneous
condensate, had a second-order phase transition at T /oy = 0.0716, acp = 0.2327 and
Loy = 120 a0y = 27.92.

/o /oy
0.0 0.5 1.0 0.0 0.5 1.0
L —— [ —
2.0
1.0
0.8 15
S 5
~ -
5 06 310
0.4
0.5 -
0.2
—— phase boundary
0.0 T T T T T 0.0 T T
00 02 04 06 08 1.0 0.0 0.5 1.0 1.5 20
m/ o #R/ 00

Figure 3. /0y for the chirally imbalanced 2 + 1-dimensional GN model with the restriction to
a homogeneous condensate ¢ = ¢ for T/oy = 0.0716, acy = 0.2327 and Loy = 120a0y = 27.92.
(left) o/ 0y as function of u and pys. (right) 0/ 0y as function of yy and ug.

We note that the lattice data shown in this subsection also represents a non-trivial
cross-check of our implementation: all numerical results were consistent with the symmetry
U > ugs within machine precision.

4.2. Stability of a Homogeneous Condensate

Now, we relaxed the constraint that o was a homogeneous condensate. To determine
the preferred modulation of the condensate in a possibly existing inhomogeneous phase,
we had to allow arbitrary spatial modulations of ¢, i.e., consider ¢ = ¢(x), and minimize
the effective action with respect to these modulations. In lattice field theory this is possible
but numerically very challenging. As a first step, therefore, we explored whether the
homogeneous minima ¢ = &, which were determined in Section 4.1 for many different
(u, uas, T), were stable or unstable with respect to spatially inhomogeneous perturbations
d0(x). Boundaries between stable and unstable regions in (1, a5, T) space were identical
to phase boundaries if the amplitude of the inhomogeneity became infinitesimal when
approaching the boundary. However, a stability analysis failed to detect inhomogeneous
condensates in regions of the phase diagram where the homogeneous minimum (found,
e.g., as described in Section 4.1) corresponded to a local, but not global, minimum of
Sesf[0(x)] / Ny. This was, e.g., the case in the 1 + 1-dimensional GN model [30,67].

A detailed derivation of the formalism to probe the stability of a homogeneous con-
densate o = 7 with respect to arbitrary spatial perturbations do(x) can be found in Ref. [33]
for a continuum approach. This formalism can be transferred to lattice discretizations in
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a straightforward way, which is discussed in the same reference. A quantity of central
importance is

-1 1 W Wa(— ~ 5
I\Equ)_)\_ g qk);tr<QPlq[V'V45"_7]QP1[V’V45’(_T])' o9

where }, runs over all 3-dimensional lattice momenta (26), q = (0, qx), the trace refers to
spinor space and Q, (i, jis, 7] is defined via Q;ﬁ; 1, a5, 0] = 6p,4Qpl1, pas, 7] and Eq. (29),
ie.,

2

Qplu, pas, 7] = NiN2 (i v sin (Pv — y0i(p + 745#45)) + 5)- (35)

v=0

Negative values of T~1(q;)/N r with q; # 0 indicate instability of the condensate
o = 7 with respect to harmonic perturbations with momentum q;. Such perturbations
decrease Sq¢[0]; consequently, an inhomogeneous condensate was preferred. By evaluating
r(q,)/N ¢ for suitably chosen parameters (y, ji45, T) we could identify regions that were
part of an inhomogeneous phase.

We searched extensively for regions, where & was unstable, using both discretizations
(31) and (32). For W, = Wj such regions did not seem to exist. For W, = W' and finite
lattice spacing there was a region of instability at small T consistent with the findings
at 445 = 0 reported in Ref. [33]. Figure 4 shows the lattice with the finer lattice spacing,
aoy = 0.2327, and spatial extent Loy = 100acp = 23.27. The region of instability was
located within the tetrahedral shape. At smaller temperature it had a larger extent in the
U-H4s plane. A somewhat unexpected result was the large extent of the region of instability
in pys direction (e.g., for T/op = 0.076 and u /0y ~ 1.0 up to pss/ 0y ~ 0.5). Its boundary is
plotted in Figure 5 in the ug-y, plane. The plot shows that the instability region extended
up to ur = p + p4s = 1.5 and at the same time down to g = p — pg5 ~ 0.5. A symmetric
phase was preferred by S [¢] with chemical potential ji;, &~ 1.5, while S& 0] with chemical
potential ug =~ 0.5 prefered a homogeneous symmetry-broken phase. Thus, neither of the
two parts of the effective action (21) favored an inhomogeneous phase, but in combination
they did. This highlighted the non-trivial interplay of S [c] and SX;[0] gave rise to a rather
large inhomogeneous phase at finite lattice spacing for certain discretizations. Note that
Figure 5 also reveals that the homogeneous phase boundary was engulfed by the region of
instability, which was not the case in our previous study at ps5 = 0 [33], where a different
lattice regularization was used.

0.18
0.16
0.14
0.12
0.10
0.08

0.18
0.16
0.14
0.12
0.10
0.08

T/oy

T/op

Figure 4. Boundaries of the region of instability in the chirally imbalanced 2 + 1-dimensional GN
model for the discretization Wy = W' in (y, pa5, T) space for acy = 0.2327 and Loy = 100 a0y = 23.27.
Both plots show the same data and differ only in angle of view.
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Figure 5. Region of instability and homogeneous phase boundary in the chirally imbalanced 2 + 1-
dimensional GN model for the discretization W, = VVZ’ in the ug-p plane for T /oy = 0.076, acy =
0.2327 and Loy = 100 a0y = 23.27. The chiral chemical potential ji45 was constant along the diagonal
straight lines.

In Figure 6 we show sectional views of the region of instability for the discretization
W, = W) and various temperatures. The upper row corresponds to the larger lattice
spacing acp = 0.3649 and the lower row to the smaller lattice spacing, acy = 0.2327, while
the left column corresponds to smaller and the right column to larger spatial extent Loy.
From comparing the upper and the lower row, it is obvious that the instability region shrank
when the lattice spacing decreased, most prominently in the y direction. This is particularly
evident in the right column, where the boundaries are significantly less distorted by finite
volume effects. In the plots in the left column, however, there are pronounced oscillations
that seem to be caused by small spatial volume. These oscillations are reminiscent of those
observed in the p-T plane in lattice studies of the chirally balanced GN model in 1+ 1 and
2 4+ 1 dimensions [31,33,67].

In summary, we found no region of instability for W, = W) but a shrinking region of
instability for decreasing lattice spacing for W, = WJ'. This strongly suggests that there
is no region of instability in the chirally imbalanced 2 + 1-dimensional GN model in the
continuum limit.

4.3. Arbitrary Spatial Modulations of the Condensate

Now, we discuss the minimization of the effective action (27) with respect to the
condensate allowing arbitrary spatial modulations, i.e., arbitrary Fourier coefficients &(p).
We did this for selected parameters (i, ji45, T) by carrying out several conjugate gradient
minimizations, which differed in starting values for &(p). For each (y, uss5, T) we found
only a small number of local minima although a significantly larger number of different
starting values for (p) were provided to the minimization algorithm. This might have
indicated that for all considered (y, a5, T) the corresponding global minimum was among
the found local minima. We note that in our previous work [33] only 1-dimensional
modulations were studied, i.e,, & = 7(p;). In this work we relaxed that constraint to
allow arbitrary 2-dimensional modulations, i.e., & = 7(p). Since this was a numerically
difficult and computer time-intensive task, we used a rather small lattice with coarse lattice
spacing aoy = 0.3649, temperature T /oy = 0.114, Loy = 28 acy = 10.22 and discretization
corresponding to W, = Wy
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Figure 6. Boundaries of the region of instability in the chirally imbalanced 2 4 1-dimensional GN
model for the discretization W, = W} in the ji-ju45 plane for several temperatures, two different aoy
(upper versus lower row) and two different Loy (left versus right column).

First, we studied the chirally balanced model, i.e., j45 = 0. As an example, the upper
left plot in Figure 7 shows a configuration ¢(x) corresponding to one of the global minima
of the effective action at /0y = 1.041. An inhomogeneous condensate was favored, as we
learned from the stability analysis discussed in Section 4.2. Even though the minimization
algorithm allows arbitrary 2-dimensional modulations, the resulting global minimum was
just a plane wave with wave vector q, = 271(1,2)/L. Similarly, the upper-right plot in
Figure 7 shows a minimizing condensate at a larger chemical potential /0y = 1.083.
Again, we found a plane wave, but this time with wave vector q; = 271(2,2)/L, i.e., witha
smaller wavelength. Even though the found plane waves were 1-dimensional structures,
by allowing arbitrary 2-dimensional modulations it reduced finite volume corrections. This
was so because, in contrast to our previous work [33], the direction of the wave vector was
no longer restricted to being parallel to one of the coordinate axes; thus, its magnitude
could be changed in finer steps.

The minimization algorithm also found 2-dimensional modulations. These, however,
corresponded exclusively to local minima of the effective action (27). An example is shown
in the center of Figure 7.

We also investigated, how chiral imbalance, i.e., us5 # 0, affected the preferred
modulation of the condensate. The plots in the lower row of Figure 7 show the global
minima of the effective action for (y1/0y, ptas/00) = (1.041,0.05) and (p/ 09, ptas/0p) =
(1.041,0.25). At fixed u /0oy = 1.041 the frequency was almost independent of juys (cf. the
upper left plot, the lower left plot and the lower right plot of Figure 7). The amplitude,
however, decreased when increasing |45|, suppored a second-order phase transition, also
at 45 # 0. We searched extensively for inhomogeneous condensates outside the instability
region explored and discussed in Section 4.2, but did not find any. Thus, we concluded that
the boundaries of the instability region were identical to phase boundaries and that the
corresponding phase transitions were of the second order.
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1-dimensional modulations corresponding to global minima, 145 = 0

(1, a5, T) /0o = (1.041,0.000,0.114) (4, a5, T) /0o = (1.083,0.000,0.114)
0'/(70
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[ ee— ]
10.0
§ 50
=
0.0
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0.0 5.0 10.0 0.0 5.0 10.0
X1 0p X1 0p

2-dimensional modulation corresponding to a local minimum, p45 = 0

(4, tas, T) /09 = (1.041,0.000,0.114)
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1-dimensional modulations corresponding to global minima, 45 7 0

(4, a5, T) /09 = (1.041,0.050,0.114) (1, a5, T) /09 = (1.041,0.250,0.114)
/oy o/
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Figure 7. Modulations of the condensate o corresponding to minima of the effective action (27) for
the discretization W, = W), T/0p = 0.114, aoy = 0.3649 and Loy = 28 acpy = 10.22.
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5. Conclusions

In this work we studied the phase diagram of the 2 + 1-dimensional GN model
with chiral imbalance introduced via a chiral chemical potential 145 using the mean-field
approximation. Our lattice field theory results indicated that an inhomogeneous phase
exists at finite lattice spacing a, when using a specific lattice discretization (W, = WY).
Non-vanishing py5, however, seems to disfavor inhomogeneous modulations. Moreover,
the inhomogeneous phase shrank for decreasing a2 and was expected to disappear in the
continuum limit. These findings are consistent with our previous work [33], which was
restricted to yi45 = 0. (For completeness we note that inhomogeneous condensates at T = 0
and py5 = 0, which are energetically degenerate to the homogenous condensate in the
homogeneous symmetry-broken phase, were found in Ref. [68]. Our numerical lattice
studies were, however, limited to T > 0). Investigations of 1 4 1-dimensional GN-type
models [5-12] at finite N r showed that bosonic quantum fluctuations can influence the
extent and existence of (in-)homogeneous phases significantly. Such fluctuations are likely
to affect the extent of the homogeneous symmetry-broken phase in the present 2 + 1-
dimensional GN model. The inhomogeneous phase was expected to remain absent since
bosonic quantum fluctuations tend to disfavor ordered phases even more.

Moreover, for our chirally imbalanced 2 + 1-dimensional GN model, we showed that
an isospin chemical potential yp is equivalent to the chiral chemical potential p45. Thus, all
results presented can either be interpreted in the context of chiral imbalance or of isospin
imbalance. In particular the p-p45-T phase diagram was identical to the y-y;-T phase
diagram. Interestingly, a recent study of the 3 + 1-dimensional NJL model in the large-N,
limit [57] conjectured a similar approximate duality of the phase diagram.

Color-superconductivity might play an important role in such studies [69,70], espe-
cially at finite isospin chemical potential [71,72]. In the considered 2 4 1-dimensional GN
model this could, however, not be investigated, because the necessary difermion interaction
was not present. Thus, we are not yet in a position to compare our results to up-to-date
lattice QCD simulations at finite yj (see, e.g., Refs. [73-77]), where a phase with Bose—
Einstein condensation of charged pions was observed. As a next step, it might therefore be
interesting to establish contact with Refs. [60,61], where a color-superconducting channel
was added to the chirally imbalanced 2 + 1-dimensional GN model. It should be noted,
however, that these references introduced the chiral chemical potential in a conceptually
different way using spin matrices yoy4 as well as yg7ys, instead of (Y45, as in Equation
(18).
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