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Abstract

We summarize our recent lattice gauge theory computation of the Πu and Σ−u hybrid static
potentials at small quark-antiquark separations. We provide parameterizations of the re-
sulting lattice data points, which can be used for investigating masses and properties of
heavy hybrid mesons in the Born-Oppenheimer approximation.

1 Introduction

The main goal of this work is to carry out a high precision first principles SU(3) lattice gauge
theory computation of hybrid static potentials, i.e. potentials corresponding to a static quark an-
tiquark pair and an excited gluonic flux tube with quantum numbers different from the ground
state. Such potentials can e.g. be used to predict masses of b̄b and c̄c hybrid mesons within the
Born-Oppenheimer approximation (for recent work discussing and using the Born-Oppenheimer
approximation in the context of heavy hybrid mesons see Refs. [1–7]).

Hybrid static potentials have been computed with lattice gauge theory a number of times by
independent groups [4, 8–34]. The majority of these computations were performed at a rather
coarse lattice spacing. In this work we focus on the Πu and Σ−u hybrid static potentials, which
are the lowest hybrid static potentials. We consider four different lattice spacings as small as
a = 0.040 fm, which allows to identify and remove lattice discretization errors and also to study
significantly smaller quark-antiquark separations r than before. In particular our lattice results
confirm the repulsive behavior of the Πu and Σ−u hybrid static potentials at small r predicted
perturbatively in the framework of potential Non Relativistic QCD (pNRQCD) [2,35].

This contribution to the conference proceedings of the “XXXIII International (ONLINE) Work-
shop on High Energy Physics” summarizes our more detailed recent publication [36]. Results
obtained at an early stage of this project have been published in Refs. [37,38].
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2 Hybrid static potential trial states and their quantum numbers

Hybrid static potentials can be characterized by the following quantum numbers:

• Absolute total angular momentum with respect to the quark-antiquark separation axis (e.g.
the z axis): Λ= 0,1, 2, . . .≡ Σ,Π,∆, . . .

• Parity combined with charge conjugation: η= +,−= g, u.

• Reflection along an axis perpendicular to the quark-antiquark separation axis (e.g. the x
axis): ε= +,−.

For Λ≥ 1 static potentials are degenerate with respect to ε. Thus, it is common to quote quantum
numbers Λεη for Λ = Σ and quantum numbers Λη for Λ = Π,∆, . . . The ordinary static potential
has quantum numbers Λεη = Σ

+
g and is denoted as VΣ+g (r). In this work we focus on the two lowest

hybrid static potentials, which have quantum numbers Λεη = Πu,Σ−u and are denoted as VΠu
(r)

and VΣ−u (r).
To determine (hybrid) static potentials VΛεη(r) using lattice gauge theory, one has to compute

temporal correlation functions

WS,S′;Λεη
(r, t) = 〈Ψhybrid(t)|S;Λεη

|Ψhybrid(0)〉S′;Λεη ∼t→∞ exp
�

− VΛεη(r)t
�

(1)

of suitably designed trial states |Ψhybrid〉S;Λεη
. From the asymptotic behavior for large t one can

extract VΛεη(r). We use trial states

|Ψhybrid〉S;Λεη
= Q̄(−r/2)aS;Λεη

(−r/2,+r/2)Q(+r/2)|Ω〉 (2)

with static quark operators Q̄(−r/2) and Q(+r/2) and gluonic parallel transporters

aS;Λεη
(−r/2,+r/2) =

=
1
4

3
∑

k=0

exp
�

iπΛk
2

�

R
�

πk
2

�

�

U(−r/2, r1)
�

S(r1, r2) + εSPx
(r1, r2)
�

U(r2,+r/2) +

U(−r/2,−r2)
�

ηSP◦C(−r2,−r1) +ηεS(P◦C)Px
(−r2,−r1)
�

U(−r1,+r/2)
�

(3)

generating quantum numbers Λεη (for a detailed discussion we refer to Ref. [4]). On the lattice
these gluonic parallel transporters are products of gauge links. To optimize aS;Λεη

(−r/2,+r/2),
we have explored a large number of shapes and variations of their extents (see again Ref. [4]).
For the computation of the Πu and Σ−u hybrid static potentials we used those two operators with
the largest ground state overlap (SI I I ,1 and SIV,2 in Table 3 and Table 5 of Ref. [4].

3 Lattice gauge theory computation of the ordinary static potential
and the Πu and Σ−u hybrid static potentials

We carried out computations of the ordinary (i.e. Σ+g ) static potential and the Πu and Σ−u hybrid
static potentials on four ensembles (denoted as A, B, C and D) with lattice spacings a ranging
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ensemble β a in fm (L/a)3 × T/a

A 6.000 0.093 123 × 26

B 6.284 0.060 203 × 40

C 6.451 0.048 263 × 50

D 6.594 0.040 303 × 60

AHYP2 6.000 0.093 243 × 48

Table 1: Gauge link ensembles used in this work (physical units are introduced by setting
r0 = 0.5 fm).

from a = 0.093 fm down to 0.040 fm (see Table 1). We used unsmeared temporal links, i.e.
the standard Eichten-Hill static action, and APE smeared spatial links to maximize the ground
state overlaps of the trial states discussed in the previous section. To reduce statistical errors,
we employed a multilevel algorithm [39]. Moreover, we reuse the lattice data from our previous
work [4] obtained at lattice spacing a = 0.093 fm with the HYP2 static action (the corresponding
ensemble is denoted as AHYP2).

In that way we get a fine spatial resolution of the potentials. Because of the rather small lattice
spacings of ensemble C and ensemble D, we are also able to access significantly smaller quark-
antiquark separations than before (in lattice gauge theory one should only use lattice data points
with r >∼2 a, to avoid sizable discretization errors). Moreover, using five ensembles we are able to
quantify and eliminate discretization errors.

We note that static potentials computed via correlation functions (1) have self energies, which
depend both on the lattice spacing and the static quark action and diverge in the limit a → 0.
These self energies need to be subtracted, before all our lattice data points can be shown together
in a meaningful plot. This is done by suitable fits and discussed in section 4.

We investigated and excluded the following types of systematic errors:

• Errors due to topological freezing:
Since Monte Carlo algorithms have difficulties changing the topological charge Q for lattice
spacings a<∼0.05 fm [40], Monte Carlo histories of Q need to be checked, in particular for
ensembles C and D. We found that autocorrelation times of Q are quite large for these two
ensembles. We carried out very long simulations to guarantee that there is a sufficiently
large number of changes in Q such that the ensembles form representative sets of gauge
link configurations distributed according to e−S .

• Finite volume corrections:
A finite spatial volume leads to a negative energy shift, because of virtual glueballs traveling
around the far side of the periodic volume [41]. For very small volumes one expects positive
energy shifts, because of squeezed wave functions [42], in particular for hybrid static poten-
tials, where the flux tubes are quite extended [33,43]. We studied the volume dependence
of the Σ+g , Πu and Σ−u static potentials in detail and found that both types of effects are
negligible for spatial extent L >∼1.2 fm, a condition fulfilled for all five ensembles we used
(see Table 1).

• Glueball decays:
At small r hybrid flux tubes can decay into Σ+g flux tubes and glueballs. In Ref. [36] we
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showed analytically that the Σ−u flux tube is protected by symmetries from decays into a 0++

glueball. For the Πu flux tube decays into a 0++ glueball are possible for r <∼0.11 fm. Nu-
merically, however, we observed no indication that V e

Πu
(r) is contaminated by such decays.

Since the Πu and Σ−u potentials approach each other for small r, glueball decays seem to
have a negligible effect on V e

Πu
(r).

For a more detailed discussion on the exclusion of systematic errors we refer to our recent publi-
cation [36].

4 Parameterization of the ordinary static potential and the Πu and
Σ−u hybrid static potentials

In a preparatory step we determined a parameterization VΣ+g (r) of the lattice data points for the
ordinary static potential. This is important, because we obtained the ensemble dependent self
energies rather precisely and we were able to estimate lattice discretization errors at tree-level of
perturbation theory. This information will be used below to determine parameterizations for the
Πu and Σ−u hybrid static potentials. Moreover, VΣ+g (r) is useful to set the energy scale, when inter-
preting the static quarks as either b quarks or c quarks. To do this one can compute the quarkonium
ground state ηb(1S)≡ Υ (1S) or ηc(1S)≡ J/Ψ(1S) in the Born-Oppenheimer approximation and
identify the result with the corresponding experimental result.

We carried out an 8-parameter fit of the ansatz

V fit,e
Σ+g
(r) = VΣ+g (r) + C e +∆V lat,e

Σ+g
(r) (4)

VΣ+g (r) = −
α

r
+σr (5)

∆V lat,e
Σ+g
(r) = α′
�

1
r
−

Ge(r/a)
a

�

(6)

to the Σ+g data points from all five ensembles with r ≥ 0.2 fm. VΣ+g (r) is the Cornell ansatz, which
provides an accurate description of the ordinary static potential for r >∼0.2 fm (see e.g. Ref. [44]).
C e denote the a-dependent self energies. Ge(r/a)/a is proportional to the ordinary static potential
at tree-level of lattice perturbation theory, i.e. it is the lattice counterpart of 1/r in the continuum.
Thus, ∆V lat,e

Σ+g
(r) represent lattice discretization errors at tree-level of perturbation theory.

The resulting fit parameters allow to define data points, with the self-energy subtracted and
discretization errors removed,

Ṽ e
Σ+g
(r) = V e

Σ+g
(r)− C e −∆V lat,e

Σ+g
(r). (7)

These improved lattice data points together with the parameterization (4) are shown in Figure 1.
Similarly, we carried out a 10-parameter fit

V fit,e
Λεη
(r) = VΛεη(r) + C e +∆V lat,e

hybrid(r) + A′e2,Λεη
a2 , Λεη = Πu,Σ−u (8)

VΠu
(r) =

A1

r
+ A2 + A3r2 , VΣ−u (r) =

A1

r
+ A2 + A3r2 +

B1r2

1+ B2r + B3r2
(9)

∆V lat,e
hybrid(r) = −

1
8
∆V lat,e
Σ+g
(r). (10)
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Figure 1: Improved lattice data points (7) and (11) together with the parameterizations
(5) and (9) for the ordinary static potential and the Πu and Σ−u hybrid static potentials.
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to the Πu and Σ−u data points from all five ensembles with r ≥ 2 a. VΠu
(r) and VΣ−u (r) are parame-

terizations of theΠu andΣ−u hybrid static potentials consistent with and motivated by the pNRQCD
prediction at small r [2, 35]. As before, C e denote the a-dependent self energies and ∆V lat,e

hybrid(r)
lattice discretization errors at tree-level of perturbation theory. Moreover, A′e2,Λεη

a2 represent the

leading order lattice discretization errors in the difference to the ordinary static potential, which
turned out to be sizable.

In analogy to Eq. (7), the resulting fit parameters allow to define data points, with the self-
energy subtracted and discretization errors removed,

Ṽ e
Λεη
(r) = V e

Λεη
(r)− C e −∆V lat,e

hybrid(r)− A′e2,Λεη
a2. (11)

These improved lattice data points together with the parameterizations (9) are shown in Figure 1.

5 Summary and conclusions

We used lattice gauge theory to compute the Πu and Σ−u hybrid static potentials at four different
lattice spacings, where the smallest lattice spacing a = 0.040 fm is significantly smaller than lattice
spacings used in the majority of existing computations. This allows us to provide lattice data points
for quark-antiquark separations as small as 0.08 fm. By carrying out suitable fits we subtracted
the ensemble dependent self energies and removed lattice discretization errors to a large extent.
Moreover, various systematic errors were checked and excluded.

The resulting parameterizations (5) and (9) differ from those obtained in our earlier work [4],
where only one ensemble with rather coarse lattice spacing was available. A simple single channel
Born-Oppenheimer prediction of heavy hybrid meson masses led to discrepancies between 10MeV
and 45MeV (see Ref. [36]). Thus, it is expected that the high quality lattice data discussed in this
work or, equivalently, the resulting parameterizations (5) and (9) will lead to a significant gain
in precision, when used in recently developed more sophisticated Born-Oppenheimer approaches,
which include coupled channels and heavy spin corrections [2,3,5,6].

We note that the bare lattice data points, the improved lattice data points (7) and (11) and
the parameterizations (5) and (9) are provided in detail in Ref. [36].
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