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Abstract

We compute the Πu and Σ−u hybrid static potentials in SU(3) lattice gauge theory using four
different lattice spacings ranging from a = 0.040 fm to a = 0.093 fm. We provide lattice data
points for quark-antiquark separations as small as 0.08 fm, where the a-dependent self-energy
as well as lattice discretization errors at tree-level of perturbation theory and at leading order
in a2 have been removed. We also investigate and exclude possibly present systematic errors
from topological freezing, due to the finite spatial lattice volume and from glueball decays.
Moreover, we provide corresponding parametrizations of the potentials, which can e.g. be used
for Born-Oppenheimer predictions of heavy hybrid mesons.
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1 Introduction

The constituent quark model is quite successful in explaining the properties of a variety of
non-exotic hadrons, quark-antiquark pairs or triplets of quarks or antiquarks without gluonic
excitations. However, a particular class of exotic mesons, so-called hybrid mesons, contain such
gluonic excitations and, thus, cannot be studied in a proper way using the constituent quark
model. These systems require approaches closer to QCD, which contain gluons as degrees of
freedom. In this work we use lattice gauge theory and are interested in heavy hybrid mesons,
which are composed of heavy c or b quarks and a surrounding excited gluon field. The gluonic ex-
citation contributes to the quantum numbers of the hybrid meson such that exotic combinations
of JPC are allowed, which do not exist in the constituent quark model.

The experimental search for exotic states in existing and future facilities like the GlueX experi-
ment at Jefferson Lab or the PANDA experiment at FAIR as well as the theoretical explanation
of their internal structure and properties are currently hot research topics (for an experimental
review see e.g. Ref. [1], for theoretical reports we refer to Refs. [2–6]). Concerning theoretical
approaches, lattice gauge theory is an ideal non-perturbative first principles approach to in-
vestigate properties and masses of heavy hybrid mesons, either within the Born-Oppenheimer
approximation [7–16] or in full lattice QCD (see e.g. Refs. [17–20]). We focus on hybrid mesons
composed of heavy c or b quarks and use SU(3) lattice gauge theory in combination with the
Born-Oppenheimer approximation [21], which is a two-step approach. In the first step, we fix
the positions of the heavy quarks and compute so-called hybrid static potentials with lattice
gauge theory. Hybrid static potentials correspond to energy levels of gluonic excitations in
the presence of static quarks as functions of their separation. In the second step of the Born-
Oppenheimer approximation, the radial Schrödinger equation for the relative coordinate of the
heavy quark-antiquark pair is solved with one of the hybrid static potentials obtained in the
first step.

In recent years a lot of effort was invested to refine the second step of the Born-Oppenheimer
approximation, e.g. by including the mixing of different sectors via coupled channel equa-
tions [11–13] and by taking heavy quark spin effects into account [15, 16]. These approaches
require precise lattice results for hybrid static potentials, in particular at small quark-antiquark
separations r to combine them with perturbative predictions valid only at small r or to fix
matching coefficients in potential Non-Relativistic QCD (pNRQCD) [12, 15, 16, 22]. Thus, the
main goal of this work is to use lattice gauge theory to investigate the small-r region of the Πu

and Σ−u hybrid static potentials. We aim at extending the range of precise lattice field theory re-
sults to smaller quark-antiquark separations and improve existing investigations of hybrid static
potentials [7–9, 14, 23–46]. For this we perform computations at four different lattice spacings
ranging from a = 0.040 fm to a = 0.093 fm. These computations at several small lattice spacings
do not only allow to access smaller quark-antiquark separations than before, but also to explore
and remove lattice discretization errors, such that our final results are expected to be consistent
with the continuum limit within statistical errors. Moreover, we can convincingly confirm the
repulsive behavior of hybrid static potentials at small r predicted by perturbation theory.

To compute the ordinary static potential and the Πu and Σ−u hybrid static potentials we employ
optimized operators from our previous work [14] as well as a multilevel algorithm [47]. In
this way we obtain precise lattice results for these potentials on four ensembles for quark-
antiquark separations as small as 0.08 fm (see Section 2 to Section 4). We also check that our
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lattice gauge theory computations are not contaminated by sizable systematic errors related to
topological freezing, the finite spatial lattice volume or glueball decays of hybrid flux tubes, which
are expected to be particularly prominent at small lattice spacings and small quark-antiquark
separations (see Section 6). Moreover, we provide parametrizations describing the hybrid static
potentials for quark-antiquark separations 0.08 fm<∼ r <∼ 1.12 fm. We use these parameterizations
to eliminate discretization errors and the a-dependent self-energy (see Section 5). We also use the
parametrizations to check the impact of including our new lattice data at small lattice spacings
in Born-Oppenheimer predictions of cc̄ and bb̄ hybrid meson masses and find sizable differences
to our previous work [14], where we have only considered a single lattice spacing a = 0.093 fm.
The numerical values of all lattice data points and their parametrizations are provided for
straightforward use in future applications, e.g. for predictions of heavy hybrid meson masses in
more refined Born-Oppenheimer approaches as proposed in Refs. [12,13,15,16]. We also provide
similar results for gauge group SU(2), which were obtained at an early stage of this work.

2 Hybrid static potentials: quantum numbers, operators and
correlation functions

Hybrid static potentials represent the energy of the excited gluon field in the presence of a static
quark and antiquark as a function of their separation.

Static potentials are characterized by the following three quantum numbers:

• Λ = Σ(= 0),Π(= 1),∆(= 2), . . . denotes the total angular momentum with respect to
the quark-antiquark separation axis, i.e. is a non-negative integer (w.l.o.g. we separate the
static quark and antiquark along the z-axis).

• η = g(= +), u(= −) describes the even (g) or odd (u) behavior under the combined parity
and charge conjugation transformation P ◦ C.

• ε = +,− is the eigenvalue of a reflection Px along an axis perpendicular to the quark-
antiquark separation axis (for definiteness we use the x-axis). For Λ ≥ 1, hybrid static
potentials are degenerate with respect to ε and ε is typically omitted.

The ordinary static potential has quantum numbers Σ+
g , while hybrid static potentials have

quantum numbers different from Σ+
g . In this work we carry out a precise computation and

parametrization of the two lowest hybrid static potentials, which have quantum numbers Πu

and Σ−u , with particular focus on rather small quark-antiquark separations r.

Hybrid static potentials are computed from correlation functions similar to Wilson loops, where
the straight spatial parallel transporters are replaced by more complicated gauge link combina-
tions with non-trivial transformation properties,

WS;Λεη(r, t) =

=

〈
Tr

(
aS;Λεη(−r/2,+r/2; 0)U(+r/2; 0, t)

(
aS;Λεη(−r/2,+r/2; t)

)†
U(−r/2; t, 0)

)〉
U

. (1)

U(r; t1, t2) is a straight path of temporal gauge links from time t1 to time t2 at spatial position
r = (0, 0, r) and 〈. . .〉U denotes the average on an ensemble of gauge link configurations. aS;Λεη
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is given by a sum of properly transformed spatial insertions USU , to probe the sector with
quantum numbers Λεη,

aS;Λεη(−r/2,+r/2) =
1

4

3∑
k=0

exp

(
iπΛk

2

)
R

(
πk

2

)
(
U(−r/2, r1)

(
S(r1, r2) + εSPx(r1, r2)

)
U(r2,+r/2)

+U(−r/2,−r2)
(
ηSP◦C(−r2,−r1) + ηεS(P◦C)Px(−r2,−r1)

)
U(−r1,+r/2)

)
. (2)

The notation is explained in detail in Ref. [14]. We employ operators S from Ref. [14], where we
have carried out a dedicated optimization to maximize the generated ground state overlaps. For
the Πu hybrid static potential we use SIII,1 and for the Σ−u hybrid static potential we use SIV,2.
Detailed definitions can be found in Table 3 and Table 5 of Ref. [14]. The operator extents
in these tables are given in units of the lattice spacing for a = 0.093 fm. For computations at
smaller values of a we increase the operator extents in units of the lattice spacing such that they
are approximately constant in physical units.

To further enhance the ground state overlaps, we apply APE smearing to the spatial gauge links
appearing in aS;Λεη . The number of APE smearing steps is increased with decreasing lattice
spacing to keep the smearing radius approximately constant in physical units. Details can be
found in Appendix A.

3 Computational details

3.1 Gauge link ensembles

We computed hybrid static potentials both on SU(2) and SU(3) gauge link configurations gen-
erated with the standard Wilson plaquette action without dynamical quarks. Results for purely
gluonic observables such as energies in the presence of a static quark-antiquark pair, possibly in
a sector with hybrid quantum numbers, are expected to be similar in pure gauge theory and in
QCD (for hybrid static potentials this is supported by lattice results from Ref. [34]). To study
hybrid static potentials, it might even be advantageous to use pure gauge theory, because in
that case an excited flux tube can only decay into multiparticle states, which include rather
heavy glueballs, but not light pions. In Section 6.3 glueball decays are discussed in detail.

In the main part of this work we focus exclusively on computations and results for gauge group
SU(3). Corresponding results for gauge group SU(2) are summarized in Appendix E.

We generated four ensembles of gauge link configurations with gauge couplings
β = 6.594 , 6.451 , 6.284 , 6.000 using the CL2QCD software package [48]. We relate the corre-
sponding lattice spacing a to the Sommer scale r0 via a parametrization of ln(a/r0) provided
in Ref. [49], which is based on a precision determination of r0 up to β = 6.92. We introduce
physical units by setting r0 = 0.5 fm, which is a simple and common choice in pure gauge theory,
but is slightly larger than QCD results [50].

The details of our gauge link ensembles, which we label by A, B, C and D, are collected in
Table 1. The lattice volume for all four ensembles is L3 × T ≈ (1.2 fm)3 × 2.4 fm. This is
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sufficiently large to neglect finite volume corrections (see Section 6.2 for a detailed investigation
and discussion). Each ensemble was generated by Nsim independent Monte Carlo simulations,
where each simulation comprises Ntotal updates. An update is composed of a heatbath sweep
and Nor overrelaxation sweeps. Nor is chosen roughly as Nor ≈ 1.5 r0/a following Ref. [51].
This is expected to minimize correlations between subsequent gauge link configurations. The
first Ntherm updates are considered as thermalization updates and the corresponding gauge link
configurations were, thus, discarded. After thermalization, gauge link configurations separated
by Nsep updates were used to measure correlation functions. The total number of gauge link
configurations used for measurements is thus Nmeas = Nsim(Ntotal −Ntherm)/Nsep.

To eliminate autocorrelations, we combined these Nmeas gauge link configurations into a much
smaller number of bins. Statistical errors were determined using both the jackknife and the
bootstrap method. Further details concerning data analysis are discussed in Appendix B.

ensemble β a in fm [49] (L/a)3 × T/a Nsim Ntotal Nor Ntherm Nsep Nmeas

A 6.000 0.093 123 × 26 2 60000 4 20000 50 1600

B 6.284 0.060 203 × 40 2 60000 12 20000 100 800

C 6.451 0.048 263 × 50 4 80000 15 40000 200 800

D 6.594 0.040 303 × 60 4 80000 15 40000 200 800

Table 1: Gauge link ensembles.

3.2 Multilevel algorithm

For the efficient computation of Wilson loop-like correlation functions (1) we employ the mul-
tilevel algorithm [47]. The starting point for a multilevel simulation is one of the sets of Nmeas

thermalized gauge link configurations discussed in Section 3.1. The lattice is partitioned into
nts time-slices with thicknesses p1, p2, . . . , pnts . In principle, time-slices can be partitioned more
than once, but we use only a single level of partitioning. For each time-slice nm sublattice con-
figurations are generated using a standard heatbath algorithm. These sublattice configurations
are separated by nu heatbath sweeps, where links in the interior of the time-slice are updated,
while spatial links on the boundaries are fixed.

Two-link operators are defined via T(x, rĵ)αβγδ = U∗0 (x)αβU0(x + rĵ)γδ (ĵ denotes the spatial
unit vector in j-direction, e.g. 1̂ = (0, 1, 0, 0)). They are multiplied according to

Pk = {T(x+ (dk − pk)a0̂, rĵ)T(x+ (dk − pk + 1)a0̂, rĵ) . . .T(x+ (dk − 1)a0̂, rĵ)} (3)

with the multiplication prescription {T1T2}αβγδ = {T1}ασγρ{T2}σβρδ, i.e. such that the product
Pk connects the two boundaries of the time-slice k, i.e. extends from t/a = dk−1 to t/a = dk
with dk =

∑k
j=1 pj . The products Pk are then averaged over the nm corresponding sublattice

configurations with the results denoted as [Pk].

Wilson loops are computed via

WS;Λεη(r, t) = aS;Λεη(x,x+rĵ;x0)αγ{[Pk][Pk+1] . . . [Pk+nt−1]}αβγδ
(
aS;Λεη(x,x+rĵ;x0 +t)

)∗
βδ
, (4)
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where the spatial parallel transporters aS;Λεη (see Eq. (2)) are both located on boundaries between
time-slices. nt denotes the number of time-slices traversed by the Wilson loop, i.e. dk−1 = x0 and∑nt

j=1 pk+j = t/a. Finally, the samples WS;Λεη(r, t) from Eq. (4) are averaged over space-time,
the three spatial directions and the Nmeas thermalized gauge link configurations.

Note that the time-slice partitioning might impose constraints on the temporal extent of Wilson
loops, which can be computed. For simplicity we choose a regular pattern, where all time-slices
have thickness 2, i.e. p1 = p2 = · · · = pnts = 2. This choice is not only simple but also efficient,
because it allows to exploit translational invariance in temporal direction extensively. Moreover,
we use nm = 400 and nu = 30.

For a technically more detailed discussion of the multilevel algorithm see Section 3.2 of Ref. [52].

3.3 Tree-level improvement for static potentials

To reduce lattice discretization errors for the ordinary and for hybrid static potentials, we apply
a tree-level improvement similar as in Ref. [53]. In the continuum in leading-order perturbation
theory static potentials are proportional to 1/r due to one-gluon-exchange. The ordinary static
potential is attractive, while the Πu and Σ−u hybrid static potentials exhibit a repulsive 1/r
behavior, which is suppressed by the factor 1/8. On an infinite spacetime lattice the leading
order perturbative result can be computed in a straightforward way as discussed in Appendix C.
The difference to its 1/r continuum counterpart represents lattice discretization errors at tree-
level. These discretization errors can be subtracted from the non-perturbative lattice data
points obtained from Wilson loop-like correlation functions (1). For this one needs to estimate
the prefactor of the 1/r perturbative part, which is proportional to the strong coupling (see e.g.
Ref. [54] and references therein). We do this in Section 5 with a suitable fit to the Σ+

g static
potential.

We note that there is a related but slightly different method for tree-level improvement also
common in the literature (see e.g. Refs. [49, 54]). Instead of changing the lattice result for the
value of the static potential at a given quark-antiquark separation, this separation is replaced
by a so-called improved separation. According to our numerical tests this method works well for
the static force. However, for static potentials it seems to be inferior to the method discussed
in the previous paragraph, because of their linear behavior for large separations. We plan to
discuss this in detail in another publication.

4 Lattice field theory results for the Πu and Σ−u hybrid static
potentials

In the following we discuss our lattice field theory results V e
Λεη

(r) for static potentials with

quantum numbers Λεη = Σ+
g (the ordinary static potential) and Λεη = Πu,Σ

−
u (the two lowest

hybrid static potentials) for all four lattice ensembles e ∈ {A,B,C,D} listed in Table 1. They
correspond to the ground state energies in the sectors with quantum numbers Λεη and quark-
antiquark separation r.

To extract these static potentials, we compute temporal correlation functions W e
Λεη

(r, t) (see

Eq. (1)) of suitably designed creation operators as discussed in Section 2. We restrict the
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computations to temporal separations t, which are multiples of 2a. This allows the use of
a single multilevel time-slice partitioning, which is simple as well as efficient (for details see
Section 3.2).

Effective potentials are defined in terms of the correlation functions W e
Λεη

(r, t) via

V e
eff;Λεη

(r, t) =
1

2a
ln

(
W e

Λεη
(r, t)

W e
Λεη

(r, t+ 2a)

)
. (5)

These effective potentials approach plateaus at large t, which correspond to the ground state
energies, i.e.

V e
Λεη

(r) = lim
t→∞

V e
eff;Λεη

(r, t). (6)

Numerically the plateau values and, thus, the static potentials are extracted by uncorrelated χ2

minimizing fits of constants to aV e
eff;Λεη

(r, t) in the range t′min ≤ t ≤ t′max. The fit range is chosen

individually for each set of quantum numbers Λεη and each quark-antiquark separation r by an
algorithm used already in our preceding work [14]:

• tmin is defined as the minimal t, where the values of aV e
eff;Λεη

(r, t − 2a) and aV e
eff;Λεη

(r, t)

differ by less than 1σ.

• tmax is the maximal t, where W e
Λεη

(r, t+ 2a) has been computed, and where its statistical

error is reasonably small.

• Fits to aV e
eff;Λεη

(r, t) are performed for all ranges t′min ≤ t ≤ t′max with tmin ≤ t′min, t′max ≤
tmax and t′max − t′min ≥ 6 a.

• The result of the fit with the longest plateau and χ2
red ≤ 1 is taken as result for V e

Λεη
(r).

To illustrate the quality of our lattice data, we show exemplary effective potential plots in
Figure 1. The final fit ranges t′min ≤ t ≤ t′max and fit results are indicated by the horizontal
lines.

The resulting static potentials V e
Λεη

(r) for Λεη = Σ+
g ,Πu,Σ

−
u and separations r ≥ 2a are collected

in units of the lattice spacing in Appendix D, Table 6. Due to the regulator-dependent self-energy
of static quarks, potentials computed at different lattice spacings a, i.e. on different ensembles
e, are shifted relative to each other. We will subtract these self-energies in Section 5, where we
also remove discretization errors at tree-level and partly proportional to a2, before we show the
results for all ensembles together in a common plot in Figure 2 and list them in physical units
in Table 7.

Note that in contrast to previous lattice field theory computations of hybrid static potentials
[7,8,14,26,27,29,36,40,41], where lattice spacings a>∼ 0.07 fm were used 1, our results are based

1In Ref. [27] hybrid static potentials were computed for gauge group SU(2) at very small lattice spacing
a ≈ 0.022 fm (when setting the scale as in Ref. [55]), but at the same time also at very small spatial volume, such
that finite volume effects appear to be huge (see e.g. Figure 1 in Ref. [27] and our our detailed discussion of finite
volume effects in Section 6.2).
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Figure 1: Exemplary plots of effective potentials aV e
eff;Λεη

(r, t) with Λεη = Σ+
g ,Πu,Σ

−
u for r = 4a

(Left: ensemble B, i.e. a = 0.060 fm; Right: ensemble D, i.e. a = 0.040 fm).

on four ensembles with lattice spacings as small as 0.04 fm. Since lattice discretization errors in
static potentials typically become large for r <∼ 2 a, the lattice potentials presented in this work
are trustworthy down to r ≈ 0.08 fm, whereas existing works were limited to separations roughly
twice as large.

A major goal of this work is to explore the small-r region of the Πu and Σ−u hybrid static
potentials to make contact to perturbative calculations. Using the framework of potential Non
Relativistic QCD (pNRQCD) these hybrid static potentials have been predicted to be repulsive
at very small r [12, 13, 40, 56, 57], a behavior, which could not convincingly be confirmed by
existing lattice computations, because of the use of rather coarse lattice spacings. In contrast to
that, our results from the ensembles with the fine lattice spacings a ≈ 0.048 fm and a ≈ 0.040 fm
clearly show the predicted and expected upward curvature at small r (see Table 6, Table 7 and
Figure 2). This will be discussed in detail in Section 5, where we parametrize our lattice data
points by analytic functions based on pNRQCD predictions.

5 Parametrization of lattice results for hybrid static potentials

In this section we parametrize the lattice data points for the ordinary static potential VΣ+
g

(r) and

the two lowest hybrid static potentials VΠu(r) and VΣ−
u

(r) computed in Section 4 and collected
in Table 6. The resulting parametrizations allow to eliminate discretization errors to a large
extent and can e.g. be used as input for Born-Oppenheimer predictions of heavy hybrid meson
masses as previously done in Refs. [7–16].

In addition to the lattice data points specifically computed in the context of this work and
discussed in Section 4, we use results from our previous computation [14] for quark-antiquark
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separations 0.19 fm<∼ r <∼ 1.12 fm to constrain our parametrizations also at large separations. This
computation was performed at lattice spacing a ≈ 0.093 fm, which is identical to the largest
lattice spacing used in this work, i.e. to that of ensemble A. However, in contrast to the
computations discussed in Section 4, HYP2 smeared temporal links were used, which imply
a significantly reduced self-energy and consequently smaller statistical errors, but possibly also
larger discretization errors at small separations r. For completeness, these previous lattice results
V AHYP2

Λεη
(r) are also listed in Table 6.

When combining the lattice results for the static potentials from the five ensembles
e ∈ {A,B,C,D,AHYP2} (AHYP2 denotes the ensemble generated in the context of Ref. [14]),
one needs to take into account that the self-energy is different for each ensemble. It depends
both on the lattice spacing a and whether HYP2 smeared temporal links are used or not. To
eliminate both the self-energy and lattice discretization errors at tree-level, we first perform an
8-parameter uncorrelated χ2-minimizing fit of

V fit,e

Σ+
g

(r) = VΣ+
g

(r) + Ce + ∆V lat,e

Σ+
g

(r) (7)

with the Cornell ansatz

VΣ+
g

(r) = −α
r

+ σr (8)

and

∆V lat,e

Σ+
g

(r) = α′
(

1

r
− Ge(r/a)

a

)
(9)

to all lattice data points V e
Σ+
g

(r) with 0.2 fm < r. The fit parameters are the 1/r coefficient α, the

string tension σ, the coefficient α′ and for each ensemble an additive constant Ce. The constants
Ce absorb the ensemble dependent self energies. ∆V lat,e

Σ+
g

(r) reflects lattice discretization errors at

tree level, where the continuum result for the ordinary static potential at tree level is proportional
to 1/r and its lattice counterpart Ge(r/a)/a can be calculated numerically (see Refs. [49,53,58]
and Appendix C). The physically meaningful part of the parametrization (7) is VΣ+

g
(r) with the

two parameters α and σ. It is known that this Cornell ansatz provides an accurate description
of the ordinary static potential for 0.2 fm<∼ r (see e.g. Ref. [59]).

The resulting fit parameters are collected in Table 2. In particular, we obtain
α = 0.289(2) = 0.0571(4) GeV fm and σ = 1.064(4) GeV/fm in reasonable agreement with results
from the literature [60]. These fit parameters allow to define data points

Ṽ e
Σ+
g

(r) = V e
Σ+
g

(r)− Ce −∆V lat,e

Σ+
g

(r), (10)

where the self-energies and the lattice discretization errors at tree-level are subtracted. These
data points are collected in Table 7 and plotted in Figure 2. They are consistently parametrized
by VΣ+

g
(r) for 0.2 fm ≤ r as demonstrated in the same figure.

Our parametrization of the Πu and Σ−u hybrid static potentials is based on the pNRQCD pre-
diction for small separations r � 1/ΛQCD,

V pNRQCD
hybrid (r) = Vo(r) + ΛH +O

(
r2
)
. (11)
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Figure 2: Lattice data points Ṽ e
Λεη

(r) in GeV and corresponding parametrizations (8), (12),(13)

and (14) as functions of the quark-antiquark separation r in fm. The colors green, blue, yellow
and red indicate different lattice spacings a = 0.093 fm, a = 0.060 fm, a = 0.048 fm and a =
0.040 fm.
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α [GeV fm] σ [GeV/fm] α′ [GeV fm] χ2
red

0.0571(4) 1.064(4) 0.0735(23) 0.7

A1 [GeV fm] A2 [GeV] A3 [GeV fm2] B1 [GeV fm2] B2 [fm−1] B3 [fm−2] χ2
red

Fit 1 0.0124(9) 1.135(8) 0.372(7) 1.56(15) 1.2(3) 2.1(2) 1.2
Fit 2 0.0147(18) 1.126(11) 0.381(7) 1.57(17) 1.0(4) 2.3(2) 0.8
Fit 3 0.0065(16) 1.190(14) −0.092(91) 1.15(4) - - 0.5

Fit 1 Fit 2 Fit 3
ensemble Ce [GeV] A′e2,Πu A′e

2,Σ−
u

A′e2,Πu A′e
2,Σ−

u
A′e2,Πu A′e

2,Σ−
u

[GeV/fm2]

A 1.398(2) 3.1(7) 6.7(8) 3.0(9) 6.5(9) 3.4(8) 5.7(9)
B 2.059(2)
C 2.472(2)
D 2.862(2)

AHYP2 0.340(2) 1.0(7) 5.0(5) 0.9(9) 4.7(9) 1.6(7) 4.4(6)

Table 2: Resulting fit parameters. Fit 1 and Fit 2 correspond to the parametrizations (13) and
(14) and fit ranges 2a ≤ r and 3a ≤ r, respectively. Fit 3 corresponds to the parametrization
(12) and fit range 2a ≤ r ≤ 0.3 fm, where A3,Πu = A3 and A3,Σ−

u
= A3 +B1.

(see Refs. [12,56]). pNRQCD hybrid static energies are given through the perturbative octet po-
tential Vo(r) and a non-perturbative constant ΛH at leading order in a multipole expansion. The
next term in such a multipole expansion is proportional to r2. At leading order in perturbation
theory, Vo(r) ∝ 1/r.

Simple fit functions consistent with this pNRQCD prediction are

VΛεη(r) =
A1

r
+A2 +A3,Λεηr

2, (12)

where the parameters A1 and A2 are the same both for the Πu and the Σ−u hybrid static
potential, while the coefficients in front of the r2 terms, A3,Πu and A3,Σ−

u
, are independent. As

in our preceding work [14], we found that Eq. (12) is suited to parametrize the Πu potential
in the r range, where lattice data points are available, but not suited to parametrize the Σ−u
potential. Because of that we use extended fit functions already proposed in Ref. [14],

VΠu(r) =
A1

r
+A2 +A3r

2 (13)

VΣ−
u

(r) =
A1

r
+A2 +A3r

2 +
B1r

2

1 +B2r +B3r2
, (14)

which reduce to Eq. (12) in the limit of small separations.

Note that, in principle, all fit parameters depend on the lattice spacing a. In practice, however,
only A2 seems to have a sizable a dependence, as indicated by a small ensemble dependent
additive offset particularly prominent at large a. We, thus, include the leading order lattice
discretization error for A2, which is proportional to a2. It can be different for the Πu and the Σ−u
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hybrid static potential and when using HYP2 smeared temporal links or not, i.e. is represented
by terms A′e2,Λεηa

2 with A′A2,Πu = A′B2,Πu = A′C2,Πu = A′D2,Πu and A′A
2,Σ−

u
= A′B

2,Σ−
u

= A′C
2,Σ−

u
= A′D

2,Σ−
u

.

As previously for the ordinary static potential, we also include in the fit functions the constants
Ce containing the self-energies. Moreover, we include a term reflecting discretization errors at
tree level,

∆V lat,e
hybrid(r) = −1

8
∆V lat,e

Σ+
g

(r) = −α
′

8

(
1

r
− Ge(r/a)

a

)
, (15)

where the prefactor −1/8 relative to Eq. (9) is motivated by leading order perturbation theory.
In summary, this amounts to a 10-parameter uncorrelated χ2 minimizing fit of

V fit,e
Πu

(r) = VΠu(r) + Ce + ∆V lat,e
hybrid(r) +A′e2,Πua

2 (16)

V fit,e

Σ−
u

(r) = VΣ−
u

(r) + Ce + ∆V lat,e
hybrid(r) +A′e

2,Σ−
u
a2 (17)

to the lattice data points V e
Πu

(r) and V e
Σ−
u

(r) of all five ensembles.

In Table 2 we compare results obtained with two fit ranges, 2a ≤ r (Fit 1) and 3a ≤ r (Fit 2).
In analogy to Eq. (10) we define data points

Ṽ e
Λεη

(r) = V e
Λεη

(r)− Ce −∆V lat,e
hybrid(r)−A′e2,Λεηa

2, (18)

where the self-energy as well as lattice discretization errors at tree-level and proportional to a2

in the difference to the ordinary static potential are removed. These data points are collected
in Table 7 and plotted in Figure 2 together with the parametrizations (13) and (14). For larger
separations, r >∼ 0.2 fm, the parametrizations corresponding to 2a ≤ r and to 3a ≤ r are quite
similar. For separations r <∼ 0.15 fm, however, there are clear deviations, which signal the impor-
tance of computing data points at small r. This is also reflected by the difference in the results
for the coefficient A1 of the repulsive 1/r term, A1 = 0.0124(9) GeV fm versus
A1 = 0.0147(18) GeV fm for 2a ≤ r and 3a ≤ r, respectively. Since the corresponding re-
duced χ2 (listed in Table 2) indicate that both fits are of reasonable quality, we consider the
parametrization obtained by taking into account a larger number of data points (i.e. Fit 1 with
with 2a ≤ r) to be superior and recommend to use this parametrization in future applications,
e.g. Born-Oppenheimer predictions of heavy hybrid meson masses.

To study hybrid static potentials at small separations in even more detail, we performed an
additional fit, where we fixed B2 = B3 = 0. The fit ansatz is then equivalent to Eq. (12), when
identifying A3,Πu in Eq. (12) with A3 in Eq. (13) and A3,Σ−

u
in Eq. (12) with A3 + B1 in Eq.

(14). Since the fit ansatz is then restricted to the perturbative prediction valid for small r, we
use a reduced fit range, 2a ≤ r ≤ 0.3 fm. The fit is of reasonable quality and as before the fit
results are collected in Table 2 and the corresponding parametrization is shown in Figure 2. The
coefficient of the repulsive 1/r term is now significantly smaller, A1 = 0.0065(16) GeV fm.

In summary, our lattice data points, both for the Πu and the Σ−u hybrid static potential clearly
show a repulsive behavior at small separations, as predicted perturbatively in pNRQCD. We
performed various fits with fit functions guided by these perturbative expansions, which are
proportional to 1/r at small separations. We find the coefficient A1 of the 1/r term in the
region 0.005 GeV fm . . . 0.017 GeV fm. A more precise determination of a parametrization of
the repulsive region of hybrid static potentials will require further data points at even smaller
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separations and possibly refined fit functions with additional terms contributing to the small-r
behavior.

Finally we compare to existing work, where the 1/r repulsion of the Πu and the Σ−u hybrid static
potentials was also quantified. In Ref. [61] the lattice data from Ref. [36] for the Πu hybrid static
potential was parametrized with a fit function similar to Eq. (12) with A1 = 0.022 GeV fm, which
is larger than our results for A1 from simultaneous fits to the Πu and Σ−u potentials. Ref. [13]
follows the prediction from perturbation theory at leading order in αs and fixes the 1/r-coefficient
to α/8, where α is obtained from a fit similar to Eq. (8) to lattice data from Ref. [36] in the
range 0.2 fm ≤ r ≤ 2.4 fm. The resulting 1/r-coefficient for the hybrid potentials is 0.012 GeV fm,
which agrees with our fit results for the parameter A1 for Fit 1 and Fit 2. In Ref. [12] hybrid
static potential lattice data from Refs. [36,40] is parametrized consistently at small separations
0.08 fm ≤ r < 0.25 fm by functions similar to Eq. (12). There, the 1/r-coefficient is not a fit
parameter, but fixed to ≈ 0.01 GeV fm by the perturbative octet potential calculated in the
Renormalon Subtracted scheme up to order α3

s. This value for the 1/r-coefficient is in the
ballpark of our fit results for A1.

5.1 Prediction of masses of heavy hybrid mesons

In the following we estimate masses of c̄c and b̄b hybrid mesons following the same Born-
Oppenheimer approach as in our previous work [14], this time, however, using the refined and
more accurate parametrizations (8), (13) and (14) with parameters corresponding to Fit 1 (see
Table 2). Our goal is to quantify the impact of our new lattice data (results for ensembles A,
B, C and D), which cover smaller separations as well as several smaller lattice spacings than
our previous data from ensemble AHYP2.

We solve the radial Schrödinger equation

(
− 1

2µ

d2

dr2
+
L(L+ 1)− 2Λ2 + JΛεη(JΛεη + 1)

2µr2
+ VΛεη(r)

)
uΛεη ;L,n(r) = EΛεη ;L,nuΛεη ;L,n(r), (19)

where µ = mQ̄mQ/(mQ̄+mQ) is the reduced mass of the heavy Q̄Q pair, L is the orbital angular
momentum and VΛεη(r) is one of our parametrizations (8), (13) or (14) with parameters listed as
Fit 1 in Table 2. We use mc = 1628 MeV and mb = 4977 MeV from quark models [62]. JΣ+

g
= 0

and JΛεη = 1 for Λεη = Πu,Σ
−
u following Ref. [11]. For further details on the numerical solution

of the radial Schrödinger equation and the interpretation of the resulting energies in terms of
hybrid meson multiplets we refer to Ref. [14].

In Table 3 we provide our updated results for heavy hybrid meson masses, which are defined
according to

mΛεη ;L,n = EΛεη ;L,n − EΛεη=Σ+
g ;n=1,L=0 +m, (20)

where m is the spin averaged mass of the lightest quarkonium from experiments, either
m = (mηc(1S),exp + 3mJ/Ψ(1S),exp)/4 = 3.069(1) GeV or
m = (mηb(1S),exp + 3mΥ(1S),exp)/4 = 9.445(1) GeV [63]. In particular the masses obtained with
VΣ−

u
(r) are around 55 MeV lower for c̄c and 35 MeV lower for b̄b compared to our previous
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results from Ref. [14]. The masses related to VΠu(r) are around 20 MeV lower for c̄c and al-
most unchanged for b̄b. These discrepancies are similar to our newly introduced term A′e2,Λεηa

2

evaluated for e = AHYP2, which is 43(4) MeV for Λεη = Σ−u and 9(6) MeV for Λεη = Πu. The
term A′e2,Λεηa

2 represents lattice discretization errors, and can only be determined, when static

potential lattice data is available for several lattice spacings. This demonstrates that the lattice
data and the corresponding parametrizations provided in this work constitute an important step
towards higher precision in Born-Oppenheimer predictions of heavy hybrid meson masses. The
remaining discrepancies seem to be mostly related to the coefficient α in the parametrization
(8) of VΣ+

g
(r), for which we quoted α = 0.0518(5) GeV fm in Ref. [14] and which we updated

to α = 0.0571(4) GeV fm in this work. This change in α might also be a consequence of our
careful identification and removal of lattice discretization errors, this time related to the tree
level improvement represented by the term ∆V lat,e

Σ+
g

(r) defined in Eq. (9).

Λεη L n mΛεη ;L,n in GeV for QQ̄ = cc̄ mΛεη ;L,n in GeV for QQ̄ = bb̄

Πu

1 1 4.175 (6) 10.682 (6)
1 2 4.550 (8) 10.895 (6)
2 1 4.360 (7) 10.785 (6)
3 1 4.546 (8) 10.890 (7)

Σ−u

0 1 4.439 (5) 10.876 (5)
0 2 4.878 (5) 11.153 (5)
1 1 4.574 (5) 10.960 (5)
1 2 5.001 (6) 11.228 (5)
2 1 4.762 (5) 11.078 (5)
3 1 4.964 (5) 11.205 (5)

Table 3: Predictions for heavy hybrid meson masses.

We note that our prediction of heavy hybrid meson masses within the Born-Oppenheimer
approximation is based on several limiting assumptions (see the discussion in Section 6.2 in
Ref. [14]), e.g. the single-channel approximation, where mixing between static potentials is
excluded, and the neglect of effects due to the heavy quark spins. More sophisticated cou-
pled channel Schrödinger equations were derived and used for Born-Oppenheimer predictions
in Refs. [12, 13]. Moreover, in Refs. [15, 16] first steps were taken to include corrections from
the heavy quark spins. These more advanced approaches also require lattice field theory results
for the ordinary static potential and the Πu and Σ−u hybrid static potentials. However, the
corresponding predictions of heavy hybrid meson masses are based on lattice field theory results
obtained at significantly larger lattice spacing than our smallest lattice spacing and correspond-
ing parametrizations trustworthy only at larger quark-antiquark separations and presumably
suffering from sizable lattice discretization errors. It would be interesting to repeat the Born-
Oppenheimer computations from Refs. [12, 13, 15, 16] with the lattice field theory results for
static potentials from this work provided in Table 7.

Finally we note that a precision determination of heavy hybrid meson masses in a Born-
Oppenheimer framework also requires precise knowledge of static potentials for separations
even smaller than 0.08 fm, for which lattice computations were carried out in this work. In
this small-r region higher order perturbation theory might be more suited than lattice QCD.
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In Ref. [59] the combination of NNNLO perturbation theory and lattice QCD is discussed for
the Σ+

g potential. It would be worthwhile to advance in the same direction for hybrid static
potentials.

6 Excluding systematic errors

6.1 Topological freezing

In the continuum, gauge field configurations can be classified according to their integer topo-
logical charge Q. The corresponding topological sectors are separated by barriers of infinite
action.

Topological freezing refers to the problem that a Monte Carlo simulation of a lattice gauge
theory is trapped in one of the topological sectors, either during a significant part or the whole
simulation. Clearly, gauge link configurations generated in such a simulation do not form a
representative set distributed according to e−S . Topological freezing is expected to appear, when
using small lattice spacings a ≈ 0.05 fm [64]. It becomes increasingly more problematic, when
approaching the continuum, i.e. when further decreasing a. If a simulation is fully trapped in a
topological sector, observables exhibit specific finite volume corrections proportional to powers
of 1/V (V denotes the spacetime volume) [65–68] in addition to finite volume corrections not
related to topological freezing, which are discussed in Section 6.2.

Since our lattice spacings are as small as 0.04 fm, we consider it important and neccessary, to
check and compare the Monte Carlo histories of the topological charge for all our simulations.
We use a field strength definition of the topological charge on the lattice (for a discussion and
comparison of various definitions see Refs. [69, 70]),

Q = a4
∑
x

q(x) (21)

with the clover-leaf discretization of the topological charge density

q(x) =
1

32π2

3∑
µ,ν,σ,ρ=0

εµνρσ Tr
(
Cclov
µν (x)Cclov

ρσ (x)
)

(22)

Cclov
µν (x) =

1

4
Im
(
Pµν(x) + Pν−µ(x) + P−µ−ν(x) + P−νµ(x)

)
. (23)

To eliminate UV-fluctuations, which do not contribute to the topological charge, but might
cause strong distortions of the corresponding lattice results, a smoothing procedure needs to be
applied to the gauge links. We use 4-dimensional APE-smearing, similar to the 3-dimensional
APE-smearing for the static potential operators, with αAPE = 0.3. The number of smearing
steps is chosen individually for each lattice spacing. We stop smearing, as soon as Q is stable
for several smearing steps for the majority of gauge link configurations. We computed the
topological charge on all gauge link configurations of the four ensembles A, B, C and D given in
Table 1. In Figure 3a we show exemplarily the Monte Carlo histories of the topological charge
for a subset of gauge link configurations for ensemble B (a = 0.06 fm) and D (a = 0.04 fm).
At a = 0.06 fm the topological charge changes frequently and topological freezing is clearly not
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Figure 3: (a) Monte Carlo histories of the topological charge for ensemble B (a = 0.06 fm) and D
(a = 0.04 fm) for two independent simulation runs. (b) Normalized and symmetrized histograms
reflecting the topological charge distribution for ensemble B and ensemble D.

a problem. At a = 0.04 fm the autocorrelation time of Q is much longer, consistent with the
expectation from Ref. [64]. However, there are still sufficiently many changes, such that our
statistical error analysis, based on four independent simulation runs and a suitable binning (see
Appendix B), should provide realistic uncertainties for the static potentials.

In Figure 3b we show normalized and symmetrized histograms reflecting the topological charge
distribution for ensemblesB andD. Both are consistent with Gaussian distributions, as expected
at finite, large spacetime volume. From their squared widths,

〈
Q2
〉
, we obtain estimates of the

related topological susceptibilities via χtop =
〈
Q2
〉
/V , which are in reasonable agreement with

results from the literature [71]. This is another indication that our computations of static
potentials do not suffer from the problem of topological freezing.

6.2 Finite volume corrections

All static potential results discussed in Section 4 and Section 5 were obtained from simulations
with periodic spatial volume L3 ≈ (1.2 fm)3. Since this is a rather small volume, it is important
to check that finite volume corrections to these results are negligible.
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Figure 4: (VΠu(0.25 fm) − VΣ+
g

(0.25 fm)) as function of the spatial lattice extent L for gauge

group SU(2). Data points were obtained at several lattice spacings, but discretization errors
were estimated to be smaller than statistical errors.

One source of finite volume corrections are virtual glueballs traveling around the far side of the
periodic spacetime volume. They cause a negative shift of energy levels, which is proportional
to exp(−m0++L) at asymptotically large L [72] (m0++ denotes the mass of the lightest glueball).
We observe a small negative shift for the ordinary static potential for L � 1.0 fm, which could
be related to such glueball interactions. Another type of finite volume correction will appear,
when the (infinite volume) wave function of a state has a larger extent than the finite spacetime
volume of the lattice. Then this wave function is necessarily squeezed, which will lead to a
positive shift of the corresponding energy level [73]. For the Πu and Σ−u hybrid static potentials
we found sizable positive shifts for L� 1.0 fm. Since their wave functions cover a significantly
larger region than the ordinary static potential [74], these positive shifts are also consistent with
expectation.

In Figure 4 we show the difference between the Πu hybrid static potential and the ordinary
static potential, VΠu − VΣ+

g
, at fixed quark-antiquark separation r = 0.25 fm as function of the

spatial lattice extent L for gauge group SU(2). This difference is consistent with a constant,
i.e. L-independent, for L>∼ 1.0 fm. For smaller L, however, the difference increases, which is
consistent with the previously discussed expectation of a squeezed wave function for the Πu

hybrid static potential.

Additionally, for gauge group SU(3) we compared results for the Σ+
g , the Πu and the Σ−u static

potential from ensemble A to results from an analogous computation with twice the spatial
lattice extent, i.e. L = 2.4 fm. We did not find statistically significant differences.

In summary, the investigations and checks discussed in this subsection strongly indicate that
finite volume corrections at our preferred spacetime volume L3×T ≈ (1.2 fm)3×2.4 fm are small
compared to current statistical errors and, thus, can be neglected.

6.3 Glueball decay

At sufficiently small r, the energy difference between a hybrid static potential and the ordinary
static potential is large enough such that the Λεη hybrid flux tube can decay into a glueball and
the Σ+

g groundstate. The threshold energy for a decay into the lightest glueball with quantum
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Figure 5: Threshold energy for decays of hybrid flux tubes into the Σ+
g ground state and a

0++ glueball (dashed line) and hybrid static potentials for various quantum numbers Λεη. Static
potentials are taken from Ref. [14], the 0++ glueball mass from Ref. [75].

numbers JPC = 0++ and mass m0++ = 1.73(5) GeV [75] is shown as dashed line in Figure 5
together with lattice results for hybrid static potentials from Ref. [14]. The critical separations

r
Λεη
crit, where the dashed line intersects the Λεη hybrid static potentials, are listed in Table 4. For

r ≤ rΛεη
crit decays to a 0++ glueball are energetically allowed.

Λεη Πu Πg ∆g ∆u Σ+
g
′

Σ+
u Σ−u Σ−g

r
Λεη
crit [fm] 0.11 0.23 0.28 0.58 0.19 0.46 0.11 0.3

Table 4: Maximal separation r
Λεη
crit, where a decay of a Λεη hybrid flux tube into the Σ+

g ground
state and a 0++ glueball is energetically possible. For Σ−u and Σ−g such decays are excluded,
because of quantum numbers.

However, such decays might be excluded, because of quantum numbers. A comprehensive and
general derivation of selection rules for both hybrids and tetraquarks can be found in Ref. [2].
Here we focus on hybrid static potentials with quantum numbers Λεη and discuss, whether decays

to the Σ+
g groundstate and a JPC = 0++ glueball are possible. Since J = 0 for the considered

glueball, also Jz = 0. Thus, the z-component of the orbital angular momentum of the glueball
must be Lz = Λ (as stated in Section 2, the static quark and antiquark are separated along the
z axis). The quantum number η does not protect a hybrid flux tube, because the distribution of
the glueball in z-direction can be symmetric or antisymmetric. There is, however, a constraint
due to the quantum number ε. The 0++ glueball is symmetric with respect to Px. Its orbital
angular momentum wave function is also symmetric with respect to Px for Lz = Λ = Σ = 0.
For Lz = Λ > 0 there are two independent possibilities for the wave function, one of them
symmetric, the other antisymmetric. From this one can conclude that a 0++ glueball decay is
not possible for Σ−u and for Σ−g , while it is allowed for all other hybrid flux tubes.
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Decays into heavier glueballs with quantum numbers JPC different from 0++ (some of them are
antisymmetric with respect to Px) are energetically only allowed for separations much smaller
than those listed in Table 4. Thus, they are not relevant in the context of our work.

In Section 4 and Section 5 we presented and used lattice results for separations as small as
r ≈ 0.08 fm. Since rΠu

crit = 0.11 fm, results for the Πu hybrid static potential below that separation
might be contaminated by a “Σ+

g + glueball” scattering state. However, we observe the expected
upward curvature for the Πu hybrid static potential (see Figure 2). Moreover, the Πu und Σ−u
hybrid static potentials approach each other for small r, consistent with the expected degeneracy
in the limit r → 0. Thus, we conclude that a possible contamination of our results for the Πu

hybrid static potential is negligible compared to statistical errors.

7 Summary and outlook

We computed the ordinary static potential and the Πu and Σ−u hybrid static potentials in
SU(3) lattice gauge theory at four different lattice spacings, where the smallest lattice spacing,
a = 0.04 fm, is roughly half the size of lattice spacings previously used in similar computations.
Lattice discretization errors, which were found to be sizable in the bare lattice data points,
were studied in detail. We removed a large part of these discretization errors by using both
perturbative tree-level improvement and a suitable simultaneous fit to the bare lattice data
points from all our ensembles to identify the dominant a2 contribution to the discretization
errors. Using the same fit we were also able to subtract the a-dependent unphysical self-energy.
For future reference these improved lattice data points are collected in Table 7. Moreover, we
investigated possibly existent systematic errors related to topological freezing, due to the finite
spatial volume and because of glueball decays in detail and provided evidence that these errors
are negligible compared to statistical errors.

We also provide parametrizations of the Σ+
g , Πu and Σ−u static potentials, which can e.g. be

used for Born-Oppenheimer predictions of heavy hybrid meson masses. The Born-Oppenheimer
approach in the context of heavy hybrid mesons received considerable interest in the past cou-
ple of years, with many improvements and refinements, e.g. the derivation of coupled channel
Schrödinger equations, which take into account mixing between different sectors [12,13], or the
inclusion of effects due to the heavy quark spins [15, 16]. These papers, however, use lattice
data [8, 29, 33, 36, 40, 41] generated around two decades ago at much coarser lattice spacing
and partly without any dedicated investigation or removal of discretization errors. Thus, it
would be an interesting and important step towards higher precision to combine the refined
Born-Oppenheimer approaches from Refs. [12, 13, 15, 16] with the lattice data points or the
parametrizations presented in this work.

Since we performed computations at very small lattice spacings, we were able to reliably access
quark-antiquark separations as small as r = 0.08 fm. This, in turn, allowed to convincingly show
the upward curvature at small r of the Πu and Σ−u hybrid static potentials predicted by pertur-
bation theory, i.e. their repulsive nature at small quark-antiquark separations. An interesting
future direction with the aim to improve the precision of Born-Oppenheimer predictions even
further could be to match higher order perturbation theory and the lattice results presented in
this work. For the ordinary static potential a possible method using next-to-next-to-next-to-
leading order perturbation theory was discussed in Ref. [59] and an approach based on leading

18



order perturbation theory for hybrid static potentials can be found in Ref. [12].
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A Optimization of operators

The operators S appearing in Eq. (2) were optimized in Ref. [14] at lattice spacing a = 0.093 fm
with respect to their generated ground state overlaps. To retain this optimization also for smaller
values of the lattice spacing, we adjust the operator extents in x- and y-direction in units of
the lattice spacing, Ex and Ey, such that the operator extents in physical units, Exa and Eya,
are almost independent of a. Moreover, we select NAPE, the number of APE-smearing steps,
individually for each lattice spacing, while keeping αAPE = 0.5 constant (see e.g. Ref. [76] for
detailed equations). We do this in such a way that the effective potentials of the Πu and the Σ−u
hybrid static potentials at temporal separation t/a = 2 are small. This amounts to increasing
NAPE for decreasing a. Our preferred values for NAPE both for gauge group SU(2) and SU(3)
are listed in Table 5.

a in fm 0.078 0.041 0.026

NAPE for SU(2) 30 100 200

a in fm 0.093 0.060 0.048 0.040

NAPE for SU(3) 20 50 75 100

Table 5: Smearing parameter NAPE for various lattice spacings for gauge group SU(2) and
SU(3).

B Error analysis

To eliminate correlations in Monte Carlo time, we combine consecutively generated gauge link
configurations, which are used for the computation of static potentials, to N e bins.
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For the data points V e
Λεη

(r) (see Section 4) statistical errors are determined via a standard

jackknife analysis, i.e. from N e reduced jackknife samples V e,jackknife
Λεη ,j

(r) according to

∆V e
Λεη

(r) =

(
N e − 1

N e

Ne∑
j=1

(
V e,jackknife

Λεη ,j
(r)− V̄ e

Λεη
(r)
)2
)1/2

(24)

(V̄ e
Λεη

(r) denotes the result for the full sample).

The fits from Section 5, where data points of all five ensembles are used at the same time, can in
principle also be computed via the jackknife method. The number of reduced jackknife samples,
however, would be rather large, NA ×NB ×NC ×ND ×NAHYP2

, and the corresponding com-
putational effort huge. Therefore, we use for these fits and all following analyses the bootstrap
method. To this end we first inflate the reduced jackknife samples,

V e
Λεη ,j

(r) = V̄ e
Λεη

(r) + (N e − 1)
(
V e,jackknife

Λεη ,j
(r)− V̄ e

Λεη
(r)
)
. (25)

A bootstrap sample is then generated by randomly selecting N e of the inflated samples V e
Λεη ,j

(r)

for each ensemble, where the same inflated sample may be selected more than once. As usual,
the bootstrap error of a quantity O is then the standard deviation of the results obtained on
the bootstrap samples, i.e.

∆O =

(
1

K

K∑
j=1

(
Oj − Ō

)2
)1/2

. (26)

Oj denotes the result on the j-th bootstrap sample and Ō the result on the full sample, where
O can be α, σ, α′, Ce, A1, A2, etc. K, the number of bootstrap samples, has to be chosen
sufficiently large, such that ∆O is essentially independent of K.

For our computations we used NA = 320, NB = NC = ND = 160, NAHYP2
= 5000 and

K = 10000.

C Tree-level improvement

In the continuum at tree-level of perturbation theory the ordinary static potential potential is
attractive and proportional to 1/r. Its lattice counterpart for the standard Wilson plaquette
gauge action and the Eichten-Hill static action is(

1

r

)
lat

= 4πG(r/a, 0, 0), (27)

where the Greens function

G(R) =
1

(2π)3

∫ π

−π
d3k

∏3
j=1 cos(kjRj)

4
∑3

j=1 sin2(kj/2)
, (28)

can be computed in an efficient way via a recursion relation [49,58].
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For the HYP2 static action [77–79], which was used for the computations on ensemble AHYP2,
the numerator of the integrand differs from Eq. (28) by an additional factor,

GHYP(R) =
1

(2π)3

∫ π

−π
d3k

∏3
j=1 cos(kjRj)×

(
1− (α1/6)

∑3
i=1 4 sin2(ki)Ωi0

)2

4
∑3

j=1 sin2(kj/2)
, (29)

where Ωµν is

Ωµν = 1+α2(1 + α3)− α2

4
(1 + 2α3)

( 3∑
j=1

4 sin2(pj/2)− 4 sin2(pµ/2)− 4 sin2(pν/2)

)
(30)

+
α2α3

4

∏
η 6=µ,ν

4 sin2(pµ/2).

(see Ref. [53]). This integral can be solved e.g. by standard Monte Carlo integration techniques.

To eliminate lattice discretization errors at tree-level for the ordinary static potential, we subtract

∆V lat,e

Σ+
g

(r) = α′
(

1

r
− Ge(r/a)

a

)
(31)

from the lattice data points (see Section 5, in particular Eq. (10)), whereGe(r/a) = 4πG(r/a, 0, 0)
for e = A,B,C,D and Ge(r/a) = 4πGHYP(r/a, 0, 0) for e = AHY P2. α′ is proportional to the
strong coupling and determined by a fit to the lattice data (see again Section 5). Similarly, we

subtract ∆V lat,e
hybrid(r) = −(1/8)∆V lat,e

Σ+
g

(r) from the lattice data points for the Πu and Σ−u hybrid

static potentials, which are repulsive and, in leading-order perturbation theory, suppressed by
the factor 1/8 relative to the ordinary static potential.

The benefit of applying tree-level improvement, when combining lattice field theory results
obtained at different lattice spacings and with different static actions is demonstrated in Figure 6,
where we compare unimproved and improved data points for the Σ+

g potential from our five
ensembles. The two plots show that the majority of improved data points are consistent with a
single curve, while unimproved data points from different ensembles exhibit strong discrepancies
for r <∼ 0.4 fm.

D Summary of SU(3) lattice field theory results for the Σ+
g , Πu

and Σ−u static potentials

In Table 6 we list V e
Λεη

(r)a, the bare lattice data points in units of the lattice spacing (see

Section 4). In Table 7 we list Ṽ e
Λεη

(r), the lattice data points defined in Eqs. (10) and (18), where

the self energy as well as lattice discretization errors at tree-level and proportional to a2 are
removed.
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Figure 6: Comparison of unimproved (left) and improved (right) lattice data points for the Σ+
g

static potential from our five ensembles A, B, C, D and AHYP2. We subtract VΣ+
g

(r) + Ce

with VΣ+
g

(r) defined in Eq. (8) and parameters obtained by a fit to data points with r ≥ 0.2 fm

(indicated by the vertical dashed line) as listed in Table 2.

E SU(2) lattice field theory results for the Σ+
g , Πu and Σ−u static

potentials

We carried out computations for gauge group SU(2) analogous to those for gauge group SU(3)
discussed and presented in the main sections of this work. We generated three ensembles of gauge
link configurations with gauge couplings β = 2.85, 2.70, 2.50. We relate the lattice spacing a
to the scale t0 using a parametrization of ln

(
t0/a

2
)

determined in Ref. [55] via the gradient
flow. Physical units are then introduced by setting

√
8t0 = 0.3010 fm, which corresponds to

r0 = 0.5 fm. The details of the gauge link ensembles are summarized in Table 8. The three
lattice volumes are quite similar, L3 × T ≈ (1.3 fm)3 × (1.3 fm). For the investigation of finite
volume effects in Section 6.2, additional ensembles with both smaller and larger lattice volumes
at gauge couplings β = 3.00, 2.85, 2.70, 2.50 were generated.

In Table 9 we list V e
Λεη

(r)a, the bare lattice data points in units of the lattice spacing. These can

be used to generate parametrizations, using methods as e.g. discussed in Section 5.
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ensemble r/a V e
Σ+
g
a V e

Πu
a V e

Σ−
u
a

A

2 0.596753(62) 1.2527(28) 1.2813(35)

3 0.699138(134) 1.2457(27) 1.2972(41)

4 0.772857(238) 1.2476(27) 1.3228(48)

5 0.835109(387) 1.2570(28) 1.3547(58)

6 0.891807(601) 1.2726(30) 1.3898(71)

B

2 0.512961(19) 1.0067(46) 1.0150(52)

3 0.584400(40) 0.9996(45) 1.0155(56)

4 0.629977(73) 0.9966(44) 1.0212(61)

5 0.664972(117) 0.9963(43) 1.0315(67)

6 0.694703(175) 0.9973(82) 1.0432(76)

C

2 0.478535(11) 0.9091(40) 0.9120(43)

3 0.540198(26) 0.9019(39) 0.9095(25)

4 0.577592(47) 0.8976(37) 0.9110(25)

5 0.604988(76) 0.8959(21) 0.9154(26)

6 0.627360(111) 0.8954(20) 0.9210(28)

D

2 0.453884(7) 0.8417(22) 0.8433(22)

3 0.509466(16) 0.8353(21) 0.8396(23)

4 0.542058(29) 0.8317(21) 0.8393(23)

5 0.565146(46) 0.8295(20) 0.8412(24)

6 0.583422(68) 0.8282(19) 0.8438(25)

7 0.598894(93) 0.8276(19) 0.8479(26)

AHYP2

2 0.116648(13) 0.7427(21) 0.7737(7)

3 0.206462(31) 0.7369(18) 0.7901(8)

4 0.275767(60) 0.7395(17) 0.8151(9)

5 0.336546(114) 0.7483(18) 0.8469(10)

6 0.392896(184) 0.7621(19) 0.8809(6)

7 0.446512(289) 0.7805(21) 0.9171(7)

8 0.498474(446) 0.8037(24) 0.9586(8)

9 0.549517(680) 0.8326(15) 0.9966(9)

10 0.599980(1032) 0.8613(19) 1.0382(11)

11 0.649218(1563) 0.8920(23) 1.0831(13)

12 0.696191(2361) 0.9243(28) 1.1266(15)

Table 6: Bare lattice data points for the Σ+
g , Πu and Σ−u static potentials in units of the lattice

spacing (see Section 4).
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ensemble r/a r [fm] Ṽ e
Σ+
g

[GeV] Ṽ e
Πu

[GeV] Ṽ e
Σ−
u

[GeV]

A

2 0.1863 −0.1033(24) 1.2245(73) 1.2541(76)

3 0.2794 0.0929(24) 1.2122(76) 1.2903(91)

4 0.3726 0.2428(24) 1.2169(78) 1.3454(108)

5 0.4657 0.3726(24) 1.2372(81) 1.4131(127)

6 0.5589 0.4919(25) 1.2703(84) 1.4876(154)

B

2 0.1201 −0.3254(26) 1.2318(150) 1.2465(170)

3 0.1801 −0.1227(24) 1.2127(149) 1.2521(183)

4 0.2402 0.0174(24) 1.2039(147) 1.2719(199)

5 0.3002 0.1292(24) 1.2035(147) 1.3061(220)

6 0.3603 0.2256(24) 1.2067(270) 1.3449(246)

C

2 0.0960 −0.4459(28) 1.2489(168) 1.2525(180)

3 0.1441 −0.2326(24) 1.2241(165) 1.2472(108)

4 0.1921 −0.0910(24) 1.2082(159) 1.2551(112)

5 0.2401 0.0176(24) 1.2015(95) 1.2737(116)

6 0.2881 0.1079(24) 1.1999(93) 1.2968(122)

D

2 0.0800 −0.5520(30) 1.2754(108) 1.2776(113)

3 0.1200 −0.3260(25) 1.2497(109) 1.2653(116)

4 0.1600 −0.1796(24) 1.2337(106) 1.2655(118)

5 0.2000 −0.0706(24) 1.2234(104) 1.2753(122)

6 0.2400 0.0176(24) 1.2173(101) 1.2888(127)

7 0.2800 0.0930(24) 1.2148(99) 1.3088(133)

AHYP2

2 0.1863 −0.1112(24) 1.2267(58) 1.2573(51)

3 0.2794 0.0928(23) 1.2126(56) 1.2904(51)

4 0.3726 0.2430(24) 1.2178(58) 1.3430(53)

5 0.4657 0.3727(24) 1.2364(61) 1.4102(54)

6 0.5589 0.4923(26) 1.2654(66) 1.4822(52)

7 0.6520 0.6059(28) 1.3045(72) 1.5588(52)

8 0.7452 0.7159(32) 1.3538(79) 1.6467(53)

9 0.8383 0.8240(37) 1.4148(74) 1.7273(54)

10 0.9315 0.9308(44) 1.4757(79) 1.8153(55)

11 1.0246 1.0351(54) 1.5407(85) 1.9104(58)

12 1.1178 1.1345(69) 1.6090(91) 2.0026(61)

Table 7: Lattice data points defined in Eqs. (10) and (18), where the self energy as well as
lattice discretization errors at tree-level and proportional to a2 are removed (using Fit 1), for
the Σ+

g , Πu and Σ−u static potentials in units of GeV (physical units are introduced by setting
r0 = 0.5 fm).
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ensemble β a in fm [55] (L/a)3 × T/a Nsim Ntotal Nor Ntherm Nsep Nmeas

a 2.50 0.078 163 × 16 20 40000 0 10000 100 6000

b 2.70 0.041 323 × 32 20 25000 0 10000 100 3000

c 2.85 0.026 483 × 48 20 25000 0 10000 200 1500

Table 8: Gauge link ensembles for gauge group SU(2).

ensemble r/a V e
Σ+
g
a V e

Πu
a V e

Σ−
u
a

a

2 0.484308(68) 1.1150(47) 1.1448(58)
3 0.565442(151) 1.0899(42) 1.1428(61)
4 0.623418(271) 1.0803(38) 1.1486(66)
5 0.671506(422) 1.0792(39) 1.1677(74)
6 0.714737(645) 1.0819(39) 1.1864(86)
7 0.755318(914) 1.0901(43) 1.2149(98)
8 0.794584(1292) 1.1012(46) 1.2307(115)

b

2 0.395714(7) 0.8213(18) 0.8259(19)
3 0.446300(17) 0.8040(29) 0.8144(20)
4 0.476883(31) 0.7964(16) 0.8104(20)
5 0.499216(50) 0.7903(16) 0.8101(21)
6 0.517411(74) 0.7860(16) 0.8118(22)
7 0.533191(104) 0.7832(15) 0.8153(23)
8 0.547435(138) 0.7817(15) 0.8198(24)
9 0.560630(177) 0.7807(15) 0.8254(25)
10 0.573101(223) 0.7812(15) 0.8314(27)

c

2 0.353848(16) 0.6860(25) 0.6854(24)
3 0.394722(30) 0.6734(23) 0.6737(23)
4 0.417829(50) 0.6646(22) 0.6680(21)
5 0.433611(87) 0.6609(22) 0.6654(22)
6 0.445685(89) 0.6567(19) 0.6643(22)
7 0.455557(110) 0.6524(19) 0.6644(22)
8 0.463982(141) 0.6503(18) 0.6643(23)
9 0.471474(164) 0.6493(19) 0.6635(25)
10 0.478364(214) 0.6458(18) 0.6648(26)
11 0.484684(228) 0.6438(19) 0.6662(27)

Table 9: Bare lattice data points for the Σ+
g , Πu and Σ−u static potentials in units of the lattice

spacing (see Table 8) for gauge group SU(2).

25



References

[1] S. L. Olsen, T. Skwarnicki, and D. Zieminska, “Nonstandard heavy mesons and baryons:
Experimental evidence,” Rev. Mod. Phys. 90 no. 1, (2018) 015003, arXiv:1708.04012
[hep-ph].

[2] E. Braaten, C. Langmack, and D. H. Smith, “Selection Rules for Hadronic Transitions of
XYZ Mesons,” Phys. Rev. Lett. 112 (2014) 222001, arXiv:1401.7351 [hep-ph].

[3] C. Meyer and E. Swanson, “Hybrid Mesons,” Prog. Part. Nucl. Phys. 82 (2015) 21–58,
arXiv:1502.07276 [hep-ph].

[4] E. S. Swanson, “XYZ States: Theory Overview,” AIP Conf. Proc. 1735 no. 1, (2016)
020013, arXiv:1512.04853 [hep-ph].

[5] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, “Heavy-Quark QCD Exotica,” Prog.
Part. Nucl. Phys. 93 (2017) 143–194, arXiv:1610.04528 [hep-ph].

[6] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo,
and C.-Z. Yuan, “The XY Z states: experimental and theoretical status and
perspectives,” Phys. Rept. 873 (2020) 1–154, arXiv:1907.07583 [hep-ex].

[7] S. Perantonis and C. Michael, “Static potentials and hybrid mesons from pure SU(3)
lattice gauge theory,” Nucl. Phys. B 347 (1990) 854–868.

[8] K. Juge, J. Kuti, and C. Morningstar, “Gluon excitations of the static quark potential
and the hybrid quarkonium spectrum,” Nucl. Phys. B Proc. Suppl. 63 (1998) 326–331,
arXiv:hep-lat/9709131.

[9] K. Juge, J. Kuti, and C. Morningstar, “Ab initio study of hybrid anti-b g b mesons,”
Phys. Rev. Lett. 82 (1999) 4400–4403, arXiv:hep-ph/9902336.

[10] P. Guo, A. P. Szczepaniak, G. Galata, A. Vassallo, and E. Santopinto, “Heavy
quarkonium hybrids from Coulomb gauge QCD,” Phys. Rev. D 78 (2008) 056003,
arXiv:0807.2721 [hep-ph].

[11] E. Braaten, C. Langmack, and D. H. Smith, “Born-Oppenheimer Approximation for the
XYZ Mesons,” Phys. Rev. D 90 no. 1, (2014) 014044, arXiv:1402.0438 [hep-ph].
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