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Abstract

We explore a novel approach to compute the force between a static quark and a static antiquark
with lattice gauge theory directly. The approach is based on expectation values of Wilson loops
or Polyakov loops with chromoelectric field insertions. We discuss theoretical and technical as-
pects in detail, in particular, how to compensate large discretization errors with a multiplicative
renormalization factor and the evaluation using a multilevel algorithm. We also compare nu-
merical results for the static force to corresponding results obtained in the traditional way, i.e.,
by computing first the static potential and then taking the derivative.




1 Introduction

The static quark-antiquark potential V'(r) is one of the best studied quantities in QCD. Very
early after QCD was established, it was related to the large time behavior of Wilson loop
expectation values [1H4]. Wilson loop expectation values can be computed in lattice QCD.
Indeed, they were among the first quantities studied numerically and can nowadays be computed
very precisely. At small quark-antiquark separations r the static potential, also referred to as
QCD static energy, can also be calculated in a weak coupling expansion. The perturbative
expression of the static energy is known quite accurately. The three loop contributions have
been computed in Ref. [5,6]. At three loops the static energy contains also a term proportional
to Inag. This term has been computed in Refs. [7,8] and resummed to all orders at leading
logarithmic accuracy in Ref. [9]. Next-to-leading logarithms have been computed and resummed
to all orders in Refs. [10,/11]. At present, the static energy is, therefore, known at N3LL (next-
to-next-to-next-to-leading logarithmic) accuracy.

Combining the high precision results for V(r) from lattice QCD as well as from perturbative
QCD allows for an accurate extraction of the strong coupling as, that is competitive with lattice
determinations using other observables [12]. Recent extractions of as from V(r) can be found
in Refs. [13-18].

The perturbative expression for the static potential computed in dimensional regularization is
affected by a renormalon ambiguity of order Aqcp [19420]. In a lattice regularization, there is no
renormalon ambiguity, but a linear divergence due to the self-energy, which is of order a5(1/a)/a,
where a denotes the lattice spacing. The self energy vanishes order by order in dimensional
regularization. Both the divergent self energy in a lattice regularization and the renormalon in
dimensional regularization can be absorbed into an additive r-independent constant. Indeed,
the physical information is contained in the shape of V(r), which, after charge renormalization,
is finite and renormalon free. The shape of the potential is the static force, defined via F(r) =
0,V (r). The static force also carries the relevant information to extract as.

A possibility to compute the static force with lattice gauge theory is to first compute the static
potential and then to take the derivative via finite differences. This program has been successfully
carried out in quenched lattice QCD [21,122]. In full QCD and at small separations, lattice
data points for V(r) are typically sparse and exhibit large discretization errors. One can still
determine the static force by interpolating the lattice data points with a smooth function, but
the interpolation might become a sizable source of uncertainty [14].

In Refs. [23/[24] it has been recently suggested that the force between a static quark and a
static antiquark can be computed directly from the expectation value of a Wilson loop with a
chromoelectric field inserted in one of the temporal Wilson lines, a result originally derived in
Ref. [25]. In this paper we carry out a quenched lattice QCD study of this quantity. We discuss
technical aspects in detail, e.g. how to compute the static force using either Wilson or Polyakov
loops with chromoelectric field insertions. We also address the issue of large discretization
errors, slow convergence towards the continuum limit and how this can be compensated by a
multiplicative renormalization factor. Moreover, we compare the efficiency of this novel method
to compute the static force with the traditional method of first computing the static potential
and then taking the derivative. Our conclusion is that the determination of the static force
from the expectation value of a Wilson loop or a pair of Polaykov loops with a chromoelectric
field insertion is a viable alternative method. Both methods provide consistent results with



comparable errors, but different systematics.

The paper is organized in the following way. In section [2| we review the derivation of the force
in terms of a Wilson loop with a chromoelectric field inserted in one of the temporal lines and
we discuss the lattice discretization of this expression and its renormalization. In section 3 we
specify our SU(3) lattice setup and we explain, how we use the multilevel algorithm [26] in our
computations. Numerical results are presented in section [d In particular, we compare results
obtained with our method to corresponding results obtained by deriving the static potential and
we discuss the efficiency of the two methods. In section [5| we draw some conclusions and give a
brief outlook. Some details on the optimization of the parameters of the multilevel simulations
can be found in appendix [A] Preliminary results of this work have been presented at a recent
conference [27].

2 Theoretical and technical aspects

2.1 The static force from the static potential

The traditional way to compute the force between a static quark-antiquark pair is to take the
numerical derivative of the static potential,

F(r) = 0,V (r). (1)

The latter is extracted from a non-perturbative evaluation of rectangular Wilson loops,

Te{P Wyxr} = Tr{P exp (ig %XT dz, Au(az)> } (2)

extending in space from 0 to r and in time from —7'/2 to +7'/2. They represent the correlation
function of a static quark at 0 and an antiquark at r connected by a string of color flux. Here
and in the following, time and fields are understood as Euclidean, Tr{. ..} denotes the color trace
and P implies the path ordering prescription for the color matrices. The spectral decomposition
of the Wilson loop expectation value reads

(Te{P Wor}) = lao(r) e 0T 43 Jan(r)[?e” T, (3)
n>0

The coefficients |a,(r)|> describe the overlap of the spatial Wilson lines with the eigenstates

Inag(r)) of the Hamiltonian of Yang-Mills theory in the presence of two static color charges in

temporal gauge with energy F,,

Holnap(r)) = En(r)[nas(r))- (4)

The color indices, «, 8 = 1,2, 3, indicate the transformation of the states in the fundamental and
anti-fundamental representations at 0 and r, respectively. The ground state energy is identified
with the static potential, V(r) = Ey(r), and the excited states with n > 0 have energies
E,(r) > V(r). Clearly, in the large T limit terms with n > 0 in Eq. are exponentially



suppressed with respect to the first one. For sufficiently large 7' the Wilson loop expectation
value, thus, allows to extract V(r) from the first term.

Instead of the Wilson loop, also a correlation function of Polyakov loops can be employed to
compute the potential. Defining the Polyakov loop as a normalized trace of a temporal Wilson
line closing through the periodic boundary,

L(x) = ]\176Tr{P exp (ig /OT tho(a:)> } (5)

the expectation value of its correlation function has the spectral decomposition

(L(O)L(x)) = % 3" [(naplnga) Pe BT = % $ e BT (©)

¢ n7a718

(see, e.g., Ref. [28]), again permitting to extract V(r) for large T' from the leading term.

2.2 The static force in terms of the chromoelectric field
An alternative way to compute the static force was proposed in Refs. [23,24] using the equation

R e 5

Here 1 is the spatial direction of the separation of the static color charges and E(r, t*) denotes the
chromoelectric field located on one of the temporal Wilson lines at a time —7/2 < t* < +7'/2.
The chromoelectric field components are defined as E;(x) = Fjo(z) in terms of the non-Abelian
field strength tensor. In the limit T — oo the right hand side of Eq. is independent of t*, as
long as t* is a fixed time.

The derivation of Eq. (7)) follows from Ref. [25]. First, we recall the identities

Dj(r,+T/2)p(r,+T/2;r,-T/2) =
+T/2
= ¢(r,+T7/2;r,-T/2)Dj(r,-T/2) +i/ , dt ¢(r,+T/2;r,t) gE;(r, t)p(r, t;r, =T/2) (8)

Di(r,£T/2) ¢(r, £T/2;0,£T/2) = ¢(r,£T/2;0,£T/2)d; + O+ 9)

(see Refs. [25L129]), where ¢(y; ) is a straight Wilson line connecting the point  with the point
y, Dj(z) = 0 — igA;(x) is the gauge covariant derivative computed at the point z, 0; = 0/0x;
and Oy are operators involving the chromomagnetic field on the Wilson lines at the times +7"/2
(their explicit expression can be found in Ref. [25]). From this one can derive

+T/2

(O Te{P Wyr}) = lim i / o dt (Te{P Wyt gE;(r, t)}). (10)

lim
T—o0
This is because the chromomagnetic fields in the spatial Wilson lines have no overlap with the
lowest energy level in the spectrum of the static quark-antiquark pair, hence their contribu-
tion is exponentially suppressed in the large T limit. Since in that limit we furthermore have



(Tr{P W,xr}) — |ao(r)|?e™V"7T we can conclude from Eq. that

i +T/2
~,v (T (1+0(T)) = T /_m dt (Te{P Wy gE; (v, 1)}). (11)

The spectral decomposition of the expectation value of a Wilson loop with a chromoelectric field
insertion reads

(Te{P Wy gEj(r, t*)}) = |ao(r)|2e ™" 7T (0asl9 B |05a)

(n,m)#(0,0)

Also in this case, the large T' limit selects the ground state contribution [25],

Jim (Te{P Wir g5 (x,£)}) = lag(r) e 0T (0,519F 7100, (13)
but the exponential damping of the remaining terms is weaker than that of the sub-leading terms
in Eq. , namely e~ (En()=VNT/2 yergus e~ En()=V)DT  n the limit T — oo the expectation
value of the chromoelectric field is translation-invariant in time and its value hence independent

of the fixed t* (in practice, on the lattice we require t* to be sufficiently far from the temporal
boundaries of the Wilson loop). Thus, in the large 7" limit Eq. reduces to Eq. @,

(Tr{P Wyxr gE;(r,t*)})
(Te{P Wyxr})

O,V (r) = —i (1 + O(l/T)). (14)

Eq. @ provides a way to compute the force directly from a Wilson loop expectation value rather
than to compute it by taking a numerical derivative of the static potential V' (r). However, the
spectral decomposition shows a faster convergence for the ordinary Wilson loop than for the
Wilson loop with chromoelectric field insertion and there is also a term just decaying oc 1/T
due to the r-dependence of ag. Thus, it is not clear a priori, which observable is more efficient
to evaluate numerically.

Just as in the case of the static potential, the static force may also be extracted from correlation
functions of Polyakov loops instead of from Wilson loops. To this end we define a Polyakov loop
with a chromoelectric field insertion,

1 T t*

Lg(r)= NTr{P exp <zg/ dt Ao(x)>f' - gE(r,t")P exp (zg/ dt Ao(x)> } (15)
c t* 0

The analogue of Eq. then reads

(16)



2.3 Renormalization

In the following we assume that QCD, or Yang-Mills theory in our case, has already been
renormalized and only discuss what is additionally needed for our specific observable in Eq. .
It is well known that Wilson loops without insertions renormalize multiplicatively for arbitrary
shapes, including cusps or corners [30-32]. For the ordinary rectangular Wilson loop this is
easy to understand, as it results from a physical meson correlation function in the heavy quark
limit. Meson correlators renormalize multiplicatively, and integrating out heavy quarks merely
factorizes a correlator into free heavy quark propagators and the Wilson loop. Similarly, a
Wilson loop with a chromoelectric or chromomagnetic field insertion corresponds to a three-
point function. It will then receive an additional renormalization factor associated with the
inserted composite operator.

The static force is computed from an eigenvalue of the Hamiltonian and as such it is a renormal-
ization group invariant. In order to see this more clearly, let us evaluate the static force from
the static potential extracted from the exponential decay of ordinary Wilson loops,

F(r)=0,V(r) , Jim Tr{PWyr} = |ag(r)[e”" 7. (17)

The renormalization factors of the Wilson loop are absorbed in the prefactor |ag(r)|?, such that
V(r) is defined up to an additive scheme-dependent, but r-independent constant. The latter
does not contribute to the derivative and the resulting force can be computed from bare fields.

For the computation of the static force from the chromoelectric field this is not as straightfor-
ward to see. Let us denote the renormalization factors for the Wilson loop without and with
chromoelectric field insertion as

<TI‘{P WTXT}> = Zl <TI‘{P W?"XT}>R (18)
<TI‘{P WT‘XT gEj(I‘, t*>}> = Z2 <TI‘{P W’I‘XT gEj (I‘, t*)}>R. (19)
Eq. then implies

<6jTr{P WT‘XT}> = ZQ <8JTY{P WTXT}>R' (20)

While for the bare fields the derivative commutes with the expectation value, this is not the case
for renormalized fields, 0;(Tr{P W,x7})r # (O; Ter{W,x7})r. Indeed we have from the previous
equations

0, (Tr{P W, }) g = gi@mp A (21)

Thus, replacing Eq. with the renormalized expressions and employing again the asymptotic
form of the Wilson loop for large T" one arrives at the renormalized equation,

. _ _Z_Z2<TI‘{P WrngEj(I‘,t*)DR
%4V (r) = Z(Tr (P Wynr D r

(22)

which is identical to the bare expression Eq. . We conclude that, despite the presence
of a chromoelectric field insertion, no divergence or scheme dependence is expected, when the
regulator is removed, after an evaluation of the right hand side of Eq. .



2.4 Lattice discretization

The Wilson loop W, is discretized by the standard product of adjacent link variables U, (x) =
¢'294:(*) around a rectangle with sides of length r and T, where 7/a and T/a are integers and
a denotes the lattice spacing. In the following we always choose separations r parallel to the z
axis. The static potential can then be obtained via

L (TP Wi )

= 1 T T.a)=—- ?
Vira)= lim Vea(r,Toa) -, Vel T,a) = =2 In gy =5 )

V(r,a) depends on a with leading order corrections proportional to a?, because the unimproved
Wilson pure gauge action we are using in this work is accurate up to O(a?) [33].

For the standard way of computing the static force from the static potential by a discretized

derivative,

Vir+a,a) = V(r—a,a)
2a ’

Foy(r,a) = (24)

discretization errors are known to be particularly large for small quark-antiquark separations r.
A common procedure to reduce these is to define tree-level improved separations

2a 1/2

rr=rir) = <47T(G(r T4 G- a))) (25)
with

1 [T Pk k
G(T) _ / . (;OS(T' 32/0) (26)

a ) r (2m)7 4375 sin®(k;/2)
and to replace Eq. by

V(r+a,a)=V(r—a,a
Favy(ry,a) = ( )2(1 ( ) (27)
(see Ref. [34] for details). At tree-level one then obtains
2
FQV(TD CL) = W? (28)
1

in agreement with continuum perturbation theory.

The lattice formulation of the observable given by the right hand side of Eq. @ is straight-
forward. We place the field insertion E(r,t*) in the numerator at ¢* = 0, such as to maxi-
mize the distance to the temporal boundaries of the Wilson loop (which are located at —7'/2
and +7/2). The discretization of the field insertion Ej; = Fjo depends on the choice for
the discrete partial derivative in the field strength tensor. For the simple forward derivative,



0;f(x) = (f(z +a) — f(x))/a, the field strength tensor is related to the plaquette P, , in the
usual way,

P,, =1+ia’gF,, + O(a®), (29)
which gives the chromoelectric lattice field components

Pjo— P!

9E; =~ 0 1 O(a). (30)

A smaller discretization error can be achieved using the symmetric definition of the derivative,
0;f(x) = (f(x +a) — f(x —a))/2a, and either a so-called butterfly

Pio+ Poy.—;
Ijo = 3,0 T 170, (31)
2
or a cloverleaf
Pio+FPy—i+P_; o+ P,
H]O — ]70 07 J 4 s 0 07.7 (32)
of the plaquettes (see e.g. Ref. [35]). For those cases the chromoelectric field is given by
g, = 0~ o O(a? 33
g J 27:&2 + (a’ ) ( )

In our computations we use these symmetric discretizations (cloverleaf for Wilson loops, butterfly
for Polyakov loops). With these definitions we arrive at the discretized version of Eq. ,

‘ (Tr{P Wyxrt - gE(r,t")})
F = lim F T F. T,a)=—
e(rr,a) Jim pei(rr,Tia) , Fpen(rr,T,a) ! (Tr{P Wysr})

(34)

with r parallel to one of the spatial coordinate axes, and where we use again the tree-level
improved separations r; defined in Eq. (one can show that at tree-level Fg(rr,a) = g*/4mr?,
i.e. also in this case there is agreement with continuum perturbation theory). Fg(rr,a) depends
on a with leading order corrections proportional to a? (cf. similar observables discussed in
Refs. [35-37]).

With these choices, both ways to compute the static force have formally discretization errors of
O(a?) and we expect

F(r) = lim Fyy(rr,a) = lim Fg(rr,a). (35)
a—0 a—0
However, the discretization errors, or equivalently the approach to the continuum, may well be
quantitatively quite different for the two observables. This is, because for operators involving
elements of the field strength tensor significant finite renormalization factors are expected, when
comparing the lattice regularization with regularization schemes in the continuum at values of
the gauge coupling typically used in numerical simulations. The reason is the slow convergence
of lattice perturbation theory, when expanded in the bare coupling [38]. This has been noted



heuristically in early treatments of spin corrections to the static potential [35,36,39] and is
observed both in a perturbative renormalization of the color-electric field correlator |40] as well
as in a non-perturbative renormalization of the color-magnetic field operator [41]. Since Eq.
involves a color-electric field, while the standard Wilson loop does not, we expect sizable
differences between the two extractions of the static force at finite lattice spacing. To a large
extent these differences can, however, be absorbed into a multiplicative finite renormalization
factor,

Zg(a) = };m (36)

where 77 is an arbitrary separation, with Zg(a) — 1 for a — 0. After determining this
renormalization factor at a single arbitrary separation 77, it can be applied to improve Fg(rr, a)
at all other separations,

F5™(rr,a) = Zg(a)Fr(ry,a). (37)

Fi™(rr,a) should have significantly smaller discretization errors than Fg(ry, a) and, thus, it is
expected to be quite close to both Fyy (rr,a) and F(r) also at values of the gauge coupling
typically used in numerical simulations.

All considerations of this section can be applied to correlation functions of Polyakov loops in an
analogous way. Particularly important is the counterpart of Eq. , which is

(38)

3 Lattice setup

3.1 Gauge link ensembles

To discretize SU(3) Yang-Mills theory, we used the standard Wilson plaquette action. For the
relation between the lattice spacing a and the gauge coupling 8 we took the parameterization
from Ref. [21],

In(a/ro) = —1.6804 — 1.7331 (8 — 6) + 0.7849 (8 — 6)% — 0.4428 (8 — 6)>. (39)

The parameters of the gauge link ensembles we generated for this work are collected in Table
We note that the spatial volumes L3 are quite small with spatial extents L ~ 1.2fm. Conse-
quently, our results might be subject to sizable finite volume corrections. We do not consider
this as a primary problem at this stage, because we were exploring and testing a new method,
not trying to determine the static force or any other physical quantity precisely, i.e. for infinite
volume.

To improve the ground state overlaps generated by the spatial Wilson lines in the Wilson loops,
we used APE smeared spatial links with aapg = 0.5 and Napg = 50 smearing steps (for detailed
equations on APE smearing see e.g. Ref. [42]).



ensemble [ (L/a)®> xT/a 7r9/a ainfm
A 6.284 203 x 40 8.333  0.060
B 6.451 263 x 50 10.417  0.048
C 6.594 303 x 60 12.500  0.040

Table 1: Gauge link ensembles. To quote the lattice spacing in fm we define r¢9 = 0.5 fm.

3.2 Multilevel algorithm

To compute in a very efficient way the correlation functions introduced in section [2], i.e. Wilson
loops and Polyakov loop correlation functions with and without chromoelectric field insertions,
we used the multilevel algorithm [26]. We partitioned a lattice with 7'/a lattice sites in temporal
direction into ns time-slices with thicknesses p1,pa,. .., Pn,, Where ) ipj = T/a. For conve-
nience we defined the time-slice partitioning pys = {p1,p2; - - ., Pn, }, Which was repeated IV times
to fill the lattice, i.e. pj = pjin, and ng = Nny. In principle, time-slices can be partitioned
again, but throughout this work we used only a single level of partitioning.

Following a notation similar to that of Ref. [26], correlation functions are written in terms of
two-link operators T(:):,Tj')ag,yg = {Ug (%) }ap{Uo(z + j)}s5, where Up(z) are link variables in
temporal direction and j denotes the unit vector in j-direction. In the context of the multilevel
algorithm a regular Wilson loop is written as

Wixr (@) = Lz, 7 j)ar {[P1][Pa] . . . [Pry.Fapas L (2 + T0,75) s, (40)
where L(z, rj) is an APE smeared spatial Wilson line,
Py = T(z + (di — pi)al, rj)T(x + (dy, — pi + 1)a0, 7)) ... T(x + (dy — 1)ad, rj) (41)

and [IPg] is the average of Py in the time-slice extending from dy — px to di with dy = Z§:1 Dj-
In Eq. and Eq. we have used the multiplication prescription for two-link operators,

{TITQ}aﬁ’yé = {Tl}ao'yp{rﬂb}UﬁP(s' (42)

As discussed below in more detail, [IP;] corresponds to an average over n,, sublattice configura-
tions separated by n, heatbath sweeps, where only links in the interior of the k-th time-slice are
updated and spatial links on the time-slice boundaries are fixed. This requires locality, which is
a property of the standard Wilson plaquette action. Wilson loop averages (W, x7) are obtained
by computing the average of the right hand side of Eq. , which contains the time-slice av-
erages [IPr]. Polyakov loop correlation functions can be computed in almost the same way, just

replacing Eq. by
L*(z)L(z +1j) = {[P1][Pa] ... [Px.J}aaps- (43)
When inserting chromoelectric fields using the cloverleaf discretization , as done in the case of

Wilson loops, one has to choose their positions in such a way that they do not contain interior
links of two time-slices. Clearly, this requires times-lices of thickness p; > 2. Moreover, for



Wilson loops the spatial Wilson lines IL should be located on time-slice boundaries. This implies
certain restrictions for the temporal extent of the Wilson loop T for given time-slice partitioning.
For example with time-slice partitioning pis = {2}, only Wilson loops with temporal extent
T/a = 2,6,10,... can be computed, since the chromoelectric field is always inserted at the
center of one of the two temporal Wilson lines. For efficiency reasons one should select a time-

slice

partitioning, which allows to compute a large number of different temporal extents T'.

The time-slice partitionings we used for Wilson loops are collected in Table For Polyakov
loops such restrictions do not exist and we chose the simple partitioning pys = {7/10a} with
chromoelectric fields always inserted at ¢t = a.

ensemble simulation Dis r/a T/a
A 1 {1,1,1,1,1,1,1,1,2*} {2,3,...,10}  {5,6,...,18}
B 2 {1,1,1,1,1,1,1,1,2*} (2,3,...,13})  {2,3,...,18}
C 3 {1,1,1,1,1,1,1,1,2*} (2,3,...,8)  {2,3,...,17}
C 4 {1,1,1,1,1,1,1,1,2*} {9,10,...,15}  {2,3,...,17}
C 5 {1,1,1,1,1,1,2%,1,1,1,1,1, {2,3,...,15} (18,19}
1,25,1,1,1,1,1,1,2%, 1,1, 1,1, (20,21, 22,23}

1,1,2%1,1,1,1,1,1,2%,1,1, 1,
1,1,1,2,1,1,1,1,1,1,2,4}

Table 2: Time-slice partitionings for the computation of Wilson loops with the multilevel algo-
rithm. Chromoelectric fields are inserted at time-slices marked with *.

A multilevel simulation includes the following steps:

(0)

Start with any gauge link configuration (we use “hot starts” for our Wilson loop simula-
tions, i.e. randomly chosen gauge links, and “cold starts” for our Polyakov loop simulations,
i.e. all gauge links set to unity). Perform n, ; heatbath sweeps to generate a thermalized
gauge link configuration, where each sweep is followed by n., overrelaxation steps.

Generate n,, sublattice configurations for each of the ny time-slices by updating the links
in the interior n,,n, times using the a heatbath algorithm (the n,, sublattice configurations
are then separated by n, updates).

Compute time-slice averages [P] on the corresponding n,, sublattice configurations.

Compute Wilson loop or Polyakov loop samples on the full gauge link configuration ac-
cording to Eq. or Eq. , respectively, using the time-slice averages [Py] obtained
in step (2).

Generate the next full gauge link configuration by performing n, ¢ heatbath sweeps, where
each sweep is followed by ne overrelaxation steps.

Repeat steps (1) to (4) ny, o times and estimate (W,.x7) or (L*(0)L(r)), respectively, from
the samples obtained in step (3).

10



Gauge link configurations for our Wilson loop computations and our Polyakov loop computations
were generated with different simulation codes, with the CL2QCD software package [43] and a
code developed in Ref. [44]. The values of the simulation parameters, which were crudely
optimized by numerical tests (see appendix , are collected in Table

ensemble loops Nm,0  Nuth Nu0 Nor MmNy
A Wilson 800 1000 20 1 50 2
Polyakov 1284 150 5 3 6000 1

B Wilson 800 40000 200 15 50 2
Polyakov 1825 150 5 3 3000 1

C Wilson 800 40000 200 15 50 2
Polyakov 1391 150 5 3 6000 1

Table 3: Multilevel simulation parameters.

4 Numerical results

The majority of quantities discussed in the following are lattice quantities and, thus, depend on
the lattice spacing a. In contrast to section we suppress the a-dependence throughout this
section, to keep the notation simple. For example V (r,a) from section is equivalent to V(r)
in this section. Moreover, we exclusively use tree-level improved separations 77, as discussed in
section [2.4] For simplicity we omit the index, i.e. denote separations just by r.

4.1 The static potential

To have a reference, we first computed the static potential V' (r) using Eq. . For each value
r = a,2a,3a,... we fitted a constant to Veg(r,T') in the range Tiin < T < Thax. Tmin and Tax
were chosen sufficiently large using an algorithm discussed in section 5 of Ref. [45]. The fit results
represent the static potential V' at tree-level improved separations according to appendix B of
Ref. |21]. We find agreement with results from the literature [21,46]. Similarly, we computed
the static potential at finite, but small temperature 1/T = 1/N;a ~ 1/4.8r9 ~ 82MeV from
Polyakov loops,

V(r) =~ (L} 0)L() (44)

with the Polyakov loops separated along one of the spatial coordinate axes, e.g. L(r) = L(r =
(0,0,7)). V(r) obtained via Eq. should be almost identical to V' (r) obtained via Eq. , be-
cause the leading finite temperature correction in (Lf(0)L(r)) is suppressed by e~ (F1()=Vr)T
e~ (3/10)x48r0 5 551077, as can be read off from Eq. (]gg-b (the crude estimate Eq(r)—V(r) =~ 3/rg
was taken from Ref. [45]). This is supported by our numerical results as well as by numerical
results from Refs. [47,48]. For spatial separations r/a 2 3a and r 2 0.13 fm lattice results for V (r)

11



can be parameterized by the Cornell potential
o
VCornell(r) =V — ; +or (45)

(see e.g. Ref. [15]). Performing a fit to the lattice results for V' (r) obtained with Wilson loops
and ensemble B in the range 2.889 < r/a < 14.012 we find a = 0.260 and ¢ = 1.508/rZ, in
reasonable agreement with results from the literature, e.g. Ref. [49]. The additive constant V}
is divergent in the continuum limit and physically irrelevant.

4.2 Numerical proof of concept

Now we consider Fg(r)/Fg(r*), where Fg is the non-renormalized force defined in Eq. ([34)),
when using Wilson loops. We determined Fg(r) by fitting a constant to Fg cg(r), where the
T range for the fit was chosen in the same way as for the static potential (see the discussion
at the beginning of section . When using Polyakov loops, we determine Fg(r) by Eq. .
In both cases * = 0.48ry ~ 0.24fm is a fixed separation chosen such that r*/a is an integer
for all three ensembles, i.e. r*/a = 4,5,6 for ensemble A, B and C, respectively. Since we
compute the static force at improved separations, we take the two data points Fg(r;) and
Fg(re) with 71 and 79 closest to and enclosing 7* and interpolate with a/r? 4+ o to read off
Fg(r*). Note that, because of the multiplicative renormalization of Ff discussed in section
Fg(r)/Fg(r*) = Fg"(r)/Fg"(r*). Thus, Fg(r)/Fg(r*) should exhibit only mild discretization
errors and is expected to be close to the corresponding continuum result.

In Fig. (I we show Fg(r)/Fg(r*) as a function of the separation for all three ensembles obtained
from Wilson loops as well as from Polyakov loops. For comparison we also show

OrVeornel (1) /0r Voormen (), which represents the same physical quantity, this time, however,
obtained from the lattice result for the static potential parameterized according to Eq.
and not from a direct computation of the static force. The agreement of Fg(r)/Fg(r*) and
OrVeornen () /0r Voormen (1) is a numerical proof of concept for our method of computing the
static force.

4.3 The renormalization constant Zp

In Fig. [2] we show the renormalization constant Zg = Fyy (r*)/Fg(r*), defined in Eq. (36)),
as a function of r*, both for Wilson loops (left plot) and for Polyakov loops (right plot). As
discussed in section Z g should be fairly independent of r*. This expected constant behavior
of Zp is confirmed by our numerical results, which exhibit clear plateaus. There is, however, a
dependence on S and, thus, on the lattice spacing a, where Z is slowly decreasing for decreasing
a. This is consistent with our expectation Zg(a) — 1 for a — 0 discussed in section

We determined numerical values for Zg separately for Wilson loops and for Polyakov loops and
for each of our three ensembles by fitting a constant to the lattice data points shown in Fig.
in the range 0.357ry < r* < 0.6519. The fit results are collected in Table
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Figure 1: Fg(r)/Fg(r*) as a function of r for r* = 0.48 79 ~ 0.24 fm obtained from Wilson loops
(boxes) and Polyakov loops (triangles). For comparison we also show 0, Vioornen (1) /0 Voornen (7).

ensemble @ in fm Zg from Wilson loops Zg from Polyakov loops

A 0.060 1.4068(63) 1.4001(20)
B 0.048 1.3853(30) 1.3776(10)
C 0.040 1.348(11) 1.3628(13)

Table 4: Renormalization constants Zg obtained by fitting constants to Fyy (r*)/Fg(r*) in the
range 0.357r9 < 7* < 0.65 7.

4.4 Comparison of efficiency: Fjy, versus Fg
4.4.1 Asymptotic T behavior of Wilson loops

The spectral decomposition of Wilson loops and of Wilson loops with chromoelectric field inser-
tions has been discussed in section and section For large T' the Wilson loop (Tr{P W,»r})
is proportional to e~V(M7T with leading order correction suppressed by e~ (Z1(")=V ()T (see Eq.
(3)). In contrast to that the Wilson loop with chromoelectric field insertion (Tr{P W,.rgE;})
has a leading order correction proportional to e~ (F1(r)=V(r)T/2 (see Eq. ), i.e. a correction
much weaker suppressed with respect to the temporal separation T. Moreover, in Fg g (r,T)
there is also a term just decaying o 1/T" due to the r-dependence of ag (see Egs. and )
Thus, to determine the static force using Fr, we expect that one has to consider correlation
functions at T values at least twice as large compared to using Fjyy, to get a similar suppression
of unwanted contributions by excited states.

In Fig. [3| we compare the asymptotic T behavior of the renormalized effective force

Fpea(r,T) = ZeFpea(r,T) (46)
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Figure 2: Zg = Fyy(r*)/Fgr(r*) as a function of r*. The colored horizontal lines and error
bands represent the fits to determine a numerical value for Zg for each ensemble. (left) Wilson
loops. (right) Polyakov loops.

with Zg taken from Table [4] and of

‘/eff(r +a, T) - ‘/Yeff(r — a, T)

50 (47)

Fove(r,T) =
for spatial separation r/a = 5 and ensemble C. gﬁgﬁ(r, T) converges to a plateau only at
T/az14. Fyyen(r,T), on the other hand, is essentially constant already for 7'/a %6, which is
consistent with our theoretical expectation.
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Figure 3: Asymptotic T behavior of Fggﬁ(r, T) and of Fyyeq(r,T') for r/a = 5 and ensemble C.

For Polyakov loops there is no such difference between the two methods. In both cases contribu-
tions by excited states are proportional to e~ (F1()=VDT where T denotes the temporal extent

of the lattice.

4.4.2 Statistical precision and computing time
Now we compare the efficiency of different approaches to compute the static force. A useful

quantity to assess the efficiency is (AO)?7, the computing time 7 needed to compute an ob-
servable O with statistical error AO. Small values indicate an efficient method, large values an
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inefficient method. Since statistical errors in Monte Carlo simulations are proportional to 1/4/7,
this quantity allows a simple and fair comparison of two methods, even if the times invested for
the corresponding computations are different.

We start by exploring the benefit of using the multilevel algorithm for the case of Wilson loops.
To this end we compare in Fig. [ a computation, where we employed the multilevel algorithm
with optimized parameters, as discussed in appendix [A] to a standard heatbath simulation with-
out multilevel algorithm using the ratio (AO)?7|muititevel/ (A0)?T |no multilevel: The observable in-
vestigated in the left plot is the effective force, i.e. O = Fg cg(r, T), for several fixed separations
r. The observable investigated in the right plot is the effective potential, i.e. O = Vog(r,T), for
the same fixed separations r. Both plots show that at small temporal separations 7' it is even
more expensive to use the multilevel algorithm. However, at large temporal separations, which
are typically needed for a precise extraction of the static force or the static potential, there is a
huge gain in efficiency, when employing the multilevel algorithm. For example for ensemble C
and T'/a = 14 the time needed to compute the static force with the same statistical precision is
reduced by a factor of around 10* almost independent of . As one can read off from Fig. [3] it
is necessary to compute the correlation functions at such temporal separations.
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Figure 4: Comparison of the efficiency, when using the multilevel algorithm and when not using
the multilevel algorithm, for ensemble C. (left) Computation of the effective force Fg g(r,T).
(right) Computation of the effective potential Vog(r, T').

In Fig. [f] we compare the efficiency of computing the static force, when using Fz and when using
Fyy. Again we show ratios of the quantity (AO)?7. The left plot shows the result for Wilson
loops, where O = Fg(r,T) in the numerator and O = Fyye(r, 7/2) in the denominator (note
that roughly twice as large temporal separations 1" are needed for Fi oz compared to Fayeq
for a similar suppression of contributions by excited states; see section 4.4.1). The right plot
shows the result for Polyakov loops, where O = F"(r) in the numerator and O = Fay () in
the denominator. The plots indicate that it is advantageous to compute the static force via
Fg, when using Wilson loops and typical temporal and spatial separations, while for Polyakov
loops the traditional method via Fyy is significantly more efficient. This different behavior is

somewhat surprising and should be investigated in more detail in the future.
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Figure 5: Comparison of the efficiency, when computing the static force using Fr and when
using Fyy, for ensemble C. (left) Wilson loops. (right) Polyakov loops.

5 Conclusions

We tested a novel method to compute the static force F'(r) from expectation values of Wilson or
Polyakov loops with chromoelectric field insertions, which was suggested in Refs. [23,[24]. The
numerical results exhibit sizable discretization errors and the convergence to the continuum limit
is rather slow, but this can be compensated by an r-independent multiplicative renormalization
factor Zg. Concerning efficiency, our method appears to be comparable to the traditional
method of first computing the static potential and then taking the derivative. For Wilson loops
we even found a slight advantage, while for Polyakov loops our method seems to be somewhat
less efficient. In this exploratory study we used pure SU(3) gauge theory, lattices with rather
small spatial volume and the multilevel algorithm. In the future it will be interesting to study
the applicability and efficiency of our method on full QCD gauge link ensembles with larger
spatial volume, where the multilevel algorithm is not available.

This explorative computation of the static force also constitutes an important preparatory step
for future projects, where similar correlation functions (Wilson or Polyakov loops with chromo-
electric or chromomagnetic field insertions) need to be computed. An example is the computation
of 1/m and 1/m? corrections (m denotes the heavy quark mass) to the ordinary static potential,
as obtained in potential Non-Relativistic QCD in Refs. [25,/50,51] (see also Refs. [29,52]) and
evaluated on the lattice in Refs. [35,137,[39} /53], or to hybrid static potentials, as theoretically
worked out and suggested in Refs. [54-56].
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A Optimization of multilevel parameters

To crudely optimize the multilevel parameters for our Wilson loop computations on ensemble A,
we first compared several time-slice partitionings pys for fixed n,, = 100 and n, = 1. Fig. [0]
(top plot) indicates that thinner time-slices are more efficient. Thus, we decided for time-slice
partitionings pis, where the majority of time-slices have thinkness p; = 1 (see Table .

In a second step we investigated, how efficiency is related to the parameter n,, the number of
heatbath updates between two successive sublattice configurations. For fixed n,, = 100 we find
ny = 2 as optimum (see Fig. [ bottom left plot).

Finally, we investigated, how efficiency is related to the parameter n,,, the number of sublattice
configurations used to compute time-slice averages [Py]. For fixed n, = 2 we identify n,, = 50
as a rather efficient choice (see Fig. @ bottom right plot).

Similar optimizations were carried out for ensembles B and C and for the Polyakov loop com-
putations.
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