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Abstract. We compute hybrid static potentials in SU(2) lattice gauge theory using a multilevel
algorithm and three different small lattice spacings. The resulting static potentials, which are valid for
quark-antiquark separations as small as 0.05fm, are important e.g. when computing masses of heavy
hybrid mesons in the Born-Oppenheimer approximation. We also discuss and exclude possible systematic
errors from topological freezing, the finite lattice volume and glueball decays.

1 Introduction

Hybrid static potentials represent the energy of an excited gluon field surrounding a static quark
and a static antiquark as a function of their separation and are, thus, related to heavy hybrid
mesons. Due to the gluonic excitations, quantum numbers of hybrid mesons can be different
from those predicted by the constituent quark model. The investigation of exotic mesons like
hybrid mesons and tetraquarks are currently a very active field of research, both theoretically and
experimentally (for reviews cf. e.g. [1-6]).

One possibility to compute masses of heavy hybrid mesons is the Born-Oppenheimer approxi-
mation [7H11]. In a first step, the heavy quark and the heavy antiquark are considered as static
and lattice gauge theory is used to compute the energy of the gluons. The resulting hybrid static
potentials are then parameterized by analytic functions. In a second step, these potentials are in-
serted into the Schrodinger equation for the relative coordinate of the heavy quark-antiquark pair.
Solving the Schrodinger equation leads to energy eigenvalues, which can be interpreted as masses
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of heavy hybrid mesons. Besides their importance for the computation of heavy hybrid meson
masses, hybrid static potentials are also relevant in the context of effective field theories like po-
tential Non-Relativistic QCD (pNRQCD), where their short-distance behavior fixes the matching
coefficients [12-14].

In this work, we compute hybrid static potentials in SU(2) lattice gauge theory at three different
lattice spacings, a = 0.026 fm, 0.041 fm, 0.077 fm, significantly smaller than those used in previous
works, e. g. in Refs. [11,/15,[16]. In particular, we present results for the ordinary and the two lowest
hybrid static potentials for quark-antiquark separations as small as 0.05fm. We also discuss and
exclude possible systematic errors from topological freezing, the finite lattice volume and glueball
decays.

2 Hybrid static potentials

Quantum numbers of (hybrid) static potentials are the following:

e A = X(= 0),II(= 1),A(= 2),... denotes non-negative integer values of the total angular
momentum with respect to the quark-antiquark separation axis.

e 1) = g, u describes the even (g) or odd (u) behavior under the combined parity transformation
and charge conjugation, P o C.

e ¢ = +, — is the eigenvalue of a reflection P, along an axis perpendicular to the quark-antiquark
separation axis. Hybrid static potentials with A > 1 are degenerate with respect to e.

The ordinary static potential is labeled by A} = E;, while the two lowest hybrid static potentials
have quantum numbers II,, and X, .

Hybrid static potentials are computed from Wilson loop-like correlation functions on SU(2) gauge
link configurations. To excite gluons with quantum numbers different from that of the ordinary
static potential, we employ creation operators, where non-trivial shapes replace the straight spatial
parallel transporters. More precisely, we use the creation operators Syrr; and Spy2 defined in Table
3 and Table 5 in Ref. [11], where the creation operators are discussed in detail.

3 Numerical results

3.1 Lattice setup

All computations were performed on SU(2) gauge link configurations, which were generated with
a Monte Carlo heatbath algorithm with the Wilson plaquette action. Additionally, we used a
multilevel algorithm [17], which leads to an exponential error reduction in the expectation values of
the Wilson loop-like observables. We observed that one level is sufficient, where we split the lattice
into timeslices of thickness 2a, which were updated more often than the full lattice. The expectation



values of the Wilson loop-like observables were then computed from products of timeslice averages
of two-link operators.

We generated three ensembles with different values of the gauge coupling, g = 2.50, 2.70 and
2.85, which correspond to lattice spacings a = 0.077fm, 0.041fm and 0.026 fm, respectively.
This scale setting is taken from Ref. [18] and based on the gradient flow, the ty scale and the
identification ro = 0.5 fm, where 7y is the Sommer scale.

Hybrid static potentials were extracted from plateaus of the effective potentials. The contribu-
tions of excited states to the effective potentials were reduced to a minimum by employing the
creation operator shapes, which were optimized at a lattice spacing a = 0.093 fm in Ref. [11] and
keeping the operator extents in physical units constant. Moreover, we applied APE smearing [19]
on the spatial links with aypg = 0.5. The number of APE smearing steps was optimized for each
lattice spacing, i.e. Napg had to be increased with decreasing lattice spacing.

3.2 Hybrid static potentials

In Figure (1| we show our lattice results for the ordinary static potential E:}r and the two lowest
hybrid static potentials I, and ¥, for three different lattice spacings as functions of the quark-
antiquark separation r. For each potential, data points with r > 2a are consistent with a single
curve. We interpret this as an indication that lattice discretization errors for » > 2a are negligible.

Thus we are able to present lattice results for hybrid static potentials (for SU(2)) for separations
as small as r ~ 0.05fm, while previous lattice results for hybrid static potentials (for SU(3))
were provided and trustworthy only for separations r>0.16fm [11,/15,/16]. We plan to extend
our computation of hybrid static potentials at small lattice spacings and small quark-antiquark
separations to SU(3) in the near future and use the corresponding results for the computation of
heavy hybrid meson masses in the Born-Oppenheimer approximation.

4 Excluding possible systematic errors

4.1 Finite spatial lattice volume

When performing computations at different spatial lattice volumes we observed a sizable volume
dependence of the ordinary static potential and hybrid static potentials, when the volume is smaller
than =~ (1.0fm)?. For example, shrinking the spatial lattice volume causes a small negative shift
for the ordinary static potential E;r, while there is a much larger positive shift for the hybrid static
potential 1L,.

For a spatial lattice volume of (1.2 fm)3, however, as e. g. used for the computation of the poten-
tials shown in Figure [1 these finite volume corrections are already tiny and negligible compared
to statistical errors.
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Figure 1: Lattice results for the ordinary static potential E; and the hybrid static potentials II,, and X, .

4.2 Topological freezing

Gauge field configurations can be classified according to their topological charge. Topological
freezing denotes the problem that a Monte Carlo simulation is trapped in one of the topological
sectors. The gauge link configurations generated in such a simulation do not form a representative
set distributed according to e™°. This problem might appear, when using a lattice spacing a smaller
than ~ 0.05fm [20] and becomes more severe, when approaching the continuum limit, i.e. when
further decreasing a. If a simulation is trapped in a topological sector, observables exhibit specific
finite volume corrections in addition to those discussed in section (see e.g. Refs. [21H23]).

To check, whether our simulations suffer from topological freezing, we computed the topological
charge on each gauge link configuration via a field-theoretic definition with a simple clover-leaf
discretization and 4-dimensional APE-smearing [24]. From Figureone can see that the topological
charge still changes frequently at all our lattice spacings. The topological charge distribution and
topological susceptibility (which we will show and discuss in a future more detailed publication) also
indicate that the Monte Carlo algorithm is able to sample the gauge link configurations correctly.
Furthermore, through a suitable binning and several independent Monte Carlo runs we exclude
that statistical errors are underestimated, because of autocorrelations, which are also expected to
increase with decreasing lattice spacing. Thus, the potentials presented in this work should be free
of any systematic errors from topological freezing.
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Figure 2: Topological charge as a function of the Monte Carlo time for two independent exemplary runs for each
lattice spacing. Note that the horizontal axis corresponds to only small sections (/= 25%) of the full Monte
Carlo histories of these runs.

4.3 Glueball decay

For sufficiently small quark-antiquark separations r the energy difference between a hybrid static
potential and the ordinary static potential Z; is large enough such that the hybrid flux tube can
dissolve into a glueball and the E; flux tube. The minimal energy, which is necessary for a decay
into the lightest glueball with quantum numbers J©¢ = 0%+ and mass mg++ = 4.21/ry [25] is
shown as a dashed line in Figure [3| together with our previous lattice results for hybrid static
potentials from Ref. [11].

From this plot, we can estimate separations 7., below which a glueball decay is energetically
allowed. These separations are listed in Table For r < rey a hybrid static potential creation
operator might generate non-vanishing overlap to the 2; flux tube and a glueball. In Figure |1| we
show lattice results for the hybrid static potentials II,, and X for separations below ¢ ~ 0.1 fm.
There is, however, no sign of contamination by glueball decay. Indeed, the two lowest hybrid static
potentials reveal the expected increasing behavior and degeneracy at small separations [12].

For the X,/ and X potentials it is even possible to exclude decays to the lightest 0" glueball
using symmetry arguments (we will discuss this in detail in a future publication). Still allowed
are decays into the next lightest glueball with quantum numbers J©¢ = 2+*. However, this is
energetically only possible for very small separations.
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Figure 3: Threshold energy VE} (r) +mg++ for the decay of a hybrid flux tube to the flux tube of the ordinary static
potential and the lightest 07" glueball. Lattice results for static potentials are taken from Ref. [11].

A m, I, A, A3 s[5

Terit i fm | 0.11  0.23  0.28 0.58 | 0.19 0.46 | 0.06 0.12

Table 1: Approximate separations rqt, below which decays of hybrid flux tubes to the flux tube of the ordinary
static potential and the lightest 07" glueball (or in the case of X, and X, the next lightest 2 glueball)
become energetically possible.
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