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1. The Gross-Neveu model and its phase diagram in the limit of
infinitely many fermion flavors

Exploring the phase diagram of QCD using lattice computations is cur-
rently restricted to small chemical potential, because of the QCD sign prob-
lem (see e.g. [1, 2] and references therein). There are, however, several QCD-
inspired models, e.g. the Gross-Neveu (GN) model [3], which are technically
simpler to treat, and which share certain symmetries with QCD. Studies of
such models might, thus, provide insights concerning the phase diagram of
strongly interacting matter. A notable feature of the GN model in 1+1
dimensions in the limit of infinitely many fermion flavors is the existence of
a so-called inhomogeneous phase, where the chiral order parameter is not
a constant, but spatially oscillating [4, 5] (for a review on inhomogeneous
condensates and phases see [6]). In this work we perform a lattice field
theory study of the 1+1 dimensional GN model at finite number of fermion
flavors Nf, to explore, whether inhomogeneous phases also exist at finite Nf.
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The Euclidean action of the GN model is

S =

∫
d2x

( Nf∑
n=1

ψ̄n

(
γ0(∂0 + µ) + γ1∂1

)
ψn −

λ

2Nf

( Nf∑
n=1

ψ̄nψn

)2)
, (1.1)

where ψ denotes a fermionic field with Nf flavors and µ is the chemical
potential. One can get rid of the four-fermion interaction by introducing a
scalar field σ, which leads to the following partition function:

Z =

∫
Dσ exp

(
−Nf

(
1

2λ

∫
d2xσ2 − ln

(
det
(
(∂0 + µ)γ0 + ∂1γ1 + σ

))))
︸ ︷︷ ︸

Seff

.

(1.2)

The effective action has a discrete chiral symmetry, Seff[+σ] = Seff[−σ],
where 〈σ〉 ∝ 〈

∑
n ψ̄nψn〉 represents the chiral condensate and indicates,

whether the symmetry is spontaneously broken.
The phase diagram of the 1+1 dimensional GN model in the limit

Nf →∞ has been calculated in [4, 5]. There are three phases (see Fig.
1):

• a chirally symmetric phase, where 〈σ〉 = 0;

• a homogeneously broken phase, where 〈σ〉 = const 6= 0;

• an inhomogeneous phase, where 〈σ〉 is a spatially oscillating function.

In the inhomogeneous phase 〈σ〉 exhibits a periodic kink-antikink struc-
ture close to the phase boundary to the homogeneously broken phase and
gradually changes into a sin-like structure for increasing µ.

2. The phase diagram at finite number of fermion flavors

We perform lattice Monte Carlo simulations of the 1+1 dimensional
GN model defined in eq. (1.2) at finite Nf ∈ {8, 16, 24, 32, 48}. We use
two different discretizations of the fermionic determinant, naive fermions
and SLAC fermions (see e.g. [7]), which we consider to be an important
cross check of our numerical results: the results obtained with the two
discretizations agree within statiscal errors. We set the scale via the absolute
value of the chiral condensate at chemical potential µ = 0 and temperature
T = 0, i.e. σ0 = 〈|σ̄|〉µ=0,T=0, where

σ̄ =
1

V

∑
x,t

σ(x, t), (2.1)
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Fig. 1: Phase diagram of the GN model in the large-Nf limit (see [4, 5]).

V is the number of lattice sites and 〈. . .〉µ,T denotes the path integral expec-
tation value at chemical potential µ and at temperature T , i.e. the average
over the generated set of Monte Carlo field configurations. In other words,
we express dimensionful quantities in units of σ0, e.g. µ/σ0, T/σ0.

〈|σ̄|〉µ,T is also a suitable approximate order parameter to distinguish
between a homogeneously broken phase on the one hand (〈|σ̄|〉µ,T 6= 0)
and a restored or inhomogeneous phase on the other hand (〈|σ̄|〉µ,T ≈ 0).
Numerical results for Nf = 8 are shown in Fig. 2, left plot. A homoge-
neously broken phase is indicated by the yellow dots at small µ and small
T , somewhat smaller, but in a similar region as for infinite Nf. Results from
analogous computations for Nf ∈ {16, 24, 32, 48} restricted to µ = 0 are
shown in Fig. 2, right plot. When increasing Nf, the results approach the
numerical result at infinite Nf (the latter has been obtained using techniques
developed and explained in [8, 9, 10]).
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Fig. 2: (left) 〈|σ̄|〉µ,T /σ0 as a function of µ/σ0 and T/σ0 for Nf = 8.
(right) 〈|σ̄|〉µ=0,T /σ0 as a function of T/σ0 and µ/σ0 = 0 for various Nf.
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To check for the existence of an inhomogeneous phase at finite Nf, we
compute the spatial correlation function of the chiral condensate 〈C(x)〉µ,T
and its Fourier transform 〈C̃(k)〉µ,T , where

C(x) =
1

V

∑
y,t

∑
x

σ(y, t)σ(y + x, t). (2.2)

Both 〈C(x)〉µ,T and 〈C̃(k)〉µ,T are suited to distinguish the three phases we
are expecting as illustrated by Fig. 3:

• Chirally symmetric phase: 〈C(x)〉µ,T quickly approaches 0.0. The
Fourier transform is a smooth function close to 0.0 indicating a van-
ishing chiral condensate.

• Homogeneously broken phase: 〈C(x)〉µ,T quickly approaches σ2
0. The

Fourier transform exhibits a pronounced peak at k = 0 representing
the non-vanishing constant chiral condensate.

• Inhomogeneous phase: 〈C(x)〉µ,T is an oscillating function. The Fourier
transform exhibits a pronounced peak at k 6= 0 proportional to the
inverse wave length of the chiral condensate.

Of particular interest are the plots at the bottom of Fig. 3, because they
provide clear evidence for the existence of an inhomogeneous phase at finite
Nf.

To identify the boundary between the homogeneously broken phase and
the inhomogeneous phase, we plot in Fig. 4

kmax =
∣∣∣ arg max

(
〈C̃(k)〉µ,T

)∣∣∣ (2.3)

as a function of µ and T . The phase boundary is clearly visible at ≈ µ/σ0 ≈
0.45 separating the blue points (kmax ≈ 0, homogeneously broken phase)
from the red points (kmax 6= 0, inhomogeneous phase).

To exhibit the oscillations of the chiral condensate in the inhomogeneous
phase in an even more direct way, we compute 〈σ(x + xshift, t)〉µ,T . Here
xshift is the phase shift of the spatially oscillating chiral condensate σ(x, t)
determined individually for each Monte Carlo field configuration by a stan-
dard Fourier transform. In this way destructive interference is excluded,
when averaging over the Monte Carlo field configurations. In Fig. 5 we
show 〈σ(x + xshift, t)〉µ,T at three different (µ, T ). In the left plot (homo-
geneously broken phase) 〈σ(x+ xshift, t)〉µ,T is almost constant, close to σ0,
while in the center plot and the right plot (inhomogeneous phase) spatial
oscillations are clearly visible.



Inhom.phases printed on March 1, 2019 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Spatial Direction x 0

0

1

2

3

4

Co
rre

la
to

r C
(x

)/
2 0

T/ 0 = 0.082 , / 0 = 0.00
T/ 0 = 0.988 , / 0 = 0.00

0.0 0.2 0.4 0.6 0.8 1.0
Wave Number k/ 0

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
to

r S
pe

ct
ru

m
 C

(k
)/

2 0

1.075
1.100
1.125

75 50 25 0 25 50 75
0.00

0.05

0.10

0.15

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Spatial Direction x 0

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Co
rre

la
to

r C
(x

)/
2 0

/ 0 = 0.5
/ 0 = 0.7
/ 0 = 1.0

80 60 40 20 0 20 40 60 80
Wave Number k/ 0

0.05

0.10

0.15

0.20

Co
rre

la
to

r S
pe

ct
ru

m
 C

(k
)/

2 0

Fig. 3: C(x) and C̃(k) for Nf = 8. (top) µ/σ0 = 0 and T/σ0 = 0.988
(chirally symmetric phase) as well as T/σ0 = 0.082 (homogeneously broken
phase). (bottom) µ/σ0 ∈ {0.5, 0.7, 1.0} and T/σ0 = 0.082 (inhomogeneous
phase).
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Fig. 4: kmax/σ0 as a function of µ/σ0 and T/σ0 for Nf = 8.
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(0.0, 0.038) (homogeneously broken phase, left plot) and (µ/σ0, T/σ0) ∈
{(0.5, 0.038), (0.7, 0.038)} (inhomogeneous phase, center and right plot).
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