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We combine lattice QCD results for the potential of two static antiquarks in the presence of two
quarks qq of finite mass and quark model techniques to study possibly existing qqb̄b̄ tetraquarks.
While there is strong indication for a bound four-quark state for qq = (ud − du)/

√
2, i.e. isospin

I = 0, we find clear evidence against the existence of corresponding tetraquarks with qq ∈ {uu, (ud+
du)/
√

2, dd}, i.e. isospin I = 1, qq = ss and qq = cc.

PACS numbers: 12.38.Gc, 13.75.Lb, 14.40.Rt, 14.65.Fy.

I. INTRODUCTION

Exotic hadrons have been proposed many years ago.
As soon as quarks were found in the sixties, it became
clear that systems more complex than standard mesons
(qq̄ states) and baryons (qqq states) could possibly exist.
However, exotic hadrons are very elusive systems. Con-
firming their existence or non-existence still remains one
of the main challenges of particle physics.

Frequently discussed exotic hadrons are tetraquarks
[1, 2], which are four-quark bound states composed of two
quarks and two antiquarks. There are several hadronic
resonances which are tetraquark candidates. Among
them are the light scalar mesons σ, κ, f0(980) and
a0(980) as well as the heavier mesons D∗s0 and Ds1. How-
ever, these systems have quantum numbers also consis-
tent with a standard qq̄ structure and their masses are
not too different from what is expected in a qq̄ picture.
Thus, it is hard to rigorously argue that they are in-
deed predominantly tetraquarks. On the other hand,
there are also candidates which have quantum numbers
or masses typical for tetraquarks, but not for standard qq̄
mesons. For example π−+1 has exotic quantum numbers
JPC = 1−+ or Z±c and Z±b masses and decay products
strongly suggest hidden cc̄ or bb̄ pairs, while their electri-
cal charge ±1 indicates isospin I = 1. While the evidence
for π−+1 is not conclusive and the Z±b claimed by the
BELLE collaboration [3] remains to be confirmed by dif-
ferent experimental collaborations, the Z±c has received
a series of experimental observations by the BELLE col-
laboration [4, 5], the Cleo-C collaboration [6], the BESIII
collaboration [7–11] and the LHCb collaboration [12].
Nevertheless, the Z±c would profit by more comprehen-
sive measurements of its decay channels. We expect the
existing and future experimental collaborations to con-
tinue the study of present tetraquark candidates and to
possibly also discover further ones.

The theoretical study of tetraquarks is crucial to con-
firm and correctly interpret corresponding experimen-

tal observations and could as well provide information
in which channels tetraquarks may be found. How-
ever, tetraquark studies face a number of difficulties, e.g.
(1) tetraquarks are usually open to meson-meson decay,
(2) tetraquarks are complex relativistic four-body sys-
tems, (3) quark models still fail to reproduce sectors of
standard hadronic spectra and, thus, are not yet suffi-
ciently well calibrated to reliably predict tetraquarks.

In this work, we study the existence/non-existence of
tetraquarks with two heavy bottom antiquarks b̄b̄. To
this end, we use potentials of two static antiquarks in the
presence of two quarks qq of finite mass, which we com-
pute using lattice QCD. We extend recent studies of qqb̄b̄
tetraquarks [13, 14], where qq ∈ {(ud−du)/

√
2 , uu, (ud+

du)/
√

2, dd}, to similar systems with heavier quarks,
qq = ss and qq = cc. In the future, we also plan to
extend our investigations to the bb̄ tetraquarks claimed
by the BELLE Collaboration [3]. Such tetraquarks with
a bb̄ pair are, however, rather difficult to study with lat-
tice QCD, since they couple to several decay channels.

We avoid some of the technical difficulties of study-
ing tetraquarks following a strategy already identified in
the eighties [15]. We search for bound states rather than
for resonances, to avoid open decay channels. Moreover,
by using b̄b̄ potentials obtained by lattice QCD com-
putations, we largely avoid the calibration problem of
quark models. Very heavy antiquarks such as b̄ allow for
the Born-Oppenheimer approximation [16]. For the two
lighter quarks qq, the heavy antiquarks b̄b̄ can be approx-
imated as static color charges, which allows to determine
the light quark energy using lattice QCD. On the other
hand, once the energy of the light quarks qq is deter-
mined, it can be utilized as an effective potential for the
heavy antiquarks b̄b̄.

Our lattice QCD computation goes beyond computa-
tions with four static quarks, which show a clear evi-
dence for four-body tetraquark potentials [17, 18] and
tetraquark flux tubes [19, 20]. On the other hand, lattice
QCD computations with four quarks of finite mass are
extremely difficult and have found neither evidence for
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charmed tetraquark bound states with ūd̄cc flavor [21]
nor for resonances in the Zc family [22].

This paper is organized as follows. In section II, we
briefly review the quark model and discuss qualitative
expectations regarding qqb̄b̄ four-quark systems. In sec-
tion III, we discuss the lattice QCD computation of b̄b̄
potentials in the presence of two lighter quarks qq and
provide parameterizations of these results by continu-
ous functions. In section IV, we use these parameteri-
zations in model calculations and check for the existence
of bound states, which would indicate the existence of
tetraquarks. We conclude in section V.

II. MODELING THE b̄b̄ INTERACTION IN THE
PRESENCE OF TWO LIGHT QUARKS qq

In the following, we discuss quark model expectations
regarding the qualitative behavior of a qqb̄b̄ four-quark
systems, where q denotes either a light u, d, s or c quark
[49]. In particular, we are interested in the b̄b̄ interaction
in the presence of two light quarks qq. The qualitative
expectations are confirmed by corresponding lattice QCD
results, which are discussed in section III. The main pur-
pose of these model considerations is to motivate a suit-
able fit function for the lattice QCD b̄b̄ potential results,
which is used in section IV in the Schrödinger equation to
check whether and in which channels bound four-quark
states, i.e. tetraquarks, exist.

A. The quark-antiquark / quark-quark potential at
small separations

In the original quark model [23], the quark-
antiquark and the quark-quark (or equivalently anti-
quark-antiquark) potentials at small separations r =
|ri − rj | are dominated by one-gluon exchange similar
to the Fermi-Breit interaction,

Vij(ri, si, rj , sj) = −Cαs
4(

1

r
− π

2
δ3(r)

(
1

mi
2

+
1

mj
2

+
16si · sj
3mimj

)
+ . . .

)
(1)

(i, j are the (anti)quark indices, ri, si and mi denote
their positions, spins and masses, respectively). Since
we are exclusively interested in ground states, we have
specialized eq. (1) to angular momentum l = 0. The
quark model has been improved (cf. e.g. [24, 25]), but
maintains its main ingredients. C depends on the color
orientation of the (anti)quarks, which can be specified by
a 3× 3 matrix Λ. For a quark-antiquark pair q̄iΛqj

C = +
∑
a

Tr
(
λaΛλaΛ†

)
, (2)

while for a quark-quark pair qi
TΛqj

C = −
∑
a

Tr
(
λaΛλaTΛ†

)
(3)

with the Gell-Mann matrices λa, a = 1, . . . , 8. For exam-
ple, ΛAB = δAB/

√
3 describes the qq̄ color singlet, while

ΛAB = εAB3/
√

2 is one of three independent possibilities
to realize a qq color triplet. In Table I, the resulting val-
ues for C for the qq̄ singlet and octet and the qq triplet
and sextet color orientations are listed.

color qq̄ singlet qq̄ octet qq triplet qq sextet

orientation 1 8 3̄ (and 3) 6̄ (and 6)

C +16/3 −2/3 +8/3 −4/3

(attractive) (repulsive) (attractive) (repulsive)

Table I: The color factors C for the qq̄ singlet and octet and
the qq triplet and sextet color orientations.

Lattice QCD confirms that the static color singlet po-
tential at small separations r can be described reason-
ably well by one-gluon-exchange (cf. e.g. [26, 27], where
a matching of lattice QCD and perturbative results is
done). At larger separations, it becomes linear with cer-
tain 1/r-corrections due to string vibrations [28]. One
can crudely estimate αs appearing in (1) by consider-
ing the color singlet qq̄. In that case C = +16/3, while
string vibrations lead to Vij ≈ −π/12r at intermediate
separations, resulting in αs ≈ π/16. While this estimate
is most appropriate for static quarks, αs is expected to
be somewhat larger for quarks of finite mass [24, 25].

The only spin dependent term in (1) is the hyperfine
interaction proportional to si · sj , which is pathological
in the original quark model due to the Dirac delta (cf.
eq. (1)). In the relativistic quark model, however, this
interaction is smoother and, hence, well behaved [24, 25].
Clearly, the interaction is weaker for a spin triplet than
for a spin singlet.

To summarize, whether the potential between a quark
and another quark or antiquark is attractive or repulsive
depends on their color orientation. For small separations
it is approximately Coulomb-like with the color factors
C collected in Table I. The hyperfine term enhances the
interaction for a spin singlet and decreases it for a spin
triplet.

B. Qualitative discussion of the qqb̄b̄ system

For the particular case of the qqb̄b̄ system, where the b̄b̄
pair is significantly heavier than the light qq pair, we uti-
lize the Born-Oppenheimer approximation [16]: for the
light quarks, the heavy antiquarks can be regarded as
static color charges; once the energy of the light quarks
is determined, it can be used as an effective potential for
the heavy antiquarks. We assume that at small b̄b̄ sep-
arations r, the b̄ quarks interact according to the quark
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model discussed in section II A, while at larger separa-
tions their interaction is screened by the light quarks, i.e.

the four quarks form two rather weakly interacting B
(∗)
(s,c)

mesons (B
(∗)
(s,c) denotes either a B, B∗, Bs, B

∗
s , Bc or B∗c

meson).

Expectations for the b̄b̄ interaction at small separations r
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Figure 1: (Color online) At small b̄b̄ separations r, the heavy
antiquarks b̄b̄ form an antidiquark, which corresponds to a
color triplet. There is essentially no screening of the b̄b̄ inter-
action due to the much farther separated light quarks qq.

• The spin interaction of the b̄ quarks is quite small
and can possibly be neglected, since it is propor-
tional to 1/mb

2 (cf. eq. (1)).

• In case of a bound qqb̄b̄ state, i.e. a tetraquark, the
antiquarks b̄b̄ are expected to be in a color triplet
3, which is attractive, and not in a color sextet 6,
which is repulsive (cf. also Table I). In other words,
at small separations r, the antiquarks b̄b̄ form an
antidiquark as depicted in Figure 1.

• Because the complete four quark system qqb̄b̄ nec-
essarily forms a color singlet, the light quarks qq
must be in a color antitriplet 3̄.

• Since this color antitriplet is antisymmetric, and
since the light quarks qq are assumed to be in a spa-
tially symmetric s-wave, the Pauli principle implies
a symmetric spin-flavor structure. This can either
be a spin singlet with an antisymmetric flavor com-
bination or a spin triplet with a symmetric flavor
combination. Indeed, when studying light u and d
quarks in the presence of two static antiquarks us-
ing lattice QCD, two attractive channels have been
found [13, 29, 30]. As expected, these are a (spin)
scalar isosinglet (j = 0, I = 0, where j denotes

the spin of the light quarks qq) and a (spin) vec-
tor isotriplet (j = 1, I = 1). The scalar isosinglet
is more attractive, as expected from the hyperfine
interaction in eq. (1), i.e. the lattice QCD results
confirm the qualitative quark model expectations.

• When studying two identical light quarks qq = ss
or qq = cc, which are symmetric in flavor, the only
attractive channel is a spin triplet. However, it is
conceptually interesting to consider two hypothet-
ical degenerate flavors with the mass of strange or
charm quarks and then also investigate spin singlets
with flavor structure qq = (s(1)s(2) − s(2)s(1))/

√
2

and qq = (c(1)c(2) − c(2)c(1))/
√

2.

Expectations for the b̄b̄ interaction at large separations r

• At large separations r, screening of the b̄b̄ interac-
tion is expected due to the light quarks qq, as illus-
trated in Figure 2. When the b̄b̄ separation is larger

than around two times the radius of a B
(∗)
(s,c) meson,

there is essentially no overlap between the wave
functions of the light quarks and, consequently, the
b̄b̄ interaction practically vanishes.

• The more massive the light quarks are, the more

compact their wave functions in the B
(∗)
(s,c) mesons,

as shown in Figure 2(a), (b) and (c) and, thus, the
stronger the screening. In other words, the corre-
sponding b̄b̄ potential becomes more and more nar-
row and will at some point not anymore be able to
host a bound state. Consequently, for a sufficiently
heavy pair of light quarks qq the screening should
prevent the formation of qqb̄b̄ tetraquarks.

Quantum numbers of possibly existing qqb̄b̄ tetraquarks

We study exclusively states which correspond for large

b̄b̄ separations to pairs of B
(∗)
(s,c) mesons in a spatially

symmetric s-wave. Therefore, the parity of these states
is positive, i.e. P = + (the product of the parity quantum
numbers of the two mesons, which are both negative).

As argued above, the two antiquarks b̄b̄ are expected
to be in an antisymmetric color triplet. Since their flavor
is symmetric, their spin jb must also be symmetric due to
the Pauli principle, i.e. jb = 1. Similarly, for an antisym-
metric qq flavor combination, i.e. qq = (ud − du)/

√
2,

j = 0, while for symmetric flavor combinations, i.e.
qq ∈ {uu, (ud + du)/

√
2, dd , ss , cc}, j = 1. The total

spin J of the qqb̄b̄ system is the combination of j and jb.
Altogether, the possibly existing qqb̄b̄ tetraquarks we

are going to investigate have the following quantum num-
bers:

• qq = (ud− du)/
√

2:
I(JP ) = 0(1+).
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Figure 2: (Color online). At large b̄b̄ separations r, the qqb̄b̄

system is essentially a system of two B
(∗)
(s,c) mesons. The

color charge of each of the antiquarks b̄ is almost completely
screened by one of the light quarks q. (a) q ∈ {u, d}. (b) q = s.
(c) q = c.

• qq ∈ {uu, (ud+ du)/
√

2, dd}:
I(JP ) ∈ {1(0+), 1(1+), 1(2+)}.

• qq ∈ {ss, cc}:
I(JP ) ∈ {0(0+), 0(1+), 0(2+)}.

C. Fit function for lattice QCD b̄b̄ potential results

Using lattice QCD, one can compute b̄b̄ potentials in
the static limit (i.e. for mb →∞) from first principles, i.e.

from the QCD Lagrangian (cf. [29, 30] and section III). Of
course, these potentials can be obtained only for a limited
number of discrete separations r. Therefore, a suitable
fit function is required, to interpolate between the lat-
tice QCD results and also to extrapolate beyond them.
This fit function is based on the qualitative expectations
discussed above and will be used in the Schrödinger equa-
tion in section IV, where we determine whether and in
which channels bound four-quark states exist.

For two heavy antiquarks b̄b̄ inside a cloud of two
light quarks qq, i.e. at small b̄b̄ separations, we expect a
Coulomb-like potential of order −2αs/3r ≈ −π/24r cor-
responding to a color triplet. At larger separations r, the
potential will be screened by the light quarks qq. This is
due to the decrease of the wave function ψ of each of the
light quarks with respect to their separations from the
heavy antiquarks. One expects this decrease to follow an
exponential of a power of r, i.e. ψ ∝ exp(−(r/d)p), where
d roughly describes the size of each of the b̄q systems, i.e.

the size of a B
(∗)
(s,c) meson <∼ 0.5 fm. The parameter p

characterizes the radial profile of the light quark wave

function inside the B
(∗)
(s,c) meson. Assuming the qb̄ inter-

action inside the B
(∗)
(s,c) meson is dominated by a linear

confining potential, one can estimate the parameter p. In
the case, where the quark q is rather heavy, e.g. q = c,
the corresponding non-relativistic Schrödinger equation
is solved by Airy functions, resulting in p = 3/2. A sim-
ilar but relativistic treatment for a lighter quark yields
p = 2 instead.

These considerations suggest the following fit function
for lattice QCD b̄b̄ potential results:

V (r) = −α
r

exp
(
−
( r
d

)p)
+ V0, (4)

where it is expected that α ≈ 2αs/3 ≈ π/24 ≈ 0.13,
d<∼ 0.5 fm and p ≈ 1.5 . . . 2.0. The constant V0 is nec-
essary to account for twice the mass of the static-light
meson. As will be demonstrated in the following section,
this fit function is consistent with lattice QCD results
and the crude quantitative expectations for α, d and p
are fulfilled.

III. LATTICE QCD COMPUTATION OF THE b̄b̄
INTERACTION IN THE PRESENCE OF TWO

LIGHT QUARKS qq

To determine the effective b̄b̄ potential quantitatively,
we use lattice QCD and consider the limit of infinitely
heavy b̄ quarks, i.e. the static limit. The first lattice
computations of such potentials have been performed in
the quenched approximation (cf. e.g. [31–35]). Recently,
also computations with dynamical sea quarks have been
performed [13, 14, 29, 30, 36, 37]. In this work, we ex-
tend our previous computations for light quark combi-
nations qq ∈ {(ud − du)/

√
2 , uu, (ud + du)/

√
2, dd}

[29, 30] by similar computations with strange and charm
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quarks, i.e. qq ∈ {(s(1)s(2)−s(2)s(1))/
√

2 , ss , (c(1)c(2)−
c(2)c(1))/

√
2 , cc}.

A. Lattice QCD setup

We have performed computations using two ensembles
of gauge link configurations generated by the European
Twisted Mass Collaboration (ETMC) with 2 dynamical
quark flavors. The quark action is Wilson twisted mass
tuned to maximal twist, while the gluon action is tree-
level Symanzik improved. Most importantly, this guar-
antees automatic O(a) improvement of spectral quanti-
ties, i.e. discretization errors in the resulting b̄b̄ potentials
appear only quadratically in the lattice spacing a. Infor-
mation about these ensembles is collected in Table II.
Further details, in particular regarding their generation,
can be found in [38, 39].

β size µl a in fm mπ in MeV configurations

3.90 243 × 48 0.0040 0.079 340 480

4.35 323 × 64 0.00175 0.042 352 100

Table II: Ensembles of gauge link configurations used for the
computation of b̄b̄ potentials (β: inverse gauge coupling; size:
number of lattice sites; µl: bare u/d quark mass in lattice
units; a: lattice spacing; mπ: pion mass; configurations: num-
ber of gauge link configurations used).

For b̄b̄ potentials in the presence of two light quarks qq
with q ∈ {u, d}, we reuse our lattice QCD results from
[29, 30], which were obtained using the ensemble with the
coarser lattice spacing a ≈ 0.079 fm. For q ∈ {s, c}, the b̄b̄
interaction is screened at significantly smaller b̄b̄ separa-
tions (cf. the discussion in section II B and Figure 2). To
be able to resolve the corresponding potentials properly,
we decided to use for flavor combinations qq ∈ {(s(1)s(2)−
s(2)s(1))/

√
2 , ss , (c(1)c(2) − c(2)c(1))/

√
2 , cc} another

ensemble with a finer lattice spacing a ≈ 0.042 fm. Al-
though the physical extent of the lattice for this ensemble
is much smaller than for the other one, this should not
introduce significant finite volume effects at the rather
small separations we are interested in.

Note that for both ensembles, the u/d quarks are un-
physically heavy, corresponding to a pion mass mπ ≈
340 MeV. Moreover, there are no s and c sea quarks,
i.e. our lattice QCD results are obtained in a partially
quenched approximation. For the computation of b̄b̄ po-
tentials in the presence of light s and c quarks, we also
use a much smaller number of gauge link configurations.
The reason is that the propagators of the heavier s and
c quarks introduce less statistical noise than those for
lighter u/d quarks.

B. Lattice QCD computation of b̄b̄ potentials

We determine b̄b̄ potentials in the presence of two light
quarks qq from the exponential decay of temporal corre-
lation functions,

C(t, |r1 − r2|) = 〈Ω| O†(t)O(0) |Ω〉 (5)

of four-quark creation operators

O(t) = (CΓ)AB(CΓ̃)CD(
Q̄C(r1)q

(1)
A (r1)

)(
Q̄D(r2)q

(2)
B (r2)

)
(6)

at sufficiently large tmin ≤ t ≤ tmax. Here Q̄ denotes a
static antiquark operator approximating a b̄ quark, q is a
light quark operator, A,B,C,D are spin indices, (1), (2)
are flavor indices and C = γ0γ2 is the charge conjugation
matrix. For the static antiquarks, the only relevant vari-
able is their separation. Their spin components can be
combined with Γ̃ ∈ {(1 − γ0)γ5, (1 − γ0)γj}, j = 1, 2, 3,
where the resulting b̄b̄ potential does not depend on which
Γ̃ matrix is chosen. The spin components of the two light
quarks can be coupled in 16 independent ways via Γ,
which should be an appropriately chosen combination of
γ matrices to realize definite quantum numbers |jz| (an-
gular momentum with respect to the axis of separation),
P (parity) and Px (behavior under reflections across an
axis perpendicular to the axis of separation). For a more
detailed discussion of symmetries and quantum numbers,
cf. [29].

Note that the creation operators (6), when applied to
the vacuum |Ω〉, do not only generate definite quantum
numbers (|jz|, P, Px), but also a structure resembling two

B
(∗)
(s,c) mesons separated by r = |r1 − r2|. Such operators

should be well suited to excite the ground state of the
corresponding (|jz|, P, Px) sector, in particular for large
Q̄Q̄ separations r, where one expects two weakly inter-

acting B
(∗)
(s,c) mesons (cf. the discussion in section II B).

Note, however, that the arrangement of the four quarks
qqQ̄Q̄ in the ground state is decided by QCD dynamics,
i.e. automatically realized in the lattice result accord-
ing to QCD and not by the structure of the employed
creation operators. For example, in recent lattice QCD
work on tetraquark candidates, it has been demonstrated
that operators similar to (6) generate significant overlap
to a variety of different four-quark structures, including
mesonic molecules, diquark-antidiquark pairs and two es-
sentially non-interacting mesons [40, 41].

In previous computations [13, 29, 30], we have consid-
ered light quarks q ∈ {u, d} (due to technical reasons,
the quark mass mu,d was chosen unphysically heavy cor-
responding to a pion mass mπ ≈ 340 MeV; cf. also the
first line in Table II). We studied the scalar isosinglet with

antisymmetric spin j = 0 and flavor qq = (ud − du)/
√

2
(in the following denoted as the scalar u/d channel), as
well as the vector isotriplet with symmetric spin j = 1
and flavor qq ∈ {uu, (ud+ du)/

√
2, dd} (in the following
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denoted as the vector u/d channel), which are the two
attractive channels between ground state mesons (B and
B∗). Note that the scalar u/d channel was found to be
more attractive than the vector u/d channel, as expected
from quark model considerations (cf. eq. (1) and the dis-
cussion in section II B).

In this work, we extend these computations to heavier
pairs of light quarks qq = ss and qq = cc. For these sym-
metric flavor combinations, the only attractive channel

for two ground state mesons (B
(∗)
s,c ) is the vector chan-

nel, i.e. with light quark spin j = 1. It corresponds to
Γ = (1 + γ0)γj , j = 1, 2, 3, in the creation operator (6).

To be able to study also the scalar channel, i.e. j = 0,
with strange and charm quarks, we consider two hypo-
thetical degenerate flavors with the mass of the strange
or the charm quark, which allow to form antisymmet-
ric flavor combinations qq = (s(1)s(2) − s(2)s(1))/

√
2

and qq = (c(1)c(2) − c(2)c(1))/
√

2. It corresponds to
Γ = (1 + γ0)γ5 in the creation operator (6).

For further details regarding the lattice QCD compu-
tation of b̄b̄ potentials, we refer to [29, 30]. Examples

for qq = (ud − du)/
√

2 (scalar u/d channel) and for

qq ∈ {uu, (ud + du)/
√

2, dd} (vector u/d channel) are
shown in [13], Figure 1.

C. Fitting eq. (4) to lattice QCD b̄b̄ potential
results

To describe the lattice QCD b̄b̄ potential results V lat(r)
by continuous functions, we perform uncorrelated χ2

minimizing fits of eq. (4), i.e. we minimize

χ2 =
∑

r=rmin,...,rmax

(
V (r)− V lat(r)

∆V lat(r)

)2

(7)

with respect to the parameters α, d and V0, while keeping
p = 2 fixed (cf. the discussion in section II C) [50]. ∆V lat

denote the corresponding statistical errors.
We perform these fits for the scalar u/d, the vector u/d,

the scalar s, the vector s and the scalar c channel. The
lattice QCD b̄b̄ potential of the remaining vector c chan-
nel is, however, strongly screened and consistent with
V lat(r) = 0 for r > 2a. Such results are not sufficient to
perform a stable fit.

To investigate and quantify systematic errors, we do
not only perform a single fit for each of the mentioned
five channels, but a large number of fits, where we vary
the following parameters:

• The range of temporal separations tmin ≤ t ≤ tmax

of the correlation function C(t, r) (eq. (5)) at which
V lat(r) is read off, according to:

– tmax − tmin ≥ a;

– for u/d channels:
4a ≤ tmin, tmax ≤ 9a;

– for s and c channels:
10a ≤ tmin ≤ 14a, tmax ≤ 19a

(small tmin might lead to a contamination by ex-
cited states; large tmin and tmax drastically increase
statistical errors).

• The range of spatial b̄b̄ separations rmin ≤ r ≤ rmax

considered in the χ2 minimizing fit (7), according
to:

– for the vector u/d channel:
rmin = 2a [51];

– for all other channels:
rmin ∈ {2a, 3a};

– for u/d channels:
rmax ∈ {8a, 9a, 10a};

– for s and c channels:
rmax ∈ {7a, 8a}

(V lat(r) at small r < 2a are expected to suffer from
sizable lattice discretization errors, while V lat(r) at
large r is essentially a constant, i.e. has little effect
on the relevant fit parameters α and d).

For each of the fitting parameters α, d and V0, we con-
struct a distribution by considering the results of all the
above listed fits weighted by exp(−χ2/dof) with χ2 from
eq. (7). The central values of α, d and V0 are then de-
fined as the medians of the corresponding distributions
and the lower/upper systematic uncertainties are given
by the difference of the 16th/84th percentiles to the me-
dians (in the case of a Gaussian distribution, an uncer-
tainty defined in this way would correspond to its width,
i.e. 1σ). Since in general the distributions are asymmet-
ric, the systematic uncertainties are asymmetric as well.
For more details regarding this method of estimating sys-
tematic errors we refer to [42].

Finally, to include statistical errors, we compute the
jackknife errors of the medians of α, d and V0 and add
them in quadrature to the corresponding systematic un-
certainties.

To illustrate this error estimation procedure, we show
in Figure 3 example histograms representing the distri-
bution of α and d for the scalar u/d channel. The green,
red and blue bars correspond to the systematic, statisti-
cal and combined errors, respectively. In the following,
we will always use and quote the combined errors repre-
sented by the blue bars.

The final results for α and d are collected in Table III.
Note that within errors they agree with the model con-
siderations and crude quantitative expectations discussed
in section II. We do not list results for V0, since it is an
irrelevant constant corresponding to twice the mass of a
static-light meson. The fit function (4) with the parame-
ter sets from Table III and the corresponding error bands
are shown in Figure 4. Clearly, these results confirm the
qualitative expectations discussed in section II B:
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Figure 3: (Color online). Histograms used to estimate sys-
tematic errors for α and d for the scalar u/d channel (green,
red and blue bars represent systematic, statistical and com-
bined errors, respectively).

(1) The screening of the b̄b̄ interaction is stronger for
heavier light quarks qq.

(2) The scalar channels are more attractive than the
corresponding vector channels.

qq spin α d in fm

(ud− du)/
√

2 scalar 0.35+0.04
−0.04 0.42+0.08

−0.08

uu, (ud+ du)/
√

2, dd vector 0.29+0.04
−0.06 0.16+0.02

−0.01

(s(1)s(2) − s(2)s(1))/
√

2 scalar 0.27+0.08
−0.05 0.20+0.10

−0.10

ss vector 0.18+0.09
−0.02 0.18+0.11

−0.05

(c(1)c(2) − c(2)c(1))/
√

2 scalar 0.19+0.12
−0.07 0.12+0.03

−0.02

Table III: Parameters α and d obtained from χ2 minimizing
fits of (4) to lattice QCD b̄b̄ potential results.

IV. DEPENDENCE OF THE EXISTENCE OF
qqb̄b̄ TETRAQUARK STATES ON THE LIGHT

QUARK MASS

In [13], we have found evidence for a bound state in
the scalar u/d channel, i.e. the existence of a qqb̄b̄ =
udb̄b̄ tetraquark. For heavier quarks qq, the effective b̄b̄
potentials are less attractive. This has qualitatively been

anticipated in section II and quantified in section III (in
particular cf. the resulting values for α and d in Table III
and the plots in Figure 4). Thus, for a sufficiently heavy
pair of light quarks qq we expect that the qqb̄b̄ system
will not anymore be able to form a bound state. In the
following, we investigate whether this is already the case
for strange and/or charm quark masses. We also study
the vector channels.

A. The b̄b̄ Hamiltonian

We define U(r) = V (r)|V0=0,p=2 with V (r) from of eq.
(4). U(r) with a set of fit parameters α and d from Ta-
ble III corresponds to the ground state energy of a qqb̄b̄
4-quark system in a specific channel minus the energy of

a pair of far separated B
(∗)
(s,c) mesons. Thus, the corre-

sponding Hamiltonian for the relative coordinate of the
b̄b̄ quarks is

H =
p2

2µ
+ 2mH + U(r), (8)

where µ = mH/2 is the reduced mass. At large sep-

arations, each b̄ quark carries the mass of a B
(∗)
(s,c) me-

son because of screening, and thus mH = m
B

(∗)
(s,c)

. At

small separations, mH = mb could be more appropriate.
Throughout this section, we always consider two choices,
mH = mB(s,c)

and mH = mb, which yield qualitatively
identical results. Note that any dependence on the heavy
b̄ spins is neglected, because V (r) has been computed in
the static limit mb → ∞. Since the b̄ quarks are quite
heavy, we expect the static limit to be a reasonable ap-
proximation.

In classical mechanics, the b̄b̄ separation r would vanish
for the ground state, but after quantizing the system, a
bound 4-quark state (E < 2mH) may not exist anymore.

B. An analytical estimate for qqb̄b̄ binding

In [13], we have derived an approximate analytical rule
for the existence/non-existence of a bound qqb̄b̄ state us-
ing the Bohr-Sommerfeld quantization condition. If

µαd ≥ 9π2

128× 21/p(Γ(1 + 1/2p))2
(9)

is fulfilled, there should be at least one bound state. The
right hand side of this rule has a rather moderate depen-
dence on the exponent p. For example, when p increases
from the expected values of 1.5 to 2.0 (cf. section II C),
the right hand side only changes from 0.55 to 0.60. Thus,
the existence of a bound state mainly depends on the
product of parameters µαd.

With the medians for the parameters α and d (cf. Ta-
ble III), we determine the left hand side of eq. (9). For
the reduced mass, we use both mH = mB(s,c)

(mB =
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Figure 4: (Color online). b̄b̄ potentials in the presence of two lighter quarks qq (qq flavor: up/down in green, strange in blue,
charm in red; qq spin: j = 0, i.e. scalar, in the upper line, j = 1, i.e. vector, in the lower line). The plotted curves with the error
bands correspond to eq. (4) with the parameter sets from Table III. Vertical lines indicate lattice separations r = 2a, 3a, . . . of
lattice QCD potential results V lat(r) used to generate the parameter sets from Table III via χ2 minimizing fits.

5279 MeV, mBs = 5367 MeV, mBc = 6276 MeV [43]),
which is certainly a good choice for large b̄b̄ separations,
and µ = mb/2 (mb = 4977 MeV, from quark models [24]),
which might be more appropriate for small b̄b̄ separations
(cf. the discussion in section IV A). The results for µαd
for the u/d, s and scalar c and vector channels are col-
lected in Table IV. For the scalar u/d channel, there is
strong indication for the existence of a tetraquark (i.e.
µαd� 0.60), which confirms our findings from [13]. For
the vector s channel and for charm quarks, bound qqb̄b̄
states are not expected (i.e. µαd� 0.60). For the vector
u/d and the scalar s channel the situation is less clear. A
more rigorous and quantitative analysis is needed, which
is part of the following section.

C. Numerical solution of the Schrödinger equation

To investigate the existence of a bound state more
rigorously, we solve the Schrödinger equation with the
Hamiltonian (8) numerically. The strongest binding is

µαd

qq spin mH = mB(s,c)
mH = mb

(ud− du)/
√

2 scalar 1.97 1.86

uu, (ud+ du)/
√

2, dd vector 0.60 0.57

(s(1)s(2) − s(2)s(1))/
√

2 scalar 0.74 0.69

ss vector 0.44 0.41

(c(1)c(2) − c(2)c(1))/
√

2 scalar 0.34 0.27

Table IV: Values for µαd, which represent the left hand side
of eq. (9). Values > 0.60 (right hand side of eq. (9) for p = 2)
point towards the existence of a bound qqb̄b̄ state, while values
< 0.60 are an indication against the existence of such a state.

expected in an s-wave, for which the radial equation is(
− 1

2µ

d2

dr2
+ U(r)

)
R(r) =

(
E − 2mH

)
︸ ︷︷ ︸

=EB

R(r) (10)

with the wave function ψ = ψ(r) = R(r)/r. If EB = E−
2mH < 0, −EB can be interpreted as the binding energy.
We proceed as explained in [13] and solve this equation by
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imposing Dirichlet boundary conditions R(r = ∞) = 0
and using 4th order Runge-Kutta shooting.

For the scalar u/d channel, the lowest eigenvalue EB <
0, which implies the existence of a bound four-quark
state. For all other channels, i.e. the vector u/d and
the s and c channels, EB > 0, i.e. the corresponding qqb̄b̄
tetraquarks will most likely not exist in these channels
[52]. These findings confirm the analytical estimates ob-
tained in the previous subsection (eq. (9) and Table IV).

The central value and the combined systematic and
statistical error for the binding energy EB of the
tetraquark state in the scalar u/d channel is obtained
by the method discussed in section III C (generating a
distribution for EB from the fits listed in section III C):

EB = −90+46
−42 MeV (for mH = mB), (11)

EB = −93+47
−43 MeV (for mH = mb). (12)

These binding energies are roughly twice as large as
their combined systematic and statistical errors. In
other words, the confidence level for this udb̄b̄ tetraquark
state is around 2σ. The corresponding histogram for
mH = mB is shown in Figure 5.

Figure 5: (Color online). Histogram used to estimate the
systematic error for the binding energy EB for the scalar u/d
channel and mH = mB (green, red and blue bars represent
systematic, statistical and combined errors, respectively).

To crudely quantify also the non-existence of bound
four-quark states in the remaining channels, we deter-
mine numerically by which factors the heavy masses mH

in the Schrödinger equation (10) have to be increased to
obtain bound states, i.e. tiny but negative energies EB
(the potentials U(r) are kept unchanged, i.e. we stick to
the medians for α and d from Table III). The resulting
factors are collected in Table V. While the scalar s chan-
nel is quite close to be able to host a bound state, the
scalar c channel and the vector channels are rather far
away, since they would require b̄ quarks approximately
1.6 . . . 3.3 times as heavy as they are in nature. Note
that the factors listed in Table V could also be rele-
vant for quark models aiming at studying the binding
of tetraquarks quantitatively.

In Figure 6, we present our results in an alterna-
tive graphical way. Binding energy isolines EB(α, d) =

qq spin mH = mB(s,c)
mH = mb

(ud− du)/
√

2 scalar 0.46 0.49

uu, (ud+ du)/
√

2, dd vector 1.49 1.57

(s(1)s(2) − s(2)s(1))/
√

2 scalar 1.20 1.29

ss vector 2.01 2.18

(c(1)c(2) − c(2)c(1))/
√

2 scalar 2.57 3.24

Table V: Factors by which the mass mH has to be multiplied
to obtain a tiny but negative energy EB . Factors� 1 indicate
strongly bound states, while for values � 1 bound states are
essentially excluded.

constant are plotted in the α-d-plane starting at a tiny
energy EB = −0.1 MeV up to rather strong binding,
EB = −100 MeV (gray dashed lines have been computed
with mH = mB(s,c)

, gray solid lines with mH = mb).

The three plots correspond to u/d, s and c light quarks
qq, respectively. Each fit of eq. (4) to lattice QCD b̄b̄
potential results (cf. the detailed discussion about sys-
tematic error estimation for α and d in section III C) is
represented by a dot (red: scalar channels; green: vector
channels; crosses: rmin = 2a; boxes: rmin = 3a). The
extensions of these point clouds represent the systematic
uncertainties with respect to α and d. If a point cloud is
localized above or left of the isoline with EB = −0.1 MeV
(approximately the binding threshold), the correspond-
ing four quarks qqb̄b̄ will not form a bound state. A
localization below or right of that isoline is a strong in-
dication for the existence of a tetraquark. In case the
point cloud is intersected by that isoline, the estimated
systematic error is too large to make a definite statement
regarding the existence or non-existence of a bound four-
quark state. The big red and green bars in horizontal and
vertical direction represent the combined systematic and
statistical errors of α and d, as quoted in Table III. One
can observe and conclude the following from Figure 6:

• There is clear evidence for a tetraquark state in the
scalar u/d channel.

• The scalar s channel is close to binding/unbinding.
A definite statement with our currently available
lattice QCD data is not possible.

• the scalar c and all vector channels do not host a
bound four-quark state.

These findings are consistent with the results presented
above in Table IV and Table V.

V. CONCLUSIONS AND OUTLOOK

In a previous publication [13], we have found indication
for the existence of a qqb̄b̄ tetraquark with qq = (ud −
du)/
√

2 (i.e. in the scalar u/d channel). In this work,
we have extended these studies by considering for qq not
only u/d, but also heavier s and c quarks. In contrast to
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Figure 6: (Color online). Binding energy isolines EB(α, d) =
constant in the α-d-plane for u/d, s and c light quarks qq,
respectively (gray dashed lines: mH = mB(s,c)

; gray solid

lines: mH = mb). The red and green dots represent the fits
of eq. (4) to lattice QCD b̄b̄ potential results, while the red
and green bars are the corresponding combined systematic
and statistical errors.

[13], we have also investigated and quantified systematic
uncertainties in detail.

Our main results are the following:

• We confirm the udb̄b̄ tetraquark state in the scalar
u/d channel predicted in our previous paper [13]
with confidence level ≈ 2σ. The overall quantum
numbers of this state are I(JP ) = 0(1+).

• There is no bound four-quark state in the vec-
tor u/d channel (I(JP ) =∈ {1(0+), 1(1+), 1(2+)}).

Note, however, that we have been using unphysi-
cally heavy u/d quarks (mπ ≈ 340 MeV). Since de-
creasing the light quark mass should enhance bind-
ing, it will be interesting to explore in the future
whether a bound four-quark state exists at physi-
cally light u/d quark mass.

• ssb̄b̄ and ccb̄b̄ tetraquarks, which correspond to the
vector s and c channels (JP ∈ {0+, 1+, 2+}), do
not exist.

• It is of conceptual interest to introduce a hypo-
thetical second s or c quark flavor. Then it is
possible to also study the scalar s and c chan-
nels, i.e. ((s(1)s(2)−s(2)s(1))/

√
2)b̄b̄ and ((c(1)c(2)−

c(2)c(1))/
√

2)b̄b̄ systems (JP = 1+). While in the
scalar c channel there is no bound four-quark state,
the situation is less clear for s quarks. Improved
lattice QCD results (less statistical errors, finer res-
olution of b̄b̄ separations) are needed before a defi-
nite statement can be made. Binding in the hypo-
thetical scalar s channel would indicate a fortiori
binding for four-quark systems ((us − su)/

√
2)b̄b̄

and ((ds − sd)/
√

2)b̄b̄. Such light-strange chan-
nels would then be highly relevant for experimental
tetraquark searches.

We consider these results to be important because they
indicate both to experimental collaborations and to
quark model phenomenologists which qqb̄b̄ tetraquarks
are expected to exist and which are not.

To supply data for future quark model studies of
tetraquarks, we also provide parameterizations of the po-
tential of two static antiquarks b̄b̄ in the presence of two
lighter quarks qq, where qq ∈ {(ud− du)/

√
2 , uu, (ud+

du)/
√

2, dd , (s(1)s(2) − s(2)s(1))/
√

2 , ss , (c(1)c(2) −
c(2)c(1))/

√
2}. Moreover, we have determined quanti-

tatively for these channels by which factor the heavy
quark or meson mass mH has to be increased to obtain
a tetraquark state.

It is also interesting to compare our findings to other
groups studying the same or similar systems using, how-
ever, different theoretical approaches. For instance in
[47], in the framework of QCD sum rules, binding for fla-
vors equivalent to udb̄b̄, usb̄b̄ and ssb̄b̄ has been found,
and no binding for doubly charmed tetraquarks. How-
ever, these bound systems have JP = 0− and JP = 1−

different from our results. Another example using the
Dyson-Schwinger framework is [48], where a tetraquark
composed of four charm quarks, i.e. ccc̄c̄, has recently
been predicted with a mass significantly lighter than
2mηc . In principle our static antiquarks can also be con-
sidered as a crude approximation of c̄c̄. Since we do not
find a bound state for qq = cc, there seems to be a qual-
itative discrepancy to our results, which would be inter-
esting to understand and to resolve.

As an outlook, it would be interesting to decrease the
light u/d quark mass to their physical value, since this
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should increase the radius of a B meson, reduce screen-
ing and, therefore, lead to a larger binding energy. As
mentioned above, a tetraquark could then also exist in
the vector u/d channel. Additionally, lighter u/d quark
masses may also allow the study of light meson exchange
interactions between the two B mesons. Because sim-
ulations and computations at lighter u/d quark masses
are computationally very expensive, we leave them for a
future publication.

Since there is a bound state for qq = (ud−du)/
√

2, and

possibly even for qq = (s(1)s(2) − s(2)s(1))/
√

2, it will be
very interesting to investigate usb̄b̄ (or equivalently dsb̄b̄)
systems. This will, however, require additional compu-
tations and also the implementation of certain modifica-
tions in our analysis procedure. We plan to study such
flavor combinations in the near future.

Another interesting, but very challenging task, is to
include corrections due to the heavy b̄b̄ spins. While in
principle it is possible to compute such corrections us-
ing lattice QCD (cf. [44, 45], where this has been pi-
oneered for the standard static quark-antiquark poten-
tial), in practice we expect this to be extremely hard for
qqb̄b̄ systems. Therefore, a more promising and realis-
tic approach seems to include such spin-dependent in-
teractions in the Schrödinger equation, which will result
in a coupled channel differential equation. We are cur-

rently in the process of exploring this approach, where
first promising qualitative results have recently been pre-
sented at a conference [46].

Once these techniques are fully developed for qqb̄b̄ sys-
tems, it will be most interesting to extend them to qq̄bb̄
systems and to study the crypto-exotic bb̄ tetraquark can-
didates observed by the BELLE collaboration [3].

Acknowledgments

P.B. thanks IFT for hospitality and CFTP, grant FCT
UID/FIS/00777/2013, for support. M.W. and A.P. ac-
knowledge support by the Emmy Noether Programme
of the DFG (German Research Foundation), grant WA
3000/1-1.

This work was supported in part by the Helmholtz
International Center for FAIR within the framework of
the LOEWE program launched by the State of Hesse.

Calculations on the LOEWE-CSC high-performance
computer of Johann Wolfgang Goethe-University Frank-
furt am Main were conducted for this research. We would
like to thank HPC-Hessen, funded by the State Ministry
of Higher Education, Research and the Arts, for program-
ming advice.

[1] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).
[2] R. L. Jaffe, Phys. Rept. 409 (2005) 1 [hep-ph/0409065].
[3] A. Bondar et al. [Belle Collaboration], Phys. Rev. Lett.

108, 122001 (2012) [arXiv:1110.2251 [hep-ex]].
[4] Z. Q. Liu et al. [Belle Collaboration], Phys. Rev. Lett.

110, 252002 (2013) [arXiv:1304.0121 [hep-ex]].
[5] K. Chilikin et al. [Belle Collaboration], Phys. Rev. D 90,

no. 11, 112009 (2014) [arXiv:1408.6457 [hep-ex]].
[6] T. Xiao, S. Dobbs, A. Tomaradze and K. K. Seth, Phys.

Lett. B 727, 366 (2013) [arXiv:1304.3036 [hep-ex]].
[7] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.

Lett. 110, 252001 (2013) [arXiv:1303.5949 [hep-ex]].
[8] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.

Lett. 112, no. 13, 132001 (2014) [arXiv:1308.2760 [hep-
ex]].

[9] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.
Lett. 111, no. 24, 242001 (2013) [arXiv:1309.1896 [hep-
ex]].

[10] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.
Lett. 112, no. 2, 022001 (2014) [arXiv:1310.1163 [hep-
ex]].

[11] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.
Lett. 113, no. 21, 212002 (2014) [arXiv:1409.6577 [hep-
ex]].

[12] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.
112, no. 22, 222002 (2014) [arXiv:1404.1903 [hep-ex]].

[13] P. Bicudo and M. Wagner, Phys. Rev. D 87, 114511
(2013) [arXiv:1209.6274 [hep-ph]].

[14] Z. S. Brown and K. Orginos, Phys. Rev. D 86, 114506
(2012) [arXiv:1210.1953 [hep-lat]].

[15] J. L. Ballot and J. M. Richard, Phys. Lett. B 123, 449

(1983).
[16] M. Born and R. Oppenheimer, Annalen der Physik 389,

457 (1927).
[17] C. Alexandrou and G. Koutsou, Phys. Rev. D 71, 014504

(2005) [hep-lat/0407005].
[18] F. Okiharu, H. Suganuma and T. T. Takahashi, Phys.

Rev. D 72, 014505 (2005) [hep-lat/0412012].
[19] N. Cardoso, M. Cardoso and P. Bicudo, Phys. Rev. D

84, 054508 (2011) [arXiv:1107.1355 [hep-lat]].
[20] M. Cardoso, N. Cardoso and P. Bicudo, Phys. Rev. D

86, 014503 (2012) [arXiv:1204.5131 [hep-lat]].
[21] A. L. Guerrieri et al., PoS LATTICE 2014, 106 (2014)

[arXiv:1411.2247 [hep-lat]].
[22] S. Prelovsek, C. B. Lang, L. Leskovec and D. Mohler,

Phys. Rev. D 91, no. 1, 014504 (2015) [arXiv:1405.7623
[hep-lat]].

[23] A. De Rujula, H. Georgi and S. L. Glashow, Phys. Rev.
D 12, 147 (1975).

[24] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[25] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[26] N. Brambilla et al., Phys. Rev. Lett. 105, 212001 (2010)

[Erratum-ibid. 108, 269903 (2012)] [arXiv:1006.2066
[hep-ph]].

[27] K. Jansen et al. [ETM Collaboration], JHEP 1201, 025
(2012) [arXiv:1110.6859 [hep-ph]].

[28] M. Luscher and P. Weisz, JHEP 0207, 049 (2002) [hep-
lat/0207003].

[29] M. Wagner [ETM Collaboration], PoS LATTICE 2010,
162 (2010) [arXiv:1008.1538 [hep-lat]].

[30] M. Wagner [ETM Collaboration], Acta Phys. Polon.
Supp. 4, 747 (2011) [arXiv:1103.5147 [hep-lat]].

http://arxiv.org/abs/hep-ph/0409065
http://arxiv.org/abs/1110.2251
http://arxiv.org/abs/1304.0121
http://arxiv.org/abs/1408.6457
http://arxiv.org/abs/1304.3036
http://arxiv.org/abs/1303.5949
http://arxiv.org/abs/1308.2760
http://arxiv.org/abs/1309.1896
http://arxiv.org/abs/1310.1163
http://arxiv.org/abs/1409.6577
http://arxiv.org/abs/1404.1903
http://arxiv.org/abs/1209.6274
http://arxiv.org/abs/1210.1953
http://arxiv.org/abs/hep-lat/0407005
http://arxiv.org/abs/hep-lat/0412012
http://arxiv.org/abs/1107.1355
http://arxiv.org/abs/1204.5131
http://arxiv.org/abs/1411.2247
http://arxiv.org/abs/1405.7623
http://arxiv.org/abs/1006.2066
http://arxiv.org/abs/1110.6859
http://arxiv.org/abs/hep-lat/0207003
http://arxiv.org/abs/hep-lat/0207003
http://arxiv.org/abs/1008.1538
http://arxiv.org/abs/1103.5147


12

[31] C. Stewart and R. Koniuk, Phys. Rev. D 57, 5581 (1998)
[arXiv:hep-lat/9803003].

[32] C. Michael and P. Pennanen [UKQCD Collaboration],
Phys. Rev. D 60, 054012 (1999) [arXiv:hep-lat/9901007].

[33] M. S. Cook and H. R. Fiebig, arXiv:hep-lat/0210054.
[34] T. Doi, T. T. Takahashi and H. Suganuma, AIP Conf.

Proc. 842, 246 (2006) [arXiv:hep-lat/0601008].
[35] W. Detmold, K. Orginos and M. J. Savage, Phys. Rev.

D 76, 114503 (2007) [arXiv:hep-lat/0703009].
[36] G. Bali and M. Hetzenegger, PoS LATTICE2010, 142

(2010) [arXiv:1011.0571 [hep-lat]].
[37] B. Wagenbach, P. Bicudo and M. Wagner, J. Phys. Conf.

Ser. 599, no. 1, 012006 (2015) [arXiv:1411.2453 [hep-
lat]].

[38] P. Boucaud et al. [ETM Collaboration], Comput. Phys.
Commun. 179, 695 (2008) [arXiv:0803.0224 [hep-lat]].

[39] R. Baron et al. [ETM Collaboration], JHEP 1008, 097
(2010) [arXiv:0911.5061 [hep-lat]].

[40] C. Alexandrou et al. [ETM Collaboration], JHEP 1304,
137 (2013) [arXiv:1212.1418].

[41] A. Abdel-Rehim et al., arXiv:1410.8757 [hep-lat].
[42] K. Cichy et al., Nucl. Phys. B 869 (2013) 131

[arXiv:1211.1605 [hep-lat]].
[43] K. A. Olive et al. [Particle Data Group], Chin. Phys. C,

38, 090001 (2014).
[44] Y. Koma, M. Koma and H. Wittig, Phys. Rev. Lett. 97,

122003 (2006) [hep-lat/0607009].

[45] Y. Koma and M. Koma, Nucl. Phys. B 769, 79 (2007)
[hep-lat/0609078].

[46] J. Scheunert, P. Bicudo, A. Uenver and M. Wagner, to
appear in Acta Phys. Polon. Supp.

[47] M. L. Du, W. Chen, X. L. Chen and S. L. Zhu,
QQs̄s̄ states,” Phys. Rev. D 87, no. 1, 014003 (2013)
[arXiv:1209.5134 [hep-ph]].

[48] W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett.
B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]].

[49] In the context of this paper, a light quark q is a quark
significantly lighter than a b quark, i.e. q ∈ {u, d, s, c}.

[50] In principle, one could also use p a a fit parameter. Our
lattice QCD results are, however, not sufficiently precise
to extract a stable and precise value also for p. Therefore,
we set p = 2 as motivated in section II C. With this
choice, the lattice QCD results are well described by the
fit function (4), i.e. the resulting χ2/dof < 1 (eq. (7)).

[51] Our lattice QCD results are not sufficiently precise to al-
low stable fits with rmin = 3a for the vector u/d channel.

[52] As mentioned previously in section III C, the lattice QCD
results for the vector c channel are not sufficient to per-
form a quantitative analysis. The b̄b̄ potential in this
channel is, however, much less attractive than in the
other channels, e.g. the scalar c channel. Therefore, a
bound four-quark state in the vector c channel can be
excluded.

http://arxiv.org/abs/hep-lat/9803003
http://arxiv.org/abs/hep-lat/9901007
http://arxiv.org/abs/hep-lat/0210054
http://arxiv.org/abs/hep-lat/0601008
http://arxiv.org/abs/hep-lat/0703009
http://arxiv.org/abs/1011.0571
http://arxiv.org/abs/1411.2453
http://arxiv.org/abs/0803.0224
http://arxiv.org/abs/0911.5061
http://arxiv.org/abs/1212.1418
http://arxiv.org/abs/1410.8757
http://arxiv.org/abs/1211.1605
http://arxiv.org/abs/hep-lat/0607009
http://arxiv.org/abs/hep-lat/0609078
http://arxiv.org/abs/1209.5134
http://arxiv.org/abs/1206.5129

	I Introduction
	II Modeling the   interaction in the presence of two light quarks q q
	A The quark-antiquark / quark-quark potential at small separations
	B Qualitative discussion of the q q   system
	 Expectations for the   interaction at small separations r
	 Expectations for the   interaction at large separations r
	 Quantum numbers of possibly existing q q   tetraquarks

	C Fit function for lattice QCD   potential results

	III Lattice QCD computation of the   interaction in the presence of two light quarks q q
	A Lattice QCD setup
	B Lattice QCD computation of   potentials
	C Fitting eq. (4) to lattice QCD   potential results

	IV Dependence of the existence of q q   tetraquark states on the light quark mass
	A The   Hamiltonian
	B An analytical estimate for q q   binding
	C Numerical solution of the Schrödinger equation

	V Conclusions and outlook
	 Acknowledgments
	 References

