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1. Introduction

Topology freezing or fixing are important issues in quantwetdfiheory, in particular in QCD.
For example Monte Carlo simulations with a local update wtlym tend to be stuck in a single
topological sector at lattice spacingss 0.05fm, which are nowadays still rather fine, but realistic
[1]. Similarly, when simulating chirally symmetric oveplajuarks, the corresponding algorithms
are not able to generate transitions between differeniagjmal sectors (cf. e.g. [2]).

In view of these issues it is important to develop methodsclvallow us to obtain physically
meaningful results (i.e. results corresponding to unfixgdkogy) from fixed topology simulations.
The starting point for our work are the seminal papers [3,H4]e calculations from these papers
have been extended in [5, 6] by including fixed topology attioa terms up ta7(1/V3). Tests and
applications of these equations to quantum mechanat$)(3) model and the Schwinger model
can be found in [7, 8, 9, 10, 5, 11, 6, 12]. Here we discuss\pariking due to topology fixing
and its consequences, when extracting hadron masses frechtfigology simulations. We also
present results on SU(2) Yang-Mills theory.

2. BCNW equation and extensions

2.1 BCNW equation and extraction of hadron masses from fixeddpology simulations

The partition function and the two-point correlation funatof a hadron creation operat@r
at fixed topological charg® and finite spacetime volumé are

Zov = / DADY DY &g e APV
(2.1)

Cav(t) = ZQiV DADy DJ&Q.Q[A] oT(t)o(o)efSE[A,tﬁ.tm )

For largeV one can use a saddle point approximation and expand thdatamnefunction [3],

(2 2
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where a(0) = a(8 = 0) is a constantMy (0) = My (6 = 0) the physical hadron mass (i.e. at
unfixed topology),0 denotes the QCD vacuum angle gndhe topological susceptibility. In the
following we will refer to this equation as BCNW equatforin order to be a valid approximation,
certain conditions have to be fulfilled, e.g/}iV < 1,|Q|/xV < 1 and|MZ (0)t|/xV < 1. For
a detailed discussion cf. [6], Section 4.

A straightforward method to determine physical hadron m&gise. at unfixed topology) from
fixed topology simulations based on the BCNW equation has pesposed in [3]:

1. Perform simulations at fixed topology for different topgical charge€Q and spacetime
volumesV, for which the BCNW equation is a good approximation, i.eevehthe above
mentioned conditions are fulfilled. Compu@gy (t) for each simulation.

2. Determine the physical hadron madg(0), M,(f)(O) and x; by fitting the BCNW equation
(2.2) to the numerical results f@qy (t) obtained in step 1.

1BCNW stands for R. Brower, S. Chandrasekharan, J. W. NegeléJaJ. Wiese



Hadron masses from fixed topology simulations Arthur Dromard

2.2 Higher orders in1/V

In the derivation of the BCNW equation (2.2) all fixed topojogprrections proportional to
1/V have been taken into account as well as some proportiongM 1n [5, 6] we have extended
this expansion by including all terms &f(1/V?) and ¢ (1/V3). While there are only 4 parame-
ters in the BCNW equationa((0), My (0), M,(f)(O) and;), there are 8 and 11 parameters in the
corresponding AV2 and 1/V3 versions, respectively. Such large numbers of unknownnpeiers
might lead to unstable fits, when using methods to determiigé0) similar to that discussed in
Subsection 2.1. As a compromise between using higher oadd¢h® one hand and stable fits on
the other hand we advocate to use th¥ 3 version with the 4 parameters of the BCNW equation
only (the remaining 7 parameters are set to zero):

a(0) 1 L
\/1+M t/XVexp<—MH(O)t—Xt—V<1+M Iy >§Q2>. 2.3)

A comparison oMy (0) determinations using this equation and the BCNW equatiajuamtum
mechanics suggests that it is advantageous to use (2.3](fdr details).

2.3 Parity mixing

ParityP is not a symmetry & # 0. Therefore, states 8t 0 cannot be classified according to
parity and it is not possible to construct two-point cortiela functions%y v (t), where onlyP = —
or P = + states contribute. Similarl{Zqy (t) contains contributions of states both wih= —
andP = +, since it is the Fourier transform &fy v (t). Consequently, one has to determine the
masses oP = — andP = + parity partners from the same two-point correlation fumtsi While
usually there are little problems for the lighter state fie tase of mesons typically the= —
ground state), its parity partner (tfe= + ground state) has to be treated as an excitation. To
precisely determine the mass of an excited state, a singlelator is in most cases not sufficient.
For example to extract a first excitation it is common to statljeast a 2 2 correlation matrix
formed by two hadron creation operators, which generataifgignt overlap to both the ground
state and the first excitation.

We discuss the determination Bf= — andP = + parity partners from fixed topology com-
putations in a simple setup, a2 correlation matrix

n
Cauv(t) = (ggvgi &8) . Chv()= Zi.v /DAW’ D & qia O] (t)O(0)e EA¥-¥!

Y (2.4)
with hadron creation operato€_ andO. generating at smal mainly P = — andP = + states,
respectively. Without loss of generality we assume thatgiteeind state a@ = 0 hasP = —,
denoted byH_, and the first excitation hd3= +, denoted byH. . Starting from the expression of
a correlation function at fixe@l, where we consider the two statds andH, ,

Co\ () Zoy = (aik(e,vs)e N CAVA O )e*Eo<91Vs>T (2.5)

with the spatial volume/s and the temporal extensioh, one can derive the form of the four
elements of the fixed topology correlation matrix by appiythe same techniques used to derive
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the BCNW equation [6]. Neglecting terms 6f(1/V?) the result is

2
My (O)t b
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_ iQaiz iQb1x
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The difficulties due to parity mixing, when trying to detemaiMy, , are nicely illustrated by (2.9):
the contamination oCa\*,(t) by the P = — state is proportional by A/ (and, therefore, might
be small), but the signal term is exponentially suppressedproportional tog~ (M. (0)=Mn_(0))t.
consequently, at largethe P = — state will inevitably dominate. As mentioned above, a gaesi

solution might be to determinkly_(0) andMy, (0) at the same time by fitting (2.6) to (2.9) to a
2 x 2 correlation matrix.

Of course, when one is only interestedNty,_, the situation is much simpler. In particular
whenMy_ < My, , the BCNW equation or its improved version (2.3) can be useaistraightfor-
ward way as discussed in Subsection 2.1. In the next sectwowillvstudy Yang-Mills theory at
fixed topology following this strategy.

3. Computations in SU(2) Yang-Mills theory at fixed topology

3.1 Simulation setup

In the continuum the SU(2) Yang-Mills Lagrangian is

1
Fa,Fa (3.1)

X(A):@ uvuv-

The corresponding lattice action we use is the standardupttey action with3 = 2.5, which
amounts to a lattice spacirsgr 0.073fm. We have generated gauge configurations for spacetime
volumesV =V /a* € {14*,15%, 16*, 18'}. For each volume the static quark-antiquark potential
Y4q(r) for various quark-antiquark separatians- a, 2a, ... ,6a has been computed on 4000 gauge
configurations. For each of these gauge configurations fiwdgical charge has been computed
using a cooling procedure explained in [13].

3.2 The static potential

To obtain the physical static potential from Wilson loop rages, separately computed in
different topological sector® € {0, 1, ..., 7} and volumed/ € {14*, 15*, 16*, 18*}, denoted by
(Woy (r,1)), we proceed as sketched in Subsection 2.1 and discussethihidé&ection 5.3.4 of

[6].
e We performy? minimizing fits of either the BCNW equation (2.2) or the capending im-
proved version (2.3) with respect to their parametefts), #q4(r), 7/q’(; ry(r=aZ2a,...,6a)
andx; to the numerical results fqiNg v (r,t)).
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e We either perform a single combined fit to all considered s®mmsr = a,2a,...,6a or
six separate fits, one for each of the six separations. Inatiterlcase one obtains also six
different results for the topological susceptibilixy.

e Since the validity of both the BCNW equation (2.2) and theregponding improved ver-
sion (2.3) requires certain conditions (cf. Subsectior),2xde include only Wilson loops
(Waoy (r.t)) with 1/x:V, |Q|/x:V < 1.0 in the fits.

In Figure 1 we compare the static potential obtained frontdfiegology Wilson loops (using (2.3)
and a single combined fit) to the static potential computettiauit topology fixing (aV = 18%).
There is excellent agreement within statistical errors.al@atively identical results have been
obtained for the BCNW equation, or when performing six safeafits to the six separations.

0-35 T T T T T T
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0.25 | " |
s 0.2 } .
>U< ax T
015 03105 | . ]
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Figure 1: Comparison of static potential results obtained from fixaabtogy Wilson loops (using (2.3) and
a single combined fit) and at unfixed topology Yat= 18%). Since unfixed and fixed topology results are
identical within statistical errors, they have slightlyelmeshifted to the left and right, respectively, for better
visibility.

For|Q| =0,1,...4 the obtained values fofggqv (r = 6a) are plotted in Figure 2. We observe
a strong dependence of the static potential on the topabgector, which becomes increasingly
prominent for smaller spacetime volumes. The fixed topoktgyic potential is expected to behave
as the exponent of the BCNW equation (2.2). The correspgndimves forQ = 0,1,...4 with
parameterstqg(r = 6a), "I/q’a r = 6a) and x; determined by the previously discussed fits (using
(2.2) and a single combined fit) are also shown in Figure 2. €ameclearly see that (2.2) nicely
describes the numerical results 5oy (r = 6a).

We conclude that one can obtain a correct and accurate plhgtatic potential (corresponding
to unfixed topology) from Wilson loops separately computedifferent topological sectors.
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Figure 2: The fixed topology static potentisthgov (r = 6a) for variousQ = 0,1,...4 as a function of ,1\7
and the corresponding BCNW expansions.

3.3 The topological susceptibility

In Table 1 we present results for the topological suscditgilixtracted from fixed topology
Wilson loops(Mgy (r,t)). As explained in the previous section we have used eitheB@RW
equation (2.2) or the improved version (2.3) and either glsiffit to all considered separations
r=a2a,...,6a or six different fits, one for each of the six separations. Ha latter case one
obtains also six different results for the topological sjtibility x;.

‘method‘ r=a ‘ r=2a ‘ r=3a ‘ r=4a ‘ r=>5a ‘ r==6a ‘
(2.2)c 8.8(0.5)
(2.2)s | 8.8(0.5) | 8.7(0.6) | 8.6(0.7) | 8.6(0.9) | 8.8(1.0) | 8.9(1.2)
(2.3)c 7.1(0.6)
(2.3)s | 8.6(0.5) | 8.2(0.7) | 7.7(0.8) | 7.3(0.9) | 7.0(1.0) | 6.7(1.1)

Table 1: Results for the topological susceptibilitya® x 10° from fixed topology computations of the static
potential 745(r) for various separations. In the column “method” the equatiomber of the expansion is
listed, “c” denotes a single combined fit for all separatiand “s” denotes a separate fit for each separation.
As reference value from an unfixed topology computation vesyua* x 10° = (7.0+0.9) [13].

Not all of the extractega® values perfectly agree with each other or with the regaf =
7.0 x 107° from [13], which we take as reference value. There seems t@ $lght tension in
form of ~ 20 discrepancies, when performing fits with the BCNW equat®R2)( The improved
version (2.3) gives slightly better results: the majorifytlee extracted values are less tham 1
different from the unfixed topology reference value.

One might hope to further improve the results by imposinga@ngter constraint, e.g. by using
only Wilson loops(Wgy (r,t)) with 1/x:V,|Q|/x:V < 0.5. Indeed there is then consistency with
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the reference valuga® = 7.0 x 107>, but the statistical errors are extremely large, of the oofle
xia* itself or even larger.

We conclude that in principle one can extract the topoldgstsceptibility in Yang-Mills
theory from the static potential at fixed topology. In preetihowever, one needs rather precise
data.

4. Conclusion

We have extended equations from the literature [3, 4] radaitivo-point correlation functions
at fixed topology to physical hadron masses (i.e. hadron esassunfixed topology). We have
also discussed the problem of parity mixing and conseqsefaicaghe determination of masses of
heavier parity partners. Finally we have demonstrated ii2W¥ang-Mills theory that one can
determine the static potential from Wilson loops computefixed topological sectors.
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