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Lattice QCD simulations tend to get stuck in a single topological sector at fine lattice spacing,

or when using chirally symmetric quarks. In such cases computed observables differ from their

full QCD counterparts by finite size effects, which need to beunderstood on a quantitative level.

We discuss extensions of existing relations from the literature between correlation functions at

fixed topology and hadron masses at unfixed topology. Particular focus is put on disentangling

positive and negative parity states, which mix, when the topological charge is fixed. We also

present numerical results for SU(2) Yang-Mills Theory.
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1. Introduction

Topology freezing or fixing are important issues in quantum field theory, in particular in QCD.
For example Monte Carlo simulations with a local update algorithm tend to be stuck in a single
topological sector at lattice spacingsa. 0.05fm, which are nowadays still rather fine, but realistic
[1]. Similarly, when simulating chirally symmetric overlap quarks, the corresponding algorithms
are not able to generate transitions between different topological sectors (cf. e.g. [2]).

In view of these issues it is important to develop methods, which allow us to obtain physically
meaningful results (i.e. results corresponding to unfixed topology) from fixed topology simulations.
The starting point for our work are the seminal papers [3, 4].The calculations from these papers
have been extended in [5, 6] by including fixed topology correction terms up toO(1/V3). Tests and
applications of these equations to quantum mechanics, 2d O(3) model and the Schwinger model
can be found in [7, 8, 9, 10, 5, 11, 6, 12]. Here we discuss parity mixing due to topology fixing
and its consequences, when extracting hadron masses from fixed topology simulations. We also
present results on SU(2) Yang-Mills theory.

2. BCNW equation and extensions

2.1 BCNW equation and extraction of hadron masses from fixed topology simulations

The partition function and the two-point correlation function of a hadron creation operatorO
at fixed topological chargeQ and finite spacetime volumeV are

ZQ,V =

ˆ

DADψ Dψ̄ δQ,Q[A]e
−SE [A,ψ̄,ψ ]

CQ,V(t) =
1

ZQ,V

ˆ

DADψ Dψ̄ δQ,Q[A]O
†(t)O(0)e−SE [A,ψ̄,ψ ].

(2.1)

For largeV one can use a saddle point approximation and expand the correlation function [3],

CQ,V(t) = α(0)exp

(

−MH(0)t −
M(2)

H (0)t
2χtV

(

1−
Q2

χtV

))

+O

(

1

χ2
t V2

)

, (2.2)

whereα(0) = α(θ = 0) is a constant,MH(0) = MH(θ = 0) the physical hadron mass (i.e. at
unfixed topology),θ denotes the QCD vacuum angle andχt the topological susceptibility. In the
following we will refer to this equation as BCNW equation1. In order to be a valid approximation,
certain conditions have to be fulfilled, e.g. 1/χtV ≪ 1, |Q|/χtV ≪ 1 and|M(2)

H (0)t|/χtV ≪ 1. For
a detailed discussion cf. [6], Section 4.

A straightforward method to determine physical hadron masses (i.e. at unfixed topology) from
fixed topology simulations based on the BCNW equation has been proposed in [3]:

1. Perform simulations at fixed topology for different topological chargesQ and spacetime
volumesV, for which the BCNW equation is a good approximation, i.e. where the above
mentioned conditions are fulfilled. ComputeCQ,V(t) for each simulation.

2. Determine the physical hadron massMH(0), M(2)
H (0) andχt by fitting the BCNW equation

(2.2) to the numerical results forCQ,V(t) obtained in step 1.

1BCNW stands for R. Brower, S. Chandrasekharan, J. W. Negele and U.-J. Wiese
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2.2 Higher orders in 1/V

In the derivation of the BCNW equation (2.2) all fixed topology corrections proportional to
1/V have been taken into account as well as some proportional to 1/V2. In [5, 6] we have extended
this expansion by including all terms ofO(1/V2) andO(1/V3). While there are only 4 parame-
ters in the BCNW equation (α(0), MH(0), M(2)

H (0) andχt ), there are 8 and 11 parameters in the
corresponding 1/V2 and 1/V3 versions, respectively. Such large numbers of unknown parameters
might lead to unstable fits, when using methods to determineMH(0) similar to that discussed in
Subsection 2.1. As a compromise between using higher ordersat the one hand and stable fits on
the other hand we advocate to use the 1/V3 version with the 4 parameters of the BCNW equation
only (the remaining 7 parameters are set to zero):

CQ,V(t) =
α(0)

√

1+M(2)
H (0)t/χtV

exp

(

−MH(0)t −
1

χtV

(

1

1+M(2)
H (0)t/χtV

−1

)

1
2

Q2
)

. (2.3)

A comparison ofMH(0) determinations using this equation and the BCNW equation inquantum
mechanics suggests that it is advantageous to use (2.3) (cf.[6] for details).

2.3 Parity mixing

ParityP is not a symmetry atθ 6= 0. Therefore, states atθ 6= 0 cannot be classified according to
parity and it is not possible to construct two-point correlation functionsCθ ,V(t), where onlyP=−

or P = + states contribute. Similarly,CQ,V(t) contains contributions of states both withP = −

andP = +, since it is the Fourier transform ofCθ ,V(t). Consequently, one has to determine the
masses ofP= − andP= + parity partners from the same two-point correlation functions. While
usually there are little problems for the lighter state (in the case of mesons typically theP = −

ground state), its parity partner (theP = + ground state) has to be treated as an excitation. To
precisely determine the mass of an excited state, a single correlator is in most cases not sufficient.
For example to extract a first excitation it is common to studyat least a 2× 2 correlation matrix
formed by two hadron creation operators, which generate significant overlap to both the ground
state and the first excitation.

We discuss the determination ofP= − andP= + parity partners from fixed topology com-
putations in a simple setup, a 2×2 correlation matrix

CQ,V(t) =

(

C−−
Q,V(t) C−+

Q,V(t)

C+−
Q,V(t) C++

Q,V(t)

)

, C jk
Q,V(t)≡

1
ZQ,V

ˆ

DADψ Dψ̄ δQ,Q[A]O
†
j (t)Ok(0)e

−SE [A,ψ̄,ψ ]

(2.4)
with hadron creation operatorsO− andO+ generating at smallθ mainly P=− andP= + states,
respectively. Without loss of generality we assume that theground state atθ = 0 hasP = −,
denoted byH−, and the first excitation hasP=+, denoted byH+. Starting from the expression of
a correlation function at fixedθ , where we consider the two statesH− andH+,

C
jk

θ ,V(t)Zθ ,V =
(

α jk
− (θ ,Vs)e

−MH− (θ )t +α jk
+ (θ ,Vs)e

−MH+ (θ )t
)

e−E0(θ ,Vs)T (2.5)

with the spatial volumeVs and the temporal extensionT, one can derive the form of the four
elements of the fixed topology correlation matrix by applying the same techniques used to derive
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the BCNW equation [6]. Neglecting terms ofO(1/V2) the result is

C−−
Q,V(t) = a11e

−MH− (0)t
(

1−
M(2)

H−
(0)t

2χtV

)

+
b22

χtV
e−MH+ (0)t (2.6)

C−+
Q,V(t) =

iQa12

χtV
e−MH− (0)t +

iQb12

χtV
e−MH+ (0)t (2.7)

C+−
Q,V(t) =

iQa21

χtV
e−MH− (0)t +

iQb21

χtV
e−MH+ (0)t (2.8)

C++
Q,V(t) =

a22

χtV
e−MH− (0)t +b22e

−MH+ (0)t
(

1−
M(2)

H−
(0)t

2χtV

)

. (2.9)

The difficulties due to parity mixing, when trying to determineMH+ , are nicely illustrated by (2.9):
the contamination ofC++

Q,V(t) by the P = − state is proportional by 1/V (and, therefore, might

be small), but the signal term is exponentially suppressed in t, proportional toe−(MH+ (0)−MH− (0))t ;
consequently, at larget theP= − state will inevitably dominate. As mentioned above, a possible
solution might be to determineMH−(0) andMH+(0) at the same time by fitting (2.6) to (2.9) to a
2×2 correlation matrix.

Of course, when one is only interested inMH−, the situation is much simpler. In particular
whenMH− ≪ MH+ , the BCNW equation or its improved version (2.3) can be used in a straightfor-
ward way as discussed in Subsection 2.1. In the next section we will study Yang-Mills theory at
fixed topology following this strategy.

3. Computations in SU(2) Yang-Mills theory at fixed topology

3.1 Simulation setup

In the continuum the SU(2) Yang-Mills Lagrangian is

L (A) =
1

4g2 Fa
µνFa

µν . (3.1)

The corresponding lattice action we use is the standard plaquette action withβ = 2.5, which
amounts to a lattice spacinga≈ 0.073fm. We have generated gauge configurations for spacetime
volumesV̂ = V/a4 ∈ {144 , 154 , 164 , 184}. For each volume the static quark-antiquark potential
Vqq̄(r) for various quark-antiquark separationsr = a,2a, . . . ,6a has been computed on 4000 gauge
configurations. For each of these gauge configurations the topological charge has been computed
using a cooling procedure explained in [13].

3.2 The static potential

To obtain the physical static potential from Wilson loop averages, separately computed in
different topological sectorsQ∈ {0, 1, . . . , 7} and volumeŝV ∈ {144 , 154 , 164 , 184}, denoted by
〈WQ,V (r, t)〉, we proceed as sketched in Subsection 2.1 and discussed in detail in Section 5.3.4 of
[6].

• We performχ2 minimizing fits of either the BCNW equation (2.2) or the corresponding im-
proved version (2.3) with respect to their parametersα(r), Vqq̄(r), V ′′

qq̄(r) (r = a,2a, . . . ,6a)
andχt to the numerical results for〈WQ,V(r, t)〉.
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• We either perform a single combined fit to all considered separations r = a,2a, . . . ,6a or
six separate fits, one for each of the six separations. In the latter case one obtains also six
different results for the topological susceptibilityχt .

• Since the validity of both the BCNW equation (2.2) and the corresponding improved ver-
sion (2.3) requires certain conditions (cf. Subsection 2.1), we include only Wilson loops
〈WQ,V (r, t)〉 with 1/χtV, |Q|/χtV < 1.0 in the fits.

In Figure 1 we compare the static potential obtained from fixed topology Wilson loops (using (2.3)
and a single combined fit) to the static potential computed without topology fixing (atV̂ = 184).
There is excellent agreement within statistical errors. Qualitatively identical results have been
obtained for the BCNW equation, or when performing six separate fits to the six separations.
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Figure 1: Comparison of static potential results obtained from fixed topology Wilson loops (using (2.3) and
a single combined fit) and at unfixed topology (atV̂ = 184). Since unfixed and fixed topology results are
identical within statistical errors, they have slightly been shifted to the left and right, respectively, for better
visibility.

For |Q|= 0,1, . . .4 the obtained values forVqq̄,Q,V(r = 6a) are plotted in Figure 2. We observe
a strong dependence of the static potential on the topological sector, which becomes increasingly
prominent for smaller spacetime volumes. The fixed topologystatic potential is expected to behave
as the exponent of the BCNW equation (2.2). The corresponding curves forQ = 0,1, . . .4 with
parametersVqq̄(r = 6a), V ′′

qq̄(r = 6a) and χt determined by the previously discussed fits (using
(2.2) and a single combined fit) are also shown in Figure 2. Onecan clearly see that (2.2) nicely
describes the numerical results forVqq̄,Q,V(r = 6a).

We conclude that one can obtain a correct and accurate physical static potential (corresponding
to unfixed topology) from Wilson loops separately computed in different topological sectors.
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Figure 2: The fixed topology static potentialVqq̄,Q,V(r = 6a) for variousQ= 0,1, . . .4 as a function of 1/V̂
and the corresponding BCNW expansions.

3.3 The topological susceptibility

In Table 1 we present results for the topological susceptibility extracted from fixed topology
Wilson loops〈WQ,V(r, t)〉. As explained in the previous section we have used either theBCNW
equation (2.2) or the improved version (2.3) and either a single fit to all considered separations
r = a,2a, . . . ,6a or six different fits, one for each of the six separations. In the latter case one
obtains also six different results for the topological susceptibility χt .

method r = a r = 2a r = 3a r = 4a r = 5a r = 6a

(2.2)c 8.8(0.5)

(2.2)s 8.8(0.5) 8.7(0.6) 8.6(0.7) 8.6(0.9) 8.8(1.0) 8.9(1.2)

(2.3)c 7.1(0.6)

(2.3)s 8.6(0.5) 8.2(0.7) 7.7(0.8) 7.3(0.9) 7.0(1.0) 6.7(1.1)

Table 1: Results for the topological susceptibilityχta4×105 from fixed topology computations of the static
potentialVqq̄(r) for various separations. In the column “method” the equation number of the expansion is
listed, “c” denotes a single combined fit for all separationsand “s” denotes a separate fit for each separation.
As reference value from an unfixed topology computation we use χta4×105 = (7.0±0.9) [13].

Not all of the extractedχta4 values perfectly agree with each other or with the resultχta4 =

7.0× 10−5 from [13], which we take as reference value. There seems to bea slight tension in
form of ≈ 2σ discrepancies, when performing fits with the BCNW equation (2.2). The improved
version (2.3) gives slightly better results: the majority of the extracted values are less than 1σ
different from the unfixed topology reference value.

One might hope to further improve the results by imposing a stronger constraint, e.g. by using
only Wilson loops〈WQ,V(r, t)〉 with 1/χtV, |Q|/χtV < 0.5. Indeed there is then consistency with
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the reference valueχta4 = 7.0×10−5, but the statistical errors are extremely large, of the order of
χta4 itself or even larger.

We conclude that in principle one can extract the topological susceptibility in Yang-Mills
theory from the static potential at fixed topology. In practice, however, one needs rather precise
data.

4. Conclusion

We have extended equations from the literature [3, 4] relating two-point correlation functions
at fixed topology to physical hadron masses (i.e. hadron masses at unfixed topology). We have
also discussed the problem of parity mixing and consequences for the determination of masses of
heavier parity partners. Finally we have demonstrated in SU(2) Yang-Mills theory that one can
determine the static potential from Wilson loops computed in fixed topological sectors.

Acknowledgments

We thank Irais Bautista, Wolfgang Bietenholz, Urs Gerber, Héctor Mejía-Díaz and Christoph
P. Hofmann for fruitful discussions and collaboration. We also thank Krzysztof Cichy, Dennis
Dietrich, Gregorio Herdoiza, Karl Jansen and Andreas Wipf for discussions. We acknowledge
support by the Emmy Noether Programme of the DFG (German Research Foundation), grant WA
3000/1-1. This work was supported in part by the Helmholtz International Center for FAIR within
the framework of the LOEWE program launched by the State of Hesse.

References

[1] M. Lüscher and S. Schaefer, JHEP1107, 036 (2011)

[2] S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D78, 014508 (2008)

[3] R. Brower, S. Chandrasekharan, J. W. Negele and U.-J. Wiese, Phys. Lett. B560, 64 (2003)

[4] S. Aoki et al., Phys. Rev. D76, 054508 (2007)

[5] A. Dromard and M. Wagner, PoS LATTICE2013, 339 (2013) [arXiv:1309.2483 [hep-lat]].

[6] A. Dromard and M. Wagner, Phys. Rev. D90, 074505 (2014) [arXiv:1404.0247 [hep-lat]].

[7] I. Bautista, W. Bietenholz, U. Gerber, C. P. Hofmann, H. Mejía-Díaz and L. Prado, arXiv:1402.2668
[hep-lat].

[8] W. Bietenholz, I. Hip, S. Shcheredin and J. Volkholz, Eur. Phys. J. C72, 1938 (2012)

[9] W. Bietenholz and I. Hip, J. Phys. Conf. Ser.378, 012041 (2012) [arXiv:1201.6335 [hep-lat]].

[10] C. Czaban and M. Wagner, PoS LATTICE2013, 465 (2013) [arXiv:1310.5258 [hep-lat]].

[11] C. Czaban, A. Dromard and M. Wagner, Acta Phys. Polon. Supp.7, no. 3, 551 (2014)
[arXiv:1404.3597 [hep-lat]].

[12] U. Gerber, I. Bautista, W. Bietenholz, H. Mejía-Díaz and C. P. Hofmann, arXiv:1410.0426 [hep-lat].

[13] P. de Forcrand, M. García Pérez and I.-O. Stamatescu, Nucl. Phys. B499, 409 (1997)

[14] I. Bautista, W. Bietenholz, C. Czaban, A. Dromard, U. Gerber, C. P. Hofmann, H. Mejía-Díaz and
M. Wagner, in preparation

7


